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BOREL CANONIZATION OF ANALYTIC SETS

WITH BOREL SECTIONS

OHAD DRUCKER

(Communicated by Mirna Džamonja)

Abstract. Kanovei, Sabok and Zapletal asked whether every proper σ-ideal

satisfies the following property: given E an analytic equivalence relation with
Borel classes, there exists a set B which is Borel and I-positive such that E �B
is Borel. We propose a related problem – does every proper σ-ideal satisfy:
given A an analytic subset of the plane with Borel sections, there exists a set
B which is Borel and I-positive such that A ∩ (B × ωω) is Borel. We answer
positively when a measurable cardinal exists, and negatively in L, where no
proper σ ideal has that property. We show that a positive answer for all ccc
σ-ideals implies that ω1 is inaccessible to the reals and Mahlo in L.

1. Introduction

1.1. Borel canonization of analytic equivalence relations. Analytic equiva-
lence relations are common in the world of mathematics, and given such an equiv-
alence relation, one of the first questions traditionally asked is – “is it Borel”?
A negative answer used to convince us that the equivalence relation is relatively
complicated, but a new point of view proposed by Kanovei, Sabok and Zapletal
has opened the way to a somewhat more optimistic conclusion. We all know that
Lebesgue measurable functions are “almost continuous”, analytic sets are Borel
modulo meager sets and colorings of natural numbers are “almost” trivial. We can
then hope that even the non-Borel analytic equivalence relations are Borel on a
substantial set – which leads to the following question:

Problem 1.1. Given an analytic equivalence relation E on a Polish space X, does
there exist a positive measure (or non-meager, or uncountable) Borel set B such
that E restricted to B is Borel?

We can use the notion of a σ-ideal to state a more general problem. By ‘σ-ideal’
we will always refer to one that does not contain singletons. Given a σ-ideal I , we
will say that A is an I-positive set if A /∈ I, an I-small set if A ∈ I , and a co-I set
if X−A ∈ I. The above mentioned problem involved the existence of an I-positive
set for the null ideal, the meager ideal and the countable ideal. We restate it for
all σ -ideals:
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Problem 1.2. Given an analytic equivalence relation E on a Polish space X and
a σ-ideal I , does there exist an I-positive Borel set B such that E restricted to B
is Borel?

Unfortunately, that problem has a negative answer, and further assumptions had
to be made – both on the equivalence relation E and on the σ-ideal I. We recall
that for a σ-ideal I, PI is the partial order of Borel I-positive subsets, ordered by
inclusion. We say that I is proper if the associated forcing notion PI is proper.
Then Kanovei, Sabok and Zapletal have asked the following:

Problem 1.3 ([12]). Borel canonization of analytic equivalence relations with Borel
classes: Given an analytic equivalence relation E on a Polish space X, all of its
classes Borel, and a proper σ-ideal I, does there exist an I-positive Borel set B
such that E restricted to B is Borel?

They have shown the answer to be positive for two important classes of analytic
equivalence relations with Borel classes: orbit equivalence relation, and countable
equivalence relations (proofs are given in the next section). The problem in its full
generality remained open.

1.2. Borel canonization of analytic sets with Borel sections. Analytic equiv-
alence relations are only one example on which Borel canonization may apply. One
can apply Borel canonization on any analytic subset of X2 for X Polish. The
property of “all classes are Borel” will be replaced by “all sections are Borel”.

Definition 1.4. Let X be Polish, and I a σ-ideal on X.

(1) We say that I has square Borel canonization of analytic sets with Borel
sections if for any A ⊆ X2 an analytic set with vertical Borel sections,
there exists an I-positive Borel set B such that A ∩ (B × B) is Borel.

(2) We say that I has cylindrical Borel canonization of analytic sets with Borel
sections if for any A ⊆ X2 an analytic set with vertical Borel sections, there
exists an I-positive Borel set B such that A ∩ (B ×X) is Borel.

(3) We say that I has strong square Borel canonization of analytic sets with
Borel sections if for any A ⊆ X2 an analytic set with vertical Borel sections,
there exists a co-I Borel set B such that A ∩ (B ×B) is Borel.

(4) We say that I has strong cylindrical Borel canonization of analytic sets
with Borel sections if for any A ⊆ X2 an analytic set with vertical Borel
sections, there exists a co-I Borel set B such that A ∩ (B ×X) is Borel.

In what follows, we will simply say: “I has square Borel canonization”, etc.
Cylindrical Borel canonization implies square Borel canonization, which implies
Borel canonization of analytic equivalence relations with Borel classes. We do not
know whether any of the inverse implications are true.

Remark 1.5. For ccc σ-ideals, the strong Borel canonization and the weak Borel
canonization are equivalent. The strong Borel canonization of general proper σ-
ideals is false – see [10] proposition 17.

When considering the square and cylindrical Borel canonizations, there is no
difference between analytic and coanalytic sets:

Claim 1.6. I has square Borel canonization of analytic sets with Borel sections if and
only if I has square Borel canonization of coanalytic sets with Borel sections (and
the same for cylindrical, strong square and strong cylindrical Borel canonizations).
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Proof. Consider the complement. �

Albeit being a new notion, strong cylindrical Borel canonization has been studied
in the past by Fujita in [5] and by Ikegami in [9] and [10], culminating in the
following result:

Theorem 1.7 (Ikegami [10]). Let I be a σ-ideal with a Borel basis such that PI is
strongly arboreal, provably ccc and Σ1

1. Then the following are equivalent:

(1) I has strong cylindrical Borel canonization.
(2) Σ1

2 sets are measurable with respect to I , which is: For A Σ1
2 there is B

Borel such that A�B ∈ I.

We say that I has a Borel basis if any A ∈ I is contained in an I-small Borel
set. We say that I is provably ccc if ZFC proves that I is ccc. The notions of
“strongly arboreal” and “Σ1

1 forcing” are assumptions on the presentability and
definability of PI , satisfied by, for example, the meager ideal and the null ideal.
Hence, one learns from the theorem that the meager ideal has strong cylindrical
Borel canonization if and only if Σ1

2 sets have the Baire property, and the null
ideal has strong cylindrical Borel canonization if and only if Σ1

2 sets are Lebesgue
measurable.

This paper will focus on general σ-ideals with minimal assumptions on definabil-
ity and presentability. It is therefore interesting and illuminating to compare our
results with Ikegami’s results.

1.3. The results of this paper. The problem of Kanovei, Sabok and Zapletal
can be restated as:

Problem 1.8. Do all proper σ-ideals I have Borel canonization of analytic equiv-
alence relation with Borel classes?

We focus our paper on the following related problem:

Problem 1.9. Do all proper σ-ideals I have cylindrical Borel canonization of an-
alytic sets with Borel sections?

Section 2 presents previous results about Borel canonization.
In section 3 we define a notion of ω1-rank for analytic sets with Borel sections.

We use the rank to prove:

Theorem 1.10. Assume a measurable cardinal exists. Then proper σ-ideals have
cylindrical Borel canonization and ccc σ-ideals have strong cylindrical Borel canon-
ization.

We say that ω1 is inaccessible to the reals if for every z real, ω
L[z]
1 < ω1.

Theorem 1.11. Assume ω1 is inaccessible to the reals, and I is ccc in L[z] for
any real z. Then I has strong cylindrical Borel canonization of analytic sets all of
whose sections are Π0

γ for some γ < ω1.

The last section presents counterexamples to cylindrical Borel canonization, both
in L and in much larger universes:

Proposition 1.12. In L, proper σ-ideals do not have cylindrical Borel canonization
of analytic sets with Borel sections. The same is true for L[z] where z is a real.
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Theorem 1.13. If ω1 is inaccessible to the reals and is not Mahlo in L, then there
is a ccc σ-ideal not having cylindrical Borel canonization of analytic sets with Borel
sections. Moreover, PI � AxG

non-Borel for some A analytic with Borel sections.

Corollary 1.14. Cylindrical Borel canonization for ccc σ-ideals implies that ω1 is
inaccessible to the reals and Mahlo in L.

Non-absoluteness of “all sections / classes are Borel” is further demonstrated by
the following proposition:

Proposition 1.15. There is an analytic equivalence relation E such that:

(1) If ω1 is inaccessible to the reals and is not Mahlo in L, then all E classes
are Borel and there is a ccc σ-ideal I such that

PI � [xG] is non-Borel.

(2) If ω1 is inaccessible to the reals, then all E classes are Borel, while in L
there is a non-Borel class.

The problem of square Borel canonization is sometimes discussed in this paper
but the consistency of a negative answer remains open. The same applies for the
problem of Borel canonization of equivalence relations.

Chan, in [3], has independently obtained much of the above results using similar
techniques. He has been working with equivalence relations, but his proofs perfectly
fit in the context of cylindrical Borel canonization. In particular, he has shown that
all proper σ-ideals have cylindrical Borel canonization if there exist sharps for all
reals and for a few more sets associated with the forcing notions of proper σ-ideals.

2. Preliminaries

For I a σ-ideal on a Polish space X, PI is the partial order of Borel I-positive
sets ordered by inclusion.

We say that I is ccc if PI is ccc, and that I is proper if PI is proper. Properness
of PI can be phrased in terms of the set of M -generics:

Proposition 2.1 ([16]). PI is proper if and only if for every M a countable elemen-
tary submodel of a large enough Hθ such that PI ∈ M and for every B ∈ PI ∩M ,
the set of elements of B which are generic over M is I-positive.

2.1. Borel canonization of orbit equivalence relations and countable
equivalence relations. In what follows, two Borel canonization results of Kanovei,
Sabok and Zapletal [12] are presented. The first is rewritten using the notion of
Hjorth rank, and the second is generalized so that it shows cylindrical Borel can-
onization of analytic sets with countable sections.

To present the first proof, we recall the principles of Hjorth analysis.

Definition 2.2. A Scott analysis of Polish actions is a method defining for a
Polish group G acting continuously on a Polish space X a decreasing sequence of
equivalence relations on X 〈≡α : α < ω1〉 and δ an ω1 rank on X such that:

(1) ≡α are Borel and invariant under G.
(2) The orbit equivalence relation is exactly the intersection of all ≡α.
(3) The function δ : X → (ω1, <) is Borel and invariant under the action of G.
(4) There is an α < ω1 such that for every x, y ∈ X, x and y are orbit equivalent

if and only if x ≡δ(x)+α y.
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We will say that a Scott analysis of Polish actions satisfies the boundedness
principle if the Borel orbit equivalence relations are exactly those orbit equivalence
relations on which δ is uniformly bounded.

Scott [13] presented such an analysis which is restricted for the logic actions –
the actions of S∞ on the collection of countable models of a countable theory. He
proved his analysis satisfies the boundedness principle in the following sense: the
Borel logic actions are exactly the logic actions on which Scott’s rank δ is uniformly
bounded.

Hjorth [8] extended Scott’s construction to a Scott analysis of all Polish actions,
which we call here Hjorth analysis. In [4] we have shown that Hjorth analysis satis-
fies the boundedness principle. By Hjorth rank we will refer to the rank associated
with Hjorth analysis.

Theorem 2.3. Proper σ-ideals have Borel canonization of orbit equivalence rela-
tions.

Proof. Let G be a Polish group acting on a Polish space X, and I a proper σ-ideal.
We find C Borel and I-positive such that

(
EX

G

)
�C , the orbit equivalence relation

restricted to C, is Borel. Let δ be the Hjorth rank associated with the action of
G on X . Fix θ large enough and M 
 Hθ an elementary submodel containing all
the relevant information. Let C be the I-positive Borel set of M -generics, and let
x ∈ C be M -generic. Then

M [x] |= δ(x) ≤ α

for some α < ω
M [x]
1 = ωM

1 . The rank δ has a Borel definition, hence V |= δ(x) ≤ α
as well. We have thus proved that the Hjorth rank on C is uniformly bounded
below ωM

1 , hence
(
EX

G

)
�C is Borel. �

Theorem 2.4. Proper σ-ideals have cylindrical Borel canonization of analytic sets
with countable sections.

Proof. Fix I proper and A an analytic subset of the plane with countable sections.
Recall that a Σ1

1(x) set is countable if and only if all its elements are hyperarithmetic
in x. One can then show that “all sections are countable” is still true in generic
extensions. Use 2.3.1 of [16] to find B ∈ PI and a Borel f : B → Xω such that
B � f(xG) enumerates AxG

.
Fix θ large enough and M 
 Hθ an elementary submodel containing all the

relevant information (including f and B). Let C ⊆ B be the I-positive Borel set
of M -generics, and let x ∈ C be M -generic. Then

M [x] |= f(x) enumerates Ax,

which is,

M [x] |= ∀y (y ∈ Ax) ⇒ ∃n ∈ ω (f(x))(n) = y.

That statement is Π1
1, so it must be true in V as well – which is, (Ax)

V ⊆ M [x] .
On the other hand, if

(f(x))(n) = y,

then y ∈ M [x] and M [x] |= y ∈ Ax, hence V thinks the same.
The above results in a Borel definition of A ∩ (C ×X): For x ∈ C and y ∈ X,

(x, y) ∈ A ⇔ ∃n ∈ ω (f(x))(n) = y. �
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3. Ranks for analytic sets with Borel sections

Denote by WF the set of well-founded trees, and by WFα the set of well-founded
trees of rank less than α.

Let A be an analytic subset of (ωω)2. There exists a tree T ⊆ ωω × ωω × ωω

such that

(x, y) ∈ A ⇔ Txy /∈ WF.

For α < ω1, define:

(x, y) ∈ Aα ⇔ Txy /∈ WFα.

The sequence Aα is decreasing, Aδ =
⋂

α<δ Aα for δ limit, and

A =
⋂

α<ω1

Aα.

Definition 3.1. For x ∈ ωω, the rank of x , δ(x), is the least α such that Ax =
(Aα)x, if such an α exists, and ∞ if there is no such α.

Proposition 3.2. If Ax is Borel, then there is α < ω1 such that Ax = (Aα)x.

Proof. Since

(X −A)x = {y : (x, y) /∈ A} = {y : Txy ∈ WF}

is a Borel set, its image under y → Txy is an analytic subset of WF . By the
boundedness theorem for WF , its image is contained in WFα for some countable
α, which is:

y ∈ Ax ⇔ Txy /∈ WFα ⇔ y ∈ (Aα)x

as we wanted to show. �

Proposition 3.3. The set Δ = {(x, f) : f ∈ WO, δ(x) ≤ ot(f)} is Π1
2. The set

{x : Ax is Borel} is Σ1
3.

Proof. f ∈ WO is Π1
1. The rank of x is less than the order type of f if and only if

∀z : Txz ∈ WF ⇔ Txz ∈ WFot(f)

which is Π1
2. For x ∈ X, Ax is Borel if and only if ∃f such that (x, f) ∈ Δ, which

is Σ1
3. �

Proposition 3.4. Let B ⊆ X be a Borel set. Then A ∩ (B ×X) is Borel if and
only if there is an α < ω1 such that for all x ∈ B, δ(x) < α.

The proof uses the boundedness theorem for WF in the same way used in the
proof of Proposition 3.2.

We remark that the rank is not canonical and depends on the choice of the tree
T . However, all we will need for our results is the mere existence of such a rank.

3.1. Cylindrical Borel canonization of proper σ-ideals. Having those defi-
nitions in mind, one can try and prove cylindrical Borel canonization of proper
σ-ideals in the following way:

• Fix a countable elementary submodel M 
 Hθ for θ large enough, and force
with PI over M .
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• Show that AxG
is Borel in M [xG] and so

M [xG] |= δ(xG) ≤ α

for some α < ω
M [x]
1 = ωM

1 (recall that PI preserves ω1).
• Use absoluteness to show that V |= δ(xG) ≤ α.
• Use properness to guarantee that the set ofM -generics is I-positive, and the
above arguments to conclude that all of them has rank less than ωM

1 < ω1.

However, the 2nd and 3rd steps are in general impossible. Although A has only
Borel sections, that statement is Π1

4 (see Proposition 3.3), hence one must work
harder to show its preservation. The 3rd step provides us with another absolute-
ness challenge, since Π1

2 absoluteness between a submodel N and the universe is
guaranteed when N contains all countable ordinals, whereas M [xG] is countable.

The following proof follows the above lines and takes advantage of the measurable
cardinal to overcome the above mentioned difficulties. We recall that by a theorem
of Martin and Solovay (15.6 in [11]), when there is a measurable cardinal κ, forcing
notions of cardinality less than κ preserve Σ1

3 statements.

Theorem 3.5. Assume a measurable cardinal exists. Then proper σ-ideals have
cylindrical Borel canonization and ccc σ-ideals have strong cylindrical Borel canon-
ization.

Proof. The idea is as follows: given U a κ-complete ultrafilter on κ, one can form
iterated ultrapowers of the universe, Vα, all well founded by a theorem of Gaifman.
The same operation can be applied on M a countable elementary submodel of the
universe such that U ∈ M . Since the sequence j(α)(κ) is increasing and continuous,
Mω1

, the ω′
1th iterated ultrapower of M , contains all countable ordinals, so that

Mω1
and the universe agree on Π1

2 statements. On the other hand, Mω1
is an

iterated ultrapower of M , so they agree on all statements – there is an elementary
embedding between them. We will then have enough absoluteness to conclude the
proof.

So let M 
 Hθ for θ large enough be a countable elementary submodel such that
κ ∈ M is measurable and M contains all the relevant information. Fix U ∈ M a
κ-complete ultrafilter on κ, and force with PI over M . The Levy-Solovay theorem
[14] guarantees that U remains a κ-complete ultrafilter in M [xG]. For convenience,
denote M [xG] by N , remembering that ωN

1 = ωM
1 because PI is proper. We can

then use U to iterate ultrapowers of V, N and M over all ordinals. Denote by Vα,
Nα and Mα the α′th iterated ultrapowers of V, N and M , respectively.

The V
′
αs are well founded, and so are the M ′

αs. We claim that the ordinals of
Nα are the same as the ordinals of Mα, which is why Nα is well founded as well.
This follows by induction on α: M0 = M and N0 = N clearly share the same
ordinals. The limit case is immediate. For the successor case, note that an ordinal
in Nα+1 is equivalent, modulo the ultrafilter U, to a function from κ to the ordinals
of Nα, hence by the induction hypothesis is equivalent to an element of Mα+1. An
analogous statement is true for the ordinals of Mα+1.

We can now identify each Nα with its transitive collapse. Since (jα)
N (κ) is a

normal sequence, Nω1
contains all countable ordinals. Hence, as stated above, Nω1

and N are elementarily equivalent, and Nω1
and V are Π1

2 equivalent.
By the assumption, V |= AxG

Borel, and so there is a countable ordinal α
such that V |= δ(xG) ≤ α. We would like this statement to be true in Nω1

,
but it is meaningless there: Although α is an element of Nω1

, it is not necessarily
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countable in Nω1
. The natural solution will be collapsing α over Nω1

. The resulting
model, Nω1

[Coll(ω, α)], still contains all ordinals countable in V, and also knows
that α is countable, so we can finally reflect the statement δ(xG) ≤ α to get that
Nω1

[coll(ω, α)] |= δ(xG) ≤ α and

Nω1
[coll(ω, α)] |= AxG

Borel.

Note that in Nω1
, α is under a measurable cardinal, hence by Martin-Solovay’s

theorem, collapsing α over Nω1
preserves Σ1

3 statements. Proposition 3.3 then
assures that Nω1

|= AxG
Borel. Since Nω1

is elementarily equivalent to N , we have
so far shown that

N |= AxG
Borel,

which means that N |= δ(xG) ≤ α for some α < ωN
1 = ωM

1 . Another use of the
elementary equivalence of N and Nω1

proves that Nω1
|= δ(xG) ≤ α, from which

Σ1
2 absoluteness guarantees

V |= δ(xG) ≤ α < ωM
1 .

Taking B to be the set of M -generics concludes the proof. Notice that if I is ccc,
B is co-I. �

3.2. Cylindrical Borel canonization of provably ccc σ-ideals. We follow
Stern’s definitions and results from [15] . By an α-Borel code, for α a not nec-
essarily countable ordinal, we mean a well-founded tree on α whose maximal points
are associated with basic open sets, and all other points are labeled by union or
intersection. An α-Borel code naturally codes a set generated from basic open sets
by unions and intersections of length at most α. If α is countable, the set coded by
an α-Borel code is Borel.

For a countable ordinal γ < ω1 , L[γ] stands for L[a] where a codes a well order
of ω of order type γ.

Theorem 3.6 (Stern [15]). If A is Π0
γ ∩ Π1

1(z) , then L[z, γ] has an ω
L[z,γ]
γ -Borel

code for A.

Proposition 3.7. Let A be a Σ1
1(z) subset of the plane with Π0

γ sections. Let I be
a σ-ideal proper in L[z, γ], and x generic over L[z, γ]. Then

δ(x) < ω
L[z,γ]
γ+1 .

Proof. Since V |= Ax is Π0
γ , using Stern’s theorem we know that L[z, x, γ] |=

Ax is ω
L[z,x,γ]
γ − Borel. Collapsing ω

L[z,x,γ]
γ over L[z, x, γ] , we have:

L[z, x, γ][Coll(ω, ωL[z,x,γ]
γ ] |= Ax Borel.

ω1 of the new model is ω
L[z,x,γ]
γ+1 . Since x is assumed to be L[z, γ]-generic and

L[z, γ] |= CH, PI doesn’t collapse cardinals in L[z, γ]:

ω
L[z,γ]
γ+1 = ω

L[z,γ][x]
γ+1 .

Hence there must be an α < ω
L[z,γ]
γ+1 such that

L[z, x, γ][Coll(ω, ωL[z,x,γ]
γ ] |= δ(x) ≤ α.

Shoenfield’s absoluteness concludes the proof. �
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Theorem 3.8. Assume ω1 is inaccessible to the reals, and I is ccc in L[z] for any
real z. Then I has strong cylindrical Borel canonization of analytic sets all of whose
sections are Π0

γ for some γ < ω1.

Note that part of the assumption here is that I is defined and a σ-ideal in L[z]
for any real z.

Proof. Let A be a Σ1
1(z) set with Π0

γ sections. Since I is ccc in L[z, γ], the set
of generics over L[z, γ] is co-I. ω1 is inaccessible in L[z, γ], so that in particular

ω
L[z,γ]
γ+1 < ω1. The previous proposition then concludes the proof. �

4. Counterexamples to cylindrical Borel canonization

Counterexamples are implicit in [10]:

Example 4.1 ([10]). Consider the meager ideal and Theorem 1.7. For that ideal,
cylindrical Borel canonization and strong cylindrical Borel canonization are equiv-
alent (see Remark 1.5). Hence Theorem 1.7 provides counterexamples when not all
Σ1

2 sets have the Baire property. The same is true for the null ideal.

Proposition 4.2. In L, proper σ-ideals do not have cylindrical Borel canonization
of analytic sets with Borel sections. The same is true for L[z] where z is a real.

Proof. The argument is based on example 2.3.5 of [16]. Working in L, let

(x, y) ∈ A ⇔ x ∈ L
ω

ck(y)
1

.

The set A is coanalytic with Borel vertical sections, since given x ∈ Lα and α
minimal with that property,

Ax = {y : x ∈ L
ω

ck(y)
1

} = {y : ω
ck(y)
1 ≥ α},

which is Borel. By way of contradiction, fix B Borel I-positive such that A∩(B×ωω)
is Borel. Using PI -uniformization (2.3.4 of [16]) there exists C ⊆ B Borel I-positive
and f : C → ωω Borel such that f ∈ L and f ⊆ A. Let x ∈ C be any new real
added by forcing over L. By analytic absoluteness, L[x] |= f ⊆ A, and in particular,
(x, f(x)) ∈ A, contradicting the fact that x is not constructible. �

Let A be an analytic subset of the plane and B ⊆ ωω Borel I-positive subset
of reals such that A ∩ (B × ωω) is Borel. Then using Shoenfield’s absoluteness,
PI � A ∩ (B × ωω) Borel, and in particular

B � AxG
Borel.

Hence a σ-ideal I such that PI adds a non-Borel section is a counterexample to
cylindrical Borel canonization. We now show that even under mild large cardinal
assumptions, there might exist such a σ-ideal which is ccc:

Fact 4.3. If ω1 is inaccessible to the reals and is not Mahlo in L, then there is a

ccc forcing adding a real x such that ω
L[x]
1 = ω1.

For the proof, see theorem 6 of [1].

Proposition 4.4. If P is a ccc forcing adding a real x, then there is a ccc σ-ideal
I such that V[x] ⊆ V

P is a PI extension and x is the PI generic real.
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Proof. Fix τ a P-name for the real x. For B Borel, define

B ∈ I ⇔ P � τ /∈ B.

I is a σ-ideal (in fact, a σ-ideal on Borel sets which generates a σ-ideal). We claim
that it is ccc. Let 〈Bα : α < ω1〉 be an antichain of I-positive sets, which is, for
α1 �= α2,

P � τ /∈ (Bα1
∩Bα2

) .

Fix pα ∈ P such that pα � τ ∈ Bα. Then 〈pα : α < ω1〉 must be an antichain,
hence countable, as we have hoped.

In V
P, the generic x, as a realization of τ , avoids all Borel I-small sets of the

ground model, hence it is PI generic over V. Thus V[x] is the promised PI extension.
�

Theorem 4.5. If ω1 is inaccessible to the reals and is not Mahlo in L, then there is
a ccc σ-ideal I not having cylindrical Borel canonization of analytic sets with Borel
sections. Moreover, PI � AxG

non-Borel for some A analytic with Borel sections.

Proof. For every x, in L[x] there exists a Π1
1(x) uncountable set with no perfect

subset. Fix Φ(x) a Π1
1(x) formula defining that set. Then in any universe V, Φ(x)

defines a subset of L[x] of size ω
L[x]
1 with no perfect subset. Moreover, the definition

is uniform – there is a Π1
1 formula Ψ(x, y) such that for every x,

{y : Ψ(x, y)}

is a subset of L[x] of size ω
L[x]
1 with no perfect subset.

Consider the subset of the plane defined by Ψ. The vertical sections of Ψ are
either countable or strictly coanalytic – since we assume ω1 is inaccessible to the
reals, they are all countable and in particular Borel. Use the forcing of fact 4.3

to obtain a ccc extension V
P with x ∈ V

P such that ω
L[x]
1 = ω1. Use the previous

proposition to construct a ccc σ-ideal I such that

V[x] = V
PI .

Obviously, PI � ω
L[xG]
1 = ω1 for xG its generic real. In particular, Ψ has a new

section which is non-Borel, and cylindrical Borel canonization fails. �

Remark 4.6. The reader is encouraged to compare the above example with the
positive results of previous sections. When doing so, note that I is not even defined
in L – its definition requires a club in ω1 of ordinals which are singular cardinals in
L.

Corollary 4.7. Cylindrical Borel canonization for ccc σ-ideals implies that ω1 is
inaccessible to the reals and Mahlo in L.

Proof. Recall that Hechler forcing is the standard ccc forcing adding a dominating
real. By Hechler ideal we refer to the σ-ideal associated to it, in the sense of Propo-
sition 4.4. Theorem 1.7 shows that Hechler ideal has cylindrical Borel canonization
if and only if Σ1

2 sets are Hechler measurable. In [2] it is shown that measurability
of Σ1

2 sets with respect to the Hechler ideal is equivalent to ω1 being inaccessible
to the reals.

To see that ω1 is Mahlo in L, use the previous theorem. �
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The case of square Borel canonization is different – for A analytic and B Borel,
if A ∩ (B ×B) is Borel, then PI � A ∩ (B ×B) is Borel , hence

B � (AxG
∩B) is Borel.

In order to construct a counterexample, we can try and find A and I such that no
B Borel I-positive forces the Borelness of Ax ∩B:

Problem 4.8. Let Ψ and I be as in Theorem 4.5, and let A be the coanalytic subset
of the plane defined by Ψ. Can we find B ∈ PI such that B � (AxG

∩B) is Borel?

4.1. Non-absoluteness of “all classes are Borel”. The previous example shows
that for A an analytic subset of the plane, the property “all vertical sections of A
are Borel” can be forced false by a ccc σ-ideal. The same applies for analytic
equivalence relations:

Proposition 4.9. There is an analytic equivalence relation E such that:

(1) If ω1 is inaccessible to the reals and is not Mahlo in L, then all E classes
are Borel and there is a ccc σ-ideal I such that

PI � [xG] is non-Borel.

(2) If ω1 is inaccessible to the reals, then all E classes are Borel, while in L
there is a non-Borel class.

Proof. We use a variation of the example introduced in Theorem 4.5.
Let Ψ(x, y) be as in Theorem 4.5 – a Π1

1 formula whose vertical sections are

subsets of L[x] of size ω
L[x]
1 with no perfect subset. Let

(x1, y1)E(x2, y2) ⇔ (x1 = x2) ∧ (((¬Ψ(x1, y1) ∧ ¬Ψ(x2, y2)) ∨ (y1 = y2))).

E is an analytic equivalence relation, and the equivalence class of (x0, y0) is either
a singleton or

{(x0, y) : ¬Ψ(x0, y)}.

Hence if ¬Ψ(x0, y0), [(x0, y0)]E is Borel if and only if ω
L[x0]
1 < ω1.

The 1st clause then follows using the forcing notion introduced in the previous
subsection, while the 2nd clause is obvious. �

Remark 4.10. Failure of downward absoluteness of “all classes are Borel” follows
from ZFC alone: In L, fix A a coanalytic uncountable set without a perfect subset,
and let

xEy ⇔ (x = y) ∨ (x, y /∈ A).

The analytic equivalence relation E has a non-Borel class, but after collapsing ω1

over L, all its classes become Borel.

Problem 4.11. The nature of the above examples raises the following questions:

(1) Is there an analytic equivalence relation with Borel classes in L but non-
Borel classes under large cardinal assumptions?

(2) Can we prove the failure of upward absoluteness of “all classes are Borel”
without using the consistency of an inaccessible cardinal?



3084 OHAD DRUCKER

Acknowledgments

This research was carried out under the supervision of Menachem Magidor, and
would not be possible without his elegant ideas and deep insights. The author
would like to thank him for his dedicated help. The author would also like to
thank Marcin Sabok for introducing him to the problem of Borel canonization and
for hours of helpful discussions about the subject, and to thank William Chan for
sharing and discussing his results and thoughts, and for reading the first draft of
this paper.

References

[1] Joan Bagaria and Sy D. Friedman, Generic absoluteness, Proceedings of the XIth Latin
American Symposium on Mathematical Logic (Mérida, 1998), Ann. Pure Appl. Logic 108
(2001), no. 1-3, 3–13, DOI 10.1016/S0168-0072(00)00038-5. MR1819046
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