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FOUR-DIMENSIONAL GRADIENT SHRINKING SOLITONS

WITH PINCHED CURVATURE

ZHU-HONG ZHANG
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Abstract. We show that any four-dimensional gradient shrinking soliton with
pinched Weyl curvature (∗) and satisfying c1 ≤ R ≤ c2 for some positive con-
stant c1 and c2, will have nonnegative Ricci curvature. As a consequence,
we prove that it must be a finite quotient of S4, CP2, or S3 × R. In particu-
lar, a compact four-dimensional gradient shrinking soliton with pinched Weyl
curvature (∗) must be S4, RP 4 or CP

2.

1. Introduction

A Riemannian manifold (M, g), couple with a smooth function f , is called a
gradient Ricci soliton, if

Rij + fij = ρgij

holds for some constant ρ. The soliton is called shrinking, steady, or expanding, if
ρ > 0, ρ = 0, or ρ < 0, respectively. Gradient shrinking solitons (GSS for short)
play an important role in the singularity analysis of Ricci flow. We refer the readers
to [2] for a quick overview and more information.

To understand singularity of Ricci flow, we should try to get a classification of
GSS. In dimension n ≤ 3, GSS are well understood by the work of Hamilton [9]
for the two-dimensional case, and the work of Ivey [11], Perelman [17], Ni-Wallach
[16], Naber [15] and Cao-Chen-Zhu [3] for the three-dimensional case.

Obviously, the Weyl tensor vanishes in dimension three. So it is natural to
consider GSS with vanishing Weyl tensor in higher dimension. Indeed, by the work
of Ni-Wallach [16], Petersen-Wylie [18], Cao-Wang-Zhang [4], and the author [22],
we can give a complete classification of GSS with vanishing Weyl tensor.

However, our understanding of GSS in higher dimension is still very limited.
Recently, there were some classification results on the GSS with some assumptions
of the Weyl tensor. For example, Chen-Wang [7] could classify four-dimensional
anti-self-dual GSS, and Wu-Wu-Wylie [20] dealt with GSS with half harmonic Weyl
tensor. If the GSS satisfies a pinched Weyl curvature, Catino obtained a well
classification result in a recent work [1].

In past work, a key fact to studying the GSS was that the soliton had some
nonnegative curvature conditions. In this paper, we continue to consider solitons
with a pinched Weyl curvature; then we can show that the Ricci curvature will be
nonnegative, and then we can prove a classification result.
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Before we state our results, we give some notation first. Let (Mn, g) be a com-
plete Riemannian manifold. Denote by Ric the Ricci tensor with components Rij

and R = gijRij will denote the scalar curvature. Then the Riemannian curvature
tensor Rm can be decomposed into the orthogonal components:

Rm = W ⊕ 2

n− 2
R̊ic ∧ g ⊕ R

n(n− 1)
g ∧ g,

whereW and R̊ic = Ric− 1
ng denote, respectively, the Weyl tensor and the traceless

Ricci tensor. Our first result is the following.

Theorem 1.1. Let (M4, g) be a complete four-dimensional GSS with c1 ≤ R ≤ c2
for some positive constant c1 and c2, and satisfy the pinched condition

(∗) |W | ≤
√
2
∣∣∣|R̊ic| − 1

2
√
3
R
∣∣∣.

Then the Ricci curvature will be nonnegative.

Remark 1.2. On round cylinder S
3 × R with scalar curvature R ≡ 1, the Weyl

tensor vanishes, so the pinched condition (∗) holds. Because the round cylinder
only has nonnegative Ricci curvature, our estimate is optimal in some sense.

As an application, we obtain the following classification of gradient shrinking
solitons.

Theorem 1.3. Under the same conditions as Theorem 1.1, the soliton must have
nonnegative isotropy curvature.

Furthermore, it must be a finite quotient of S4, S3 × R, or CP
2.

Remark 1.4. In [1], Catino showed a classification result of n-dimensional GSS with
nonnegative Ricci curvature satisfying a pinched condition

|W |R ≤
√

2(n− 1)

n− 2

(
|R̊ic| − 1√

n(n− 1)
R
)2

,

which implies that |W | ≤
∣∣∣|R̊ic| − 1

2
√
3
R
∣∣∣ in dimension four. So our result can be

considered as an extension of Catino’s theorem on dimension four.

In particular, any nonflat compact GSS will have R ≥ c1 > 0. So we can obtain
the following result.

Theorem 1.5. Let (M4, g) be a compact four-dimensional GSS satisfying the
pinched condition (∗); then it must be S4, RP 4 or CP

2.

2. Preliminaries

Le (M4, gij) be a complete Riemannian manifold with bounded curvature. We
consider the Ricci flow equation on M4{

∂gij(x,t)
∂t = −2Rij(x, t), x ∈ M4, t > 0,

gij(x, 0) = gij(x), x ∈ M4.

Since the curvature is bounded at the initial metric, it is well known [19] that
there exists a complete solution g(t) of the Ricci flow on a time interval [0, T ) with
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bounded curvature for each t. On the other hand, the Ricci curvature tensor Rij

and the scalar curvature R evolve by the (PDE) system (cf. Hamilton [8]):

(PDE)

{ ∂
∂tRij = 
Rij + 2

∑
k,l

RikjlRkl,

∂
∂tR = 
R+ 2|Ric|2.

Now we want to give a basic estimate of the least eigenvalue of Ricci tensor.
Recall that a tensor evolved by a nonlinear heat equation may be controlled by a
corresponding (ODE) system (cf. Hamilton [8]), while the (ODE) system corre-
sponding to the above (PDE) is the following:

(ODE)

{ d
dtRij = 2

∑
k,l

RikjlRkl,

d
dtR = 2|Ric|2.

If we diagonalize the Ricci tensor with the eigenvalue λ1 ≤ λ2 ≤ λ3 ≤ λ4, and
let λ = 1

3 (λ2 + λ3 + λ4), δk = λk − λ, then we have the following lemma:

Lemma 2.1. Under the (ODE) system, we have⎧⎪⎨
⎪⎩

1
2

d
dtR = λ2

1 + 3λ2 +
4∑

k=2

δ2k,

1
2

d
dtλ1 ≥ λλ1 +

1
2

∑
k δ

2
k − 1

2
√
2
|W | ·

√∑
k δ

2
k.

Proof. The fact
4∑

k=2

δk = 0 implies that

1

2

d

dt
R =

4∑
i=1

λ2
i = λ2

1 +

4∑
k=2

(λ+ δk)
2 = λ2

1 + 3λ2 +

4∑
k=2

δ2k.

Thus the first equation holds.

On the other hand, since Rijij = Wijij +
λi+λj

2 − R
6 , we have

1

2

d

dt
λ1 ≥

4∑
k=2

λk

(
W1k1k +

λ1 + λk

2
− R

6

)

=
1

2

∑
k

λk(λ1 + λk −
R

3
) +

∑
k

λkW1k1k.

Note that the scalar curvature R = λ1 + 3λ, and
4∑

k=2

W1k1k = 0, thus

1

2

d

dt
λ1 ≥ 1

2

∑
k

(λ+ δk) · (
2

3
λ1 + δk) +

∑
k

(λ+ δk)W1k1k

= λλ1 +
1

2

∑
k

δ2k +
∑
k

δkW1k1k

≥ λλ1 +
1

2

∑
δ2k −

√∑
δ2k ·

√∑
W 2

1k1k.

So the second inequality follows by the fact that |W |2 ≥ 8
∑

W 2
1k1k on dimension

n = 4. �
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3. The Ricci curvature on GSS with pinched curvature

In this section, we will show a pinched estimate of the Ricci curvature, and then
prove Theorem 1.1.

Lemma 3.1. Suppose we have a complete solution of Ricci flow g(t)t∈[0,T ] on a
four-manifold with uniformly bounded curvature, satisfying the pinched condition
(∗) for all t ∈ [0, T ].

If R ≥ c0 and η0 = inf
x∈M

λ1(x)
R(x) holds for some constant c0 > 0 and η0 < 0 at

time t = 0, λ1 is the least eigenvalue of Ricci curvature tensor. Then by choosing
a positive constant δ = min{1, 1

3c0(−η0)
3}, the pinched estimate

λ1 ≥ (η0 + δt)R

holds for all t ∈ [0, T ′], where T ′ = min{T, −η0

2 }.

Proof. Consider the set Ω(t)t∈[0,T ′] of matrices defined by the inequalities

Ω(t) :

{
R ≥ c0,
λ1 ≥ (η0 + δt)R.

It is easy to see that Ω is closed, convex and O(n)-invariant. By using the
advanced maximum principle, we only need to show the set Ω is preserved by the
(ODE) system. Indeed, we only need to look at points on the boundary of the set.

From the (ODE) system, we have

d

dt
R = 2|Ric|2 ≥ 0,

which implies that R ≥ c0 for all t ≥ 0. Thus the first inequality is preserved. To
prove the second inequality, we only need to show that

1

2
λ′
1 ≥ (η0 + δt)

1

2
R′ +

δ

2
R = η · 1

2
R′ +

δ

2
R

where λ1 = (η0 + δt)R = ηR.
From Lemma 2.1, it suffices to show that

I = λλ1 +
1

2

∑
k

δ2k −
1

2
√
2
|W | ·

√∑
k

δ2k − η ·
(
λ2
1 + 3λ2 +

∑
k

δ2k

)
≥ δ

2
R.

Since λ1 = ηR and λ = 1−η
3 R, we have

I =ηR2
[1− η

3
− η2 − (1− η)2

3

]
+
(1
2
− η

)∑
δ2k − 1

2
√
2
|W | ·

√∑
k

δ2k

=
4

3
η2R2(

1

4
− η) +

(1
4
+

1

4
− η

)∑
δ2k − 1

2
√
2
|W | ·

√∑
k

δ2k

=

(
4

3
η2R2 +

∑
δ2k

)
(
1

4
− η) +

1

4

∑
δ2k − 1

2
√
2
|W | ·

√∑
k

δ2k

=II + III,

where

II =

(
4

3
η2R2 +

∑
δ2k

)
· (−η) ≥ 4

3
(−η)3R2 ≥ 4

3
(
−η0
2

)3 · c0R ≥ δ

2
R,
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and

III =
1

4

[(
4

3
η2R2 +

∑
δ2k

)
+
∑

δ2k −
√
2|W | ·

√∑
k

δ2k

]
.

Claim 3.2.
4

3
η2R2 +

∑
δ2k ≥

(
|R̊ic| − 1

2
√
3
R
)2

.

Indeed, by defining three vectors on R4 as follows:

v =

⎛
⎜⎜⎜⎜⎝

λ1

λ2

λ3

λ4

⎞
⎟⎟⎟⎟⎠ , vs =

⎛
⎜⎜⎜⎜⎝

R
4
R
4
R
4
R
4

⎞
⎟⎟⎟⎟⎠ , vc =

⎛
⎜⎜⎜⎜⎝

0
R
3
R
3
R
3

⎞
⎟⎟⎟⎟⎠ ;

then we have

|v − vs| = |R̊ic|, and |vc − vs| =
1

2
√
3
R.

Furthermore, since λ1 = ηR, we have

|v − vc|2 =λ2
1 +

∑
k

(
λk −

R

3

)2

=η2R2 +
∑
k

(
λ+ δk −

ηR + 3λ

3

)2

=η2R2 +
∑
k

(δk −
ηR

3
)2

=
4

3
η2R2 +

∑
δ2k.

The last equality follows by the fact that
∑
k

δk = 0. And then the assertion follows

by the triangle inequality.
By using the above claim and the pinched condition (∗), we have

III ≥ 1

4

[
|W |2
2

+
∑
k

δ2k −
√
2|W | ·

√∑
k

δ2k

]
≥ 0.

Thus I ≥ δ
2R, and we complete the proof of Lemma 3.1. �

Now we can prove Theorem 1.1. Let (M4, g) be a complete GSS, which implies
that there are a smooth function f and a positive constant ρ, such that

Rij + fij = ρgij .

It is well known (cf. [21]) that there exists a self-similar solution of Ricci flow
(even if the soliton has unbounded curvature) as follows:

g(t) = τ (t)ϕ∗
t (g), t ∈ (−∞,

1

2ρ
),

where τ (t) = 1− 2ρt, and ϕt is a family of diffeomorphisms.
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Proof of Theorem 1.1. We will argue by contradiction. Suppose the Ricci curvature
is not nonnegative somewhere. Note that the work of Munteanu-Wang [14] implies
that the soliton will have bounded curvature. Then we have a self-similar solution
g(t)t∈[0, 1

10ρ ]
with uniformly bounded curvature with g(0) = g.

Since R ≥ c0, there exists some constant

η0 = inf
x∈(M4,g)

λ1(x)

R(x)
< 0.

Then from Lemma 3.1, there exists a positive constant δ = δ(c0, η0) ∈ (0, 1],
such that

λ ≥ (η0 + δt)R.

is preserved under the Ricci flow for all small t ∈ [0, T ′], where T ′ = min{ 1
10ρ ,

−η0

2 }.
Hence we have

λ1 ≥ (η0 + δT ′)R

at every point. But this is impossible since there exists some point p ∈ M , such
that λ1(p) ≤ (η0 +

δ
2T

′)R(p) at time t = 0. Note that g(t) only changes by scaling

and a diffeomorphism on M4, so at time t = T ′, there is some point q ∈ M with

λ1(q, T
′) =

1

1− 2ρT ′λ1(p) ≤
1

1− 2ρT ′ (η0 +
δ

2
T ′)R(p) = (η0 +

δ

2
T ′)R(q, T ′),

which is contradictive with λ1(q, T
′) ≥ (η0 + δT ′)R(q, T ′).

And we complete the proof of Theorem 1.1. �

4. Four-dimensional GSS with positive isotropy curvature

Recall that a Riemannian manifold is said to have positive isotropy curvature,
if for any orthonormal four-frame {e1, e2, e3, e4}, we have

R1313 +R1414 +R2323 +R2424 + 2R1234 > 0.

It has nonnegative isotropy curvature if the LHS is only nonnegative. Manifolds
with positive isotropy curvature were introduced by Micallef and Moore [13], and
had become an important object in Riemannian geometry. Actually, compact four-
manifolds with positive isotropy curvature had been completely classified due to
the work of Hamilton [10], Chen-Zhu [6], and Chen-Tang-Zhu [5].

In an oriented four-dimensional manifold, it is natural to decompose two-forms
Λ2 = Λ2

+ ⊕ Λ2
−. And this decomposition induces a block decomposition of the

curvature operator matrix as

Mαβ =

(
A+ B
tB A−

)
.

It is well known that A+ = R
6 I + W+, A− = R

6 I + W−, where W± are self-dual
and anti-self-dual parts of Weyl tensor. By a direct computation, an oriented four-
dimensional manifold has nonnegative isotropy curvature if and only if both A+

and A− are two-nonnegative.

Lemma 4.1. Let (M4, g) be a four-dimensional Riemannian manifold satisfying

|W | ≤ 1√
6
R;

then it will have nonnegative isotropy curvature.
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Proof. IfM is not orientable, we can lift the metric onto an oriented two-cover ofM .
So we assume the manifold is an oriented four-dimensional manifold satisfying the
pinched Weyl curvature. Now we diagonalizeW+ with the eigenvalue λ1 ≤ λ2 ≤ λ3;
then we have {

λ1 + λ2 + λ3 = 0,

λ2
1 + λ2

2 + λ2
3 = |W+|2 ≤ 1

6R
2.

Obviously, λ1 ≤ 0, and λ3 ≥ 0. If λ2 ≤ 0; then

λ2
3 = (λ1 + λ2)

2 ≤ 2(λ2
1 + λ2

2) ≤ 2(
1

6
R2 − λ2

3).

So λ3 ≤ 1
3R, and then λ1 + λ2 ≥ − 1

3R.

On the other hand, if λ2 > 0, then λ1 ≥ − 1
3R, so λ1 + λ2 > − 1

3R.

Altogether, we have a+1 + a+2 = (λ1 +
1
6R) + (λ2 +

1
6R) ≥ 0. Similarly, we have

a−1 + a−2 ≥ 0. And we complete the proof. �

For the proof of Theorem 1.3, we need the following lemma.

Lemma 4.2. The traceless Ricci curvature satisfies |R̊ic| ≤ 2
√
3(R4 −

λ1+λ2

2 ), where
λ1 and λ2 are the least two eigenvalues of the Ricci curvature.

Proof. We diagonalize the Ricci tensor with the eigenvalue λ1 ≤ λ2 ≤ λ3 ≤ λ4;

then the scalar curvature R =
4∑

k=1

λk and |R̊ic|2 =
4∑

k=1

(λk − R
4 )

2 = |Ric|2 − R2

4 .

Take λ̃4 = λ4 + (λ3 − λ2); then R = λ1 + 2λ2 + λ̃4, and |Ric|2 ≤ λ2
1 + 2λ2

2 + λ̃2
4.

Denote by λ = λ1+λ2

2 , δ = λ− λ1 = λ2 − λ ≥ 0. Then

|Ric|2 ≤(λ− δ)2 + 2(λ+ δ)2 + (R− 3λ− δ)2

=3λ2 + (R− 3λ)2 − 2δ(R− 4λ− 2δ).

Now R− 4λ− 2δ = R− (λ1 +λ2 +2λ2) ≥ 0, so |Ric|2 ≤ 3λ2 +(R− 3λ)2. Hence

|R̊ic|2 ≤ 12(R4 − λ)2. �

Proof of Theorem 1.3. Since the soliton has nonnegative Ricci curvature, and the
Weyl curvature satisfies the pinched condition (∗), we haveλ1+λ2 ≥ 1

3R (Theorem

1.5 in [23]). Then |R̊ic| ≤ 1
2
√
3
R by Lemma 4.2, and (∗) becomes

|W | ≤ 1√
6
R.

Hence the soliton will have nonnegative isotropy curvature by Lemma 4.1. Then
Theorem 1.3 follows by Corollary 3.1 in [12]. �
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