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MAPPINGS OF EXPONENTIALLY INTEGRABLE DISTORTION:

DECAY OF THE JACOBIAN

ANTTI RÄBINÄ

(Communicated by Jeremy Tyson)

Abstract. We establish an integrability result on the reciprocal of the Ja-
cobian determinant for a mapping of exponentially integrable distortion and
thus answer a question raised by S. Hencl and P. Koskela.

1. Introduction

In this paper, we consider the class of mappings of finite distortion. Let Ω ⊂ R
n

be a domain. A mapping f : Ω → R
n is called a mapping of finite distortion if f ∈

W 1,1
loc (Ω,R

n), the Jacobian determinant Jf of the mapping f is locally integrable,
and there exists a measurable almost everywhere finite function Kf : Ω → R, called
the distortion function of f , such that Kf ≥ 1 and

|Df(x)|n ≤ Kf (x)Jf (x)

a.e. in Ω. If, in addition, there exists β > 0 such that exp(βKf ) is locally integrable
in Ω, then the mapping f is called a mapping of exponentially integrable distortion.
Alternatively, if the function Kf is (essentially) bounded, i.e. ess supx∈Ω Kf (x) =
K < ∞, then the mapping f is called a K-quasiregular mapping. A K-quasiregular
homeomorphism is called a K-quasiconformal mapping. For more on mappings of
finite distortion, see the monographs by Hencl and Koskela [2] and by Iwaniec and
Martin [5].

A non-constant quasiregular mapping is continuous, open and discrete, but a
general mapping of finite distortion is none of these; see [2, 5] for counterexamples
and comments. For any of these properties to hold, we need additional assumptions
on the mapping f or on its distortion function Kf . A non-constant mapping of
exponentially integrable distortion is continuous, open and discrete.

For a planar K-quasiregular mapping f : Ω → R
2, where Ω ⊂ R

2 is a domain, it
is well known that J−q

f ∈ L1(E) for all q < 1
Km−1 , where E ⊂ Ω is compact andm is

the maximal multiplicity of f in E. This follows from the optimal regularity result
for quasiconformal mappings by Astala [1] and the Stoilow factorization result.
In higher dimensions, an integrability result also holds, but the optimal degree of
integrability is not known.

Recently, it has been of great interest to generalize the theory of quasiregular
mappings to the class of mappings of finite distortion. Koskela and Malý [6] proved
that under certain conditions, the Jacobian of a mapping of finite distortion is

Received by the editors October 4, 2016, and, in revised form, June 8, 2017 and June 14, 2017.
2010 Mathematics Subject Classification. Primary 30C65.
Key words and phrases. Mappings of finite distortion, integrability, Jacobian.
The author was supported by the Academy of Finland.

c©2018 American Mathematical Society

2897

http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/13860


2898 ANTTI RÄBINÄ

positive almost everywhere. Hence one may ask for conditions which guarantee
that the reciprocal of the Jacobian is integrable, and if so, what is the optimal
degree of integrability. The first integrability results on 1

Jf
for a mapping of finite

distortion f were obtained by Hencl, Koskela and Zhong [3], where they established
the results in the cases Kf ∈ Ln−1

loc (Ω) and exp(βKf ) ∈ L1
loc(Ω), β > 0. The results

in neither of these cases were optimal. The optimal result for mappings of Lp-
integrable distortion was first given in the planar case by Koskela and Onninen [7],
and later in all dimensions by Koskela, Onninen and Rajala [8], both of these with

a weaker assumption Kf ∈ L
1

n−1

loc (Ω).
The result in [3] says that for a mapping of exponentially integrable distortion

f : Ω → R
n we have exp

(
logs log

(
1 + 1

Jf

))
∈ L1

loc(Ω) for some s > 1. As said,

this result is not optimal, and in [3] it was also shown that the optimal degree of

integrability cannot be better than exp
(
C log

n−1
n

(
e+ 1

Jf

))
∈ L1

loc(Ω) for some

C > 0. Later, the question on the optimal degree of integrability of the reciprocal
of the Jacobian of a mapping of exponentially integrable distortion was posed as
an open problem in the monograph by Hencl and Koskela [2, Open Problem 18].
The main result of this article answers this question.

Theorem 1.1. Let Ω ⊂ R
n be a domain and let f : Ω → R

n be a non-constant
mapping of finite distortion such that

exp (βKf ) ∈ L1
loc(Ω)

for some β > 0. Then

(1) exp

(
C logγ

(
e+

1

Jf

))
∈ L1

loc(Ω),

for all 0 < γ < n−1
n and for all C > 0.

This result is sharp in the following sense:

Theorem 1.2. Let β > 0. There exist C > 0 and a mapping of finite distortion
f : Bn(0, 1) → R

n such that

exp (βKf ) ∈ L1
loc(B

n(0, 1)),

but

(2) exp

(
C log

n−1
n

(
e+

1

Jf

))
�∈ L1

loc(B
n(0, 1)).

Proof. Let a = n
n−1 , k > 0, ρ(t) = exp(−k| log t|a) for t > 0 and f : Ω → R

n,

f(x) =

{
x
|x|ρ(|x|), if x �= 0,

0, if x = 0.

By [2, Lemma 2.1],

|Df(x)| = |ρ′(|x|)| = ak exp(−k
∣∣log |x|∣∣a)

∣∣log |x|∣∣a−1

|x| ,

Jf (x) = ρ′(|x|)
(
ρ(|x|)
|x|

)n−1

= ak exp(−nk
∣∣log |x|∣∣a)

∣∣log |x|∣∣a−1

|x|n
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and

Kf (x) =
(
ak

∣∣log |x|∣∣(a−1)
)(n−1)

= −(ak)n−1 log |x|.
By choosing

k <
n

1
n−1

β
1

n−1 a
,

we have exp(βKf ) ∈ L1(B(0, 1)). Now it is easy to compute that

exp

(
C log

n−1
n

(
e+

1

Jf (x)

))
≥ c1

|x|c2C(nk)(n−1)/n

for some constants c1, c2 > 0. Thus, by choosing C large enough, (2) holds. �

Theorem 1.1 is a corollary of the following more general theorem, which we will
prove in the next section.

Theorem 1.3. Let Ω ⊂ R
n be a domain and let f : Ω → R

n be a non-constant,
continuous, open and discrete mapping of finite distortion such that

exp
(
βKα

f

)
∈ L1

loc(Ω)

for some α, β > 0. Then

(3) exp

(
C logγ

(
e+

1

Jf

))
∈ L1

loc(Ω)

for all 0 < γ < α(n−1)
α(n−1)+1 and for all C > 0.

Notice that if α < 1, then the mapping f is not necessarily continuous, open or
discrete. In the case α ≥ 1 the additional topological assumptions are, of course,
not needed.

Let us close the introduction with a few remarks. In Theorem 1.2, we only
show that for every β > 0 these exists some C > 0 such that the integrabil-
ity condition on the reciprocal of the Jacobian fails. However, it is still open if
there is a constant Cn,β > 0, depending on the dimension n and β, such that

exp
(
Cn,β log

n−1
n

(
e+ 1

Jf

))
∈ L1

loc(Ω) for all mappings of finite distortion f such

that exp (βKf ) ∈ L1
loc(Ω). Also, in Theorem 1.2 the same argument works for

a < n
n−1 by choosing the exponent in the integrability condition to be γ = 1

a

instead of γ = n−1
n . On the other hand, the counterexample fails for a > n

n−1
since in that case the mapping f will not be a mapping of exponentially integrable
distortion; this is where the critical exponent γ = n−1

n shows up. Notice that for
quasiregular mappings, the degree of integrability of the reciprocal of the Jacobian
determinant is only known in the plane. Surprisingly, in the case of mappings of
finite distortion, the dimension does not play any role in the sense that the same
proof for the optimal degree of integrability works in all dimensions.

2. Proof of Theorem 1.3

Throughout this section, the set Ω ⊂ R
n is a domain and the mapping f : Ω →

R
n satisfies the conditions of Theorem 1.3. The constant C > 0 is fixed, but the

letter C with various subindices indicates a positive constant depending on the
subindices. The value of the constants may change from line to line; we are not
interested in the exact value of the constants.



2900 ANTTI RÄBINÄ

The local multiplicity function for the mapping f and a set A ⊂ Ω is defined as
follows:

N(y, f, A) = card f−1(y) ∩ A.

Since the mapping f is discrete, N(y, f, A) is bounded for all A � Ω, that is, for
all sets A compactly contained in Ω. Next, recall the area formula:

(4)

∫
A

η(f(x))|Jf (x)| dx ≤
∫
Rn

η(y)N(y, f, A) dy

for all Borel sets A ⊂ Ω and for all non-negative Borel functions η : R
n → R.

Moreover, we can choose a Borel set Ω′ ⊂ Ω of full measure such that the equality
in (4) holds for all sets A ⊂ Ω′; see the proof of Lemma A.35 in [2].

A domain D � Ω is a normal domain if f(∂D) = ∂f(D). By [9, Lemma I.4.9]
there exists sx > 0 such that the x-component of f−1(B(f(x), s)) is a normal do-
main for all 0 < s ≤ sx. Fix x ∈ Ω, choose such s, and denote Bs = B(f(x), s) and
U = f−1(Bs). Now N(y, f, U) is bounded in Bs, denote m = maxy∈Bs

N(y, f, U).
By [6, Theorem 1.2], Jf > 0 a.e. in U .

The mapping f is continuous, open and discrete, but not a homeomorphism, so
the inverse mapping, or in particular, the Jacobian of its inverse mapping doesn’t
necessarily exist. To tackle this problem, we follow the approach from [8] and define
the functions j, g : Rn → R as follows: Let Ω′ ⊂ Ω be a Borel set such that the
equality in (4) holds for all A ⊂ Ω′. Now we define

ϕ(x) =

{
1

Jf (x)
, if x ∈ Ω′ and 0 < Jf (x) < ∞,

0, otherwise,

and then

j(y) = max
x∈f |−1

U (y)
ϕ(x).

Similarly, we define

ψ(x) =

{ |Df(x)|
Jf (x)

, if x ∈ Ω′ and 0 < Jf (x) < ∞,

0, otherwise,

and then

g(y) = max
x∈f |−1

U (y)
ψ(x).

Note that if f is a homeomorphism, then j(y) = Jf−1(y) and g(y) = |adjDf−1(y)|
for a.e. y ∈ f(Ω).

For the next lemma, we need to define the distance function μ : Rn → R,

μ(y) = dist(y,Rn \Bs).

Lemma 2.1. Let j, g and μ be as above and let t > 1. Then

(5)

∫
{μnj>tn}

μ(y)nj(y) dy ≤ Ant

∫
{Anμn−1g>tn−1}

μ(y)n−1g(y) dy,

where the constant An depends only on the dimension n.

The proof of Lemma 2.1 can be found in [8]. The proof is based on the isoperi-
metric inequality, a Gehring’s lemma type estimate (see [4]) and the basic properties
of the Hardy-Littlewood maximal function. Note that the normality of U is needed
in the proof.
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The next lemma on higher integrability of the function j is crucial on the proof
of Theorem 1.3.

Lemma 2.2. Let C > 0 and 0 < γ < 1 and let j, g and μ be as above. Then∫
{1<μnj<Tn}

μ(y)nj(y) exp
(
C logγ

(
μ(y)j(y)

1
n

))
dy

≤ Cn

(∫
{1<Anμn−1g<Tn−1}

μ(y)ng(y)
n

n−1

exp
(
C logγ

(
Anμ(y)g(y)

1
n−1

))
log1−γ

(
Anμ(y)g(y)

1
n−1

) dy(6)

+ |Bs||U |
)

for all T > 1.

Proof. First, we define the function

(7) Φ(t) = exp (C logγ(t))

(
1

Cγ
+

1

log1−γ(t)

)
.

An easy computation shows us that

tΦ′(t) =
d

d t

(
t exp (C logγ(t))

log1−γ(t)

)
.

Now, we multiply (5) by Φ′(t) and integrate from 1 to T with respect to t and use
Fubini’s theorem to obtain

∫
{1<μnj<Tn}

∫ μ(y)j(y)
1
n

1

Φ′(t)μ(y)nj(y) dtdy

≤ Cn

∫
{1<Anμn−1g<Tn−1}

∫ Anμ(y)g(y)
1

n−1

1

tΦ′(t)μ(y)n−1g(y) dtdy.(8)

By computing the inner integrals in (8) we obtain

∫
{1<μnj<Tn}

μ(y)nj(y) exp
(
C logγ

(
μ(y)j(y)

1
n

))
dy

≤ Cn

(∫
{1<Anμn−1g<Tn−1}

μ(y)ng(y)
n

n−1

exp
(
C logγ

(
Anμ(y)g(y)

1
n−1

))
log1−γ

(
Anμ(y)g(y)

1
n−1

) dy(9)

+

∫
Bs

μ(y)nj(y) dy
)
,

By the definition of the function μ,

(10) μ(y)n ≤ Cn|Bs|
for all y ∈ R

n. Let M = {x ∈ U : 1
Jf (x)

= j(f(x))} ∩ Ω′. By the definition of the

function j, the area formula (4) and the definition of the set M
(11)∫

Bs

j(y) dy =

∫
f(M)

N(y, f, U)j(y) dy =

∫
M

j(f(x))Jf(x) dx =

∫
M

1 dx ≤ |U |.
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The claim follows from (9), (10) and (11). �

Lemma 2.3 (Change of variables for Lemma 2.2). Let

E =

{
x ∈ U : 0 < μ(f(x))nj(f(x)) <

Tn

An

}
.

Then

∫
E

μ(f(x))n exp

(
C logγ

(
e+

μ(f(x))

Jf (x)
1
n

))
dx

≤ Cm,n

(∫
E

μ(f(x))nKf (x)
1

n−1

exp

(
C logγ

(
e+ μ(f(x))

(
|Df(x)|
Jf (x)

) 1
n−1

))

log1−γ

(
e+ μ(f(x))

(
|Df(x)|
Jf (x)

) 1
n−1

) dx

+ |Bs||U |
)
.(12)

Proof. Recall that the set {x ∈ E : Jf (x) = 0 or Jf (x) = ∞} has measure zero.
Also, 1

Jf (x)
≤ j(f(x)) for all x ∈ U . Using the area formula (4) we get the following

estimate for the integral on the left hand side of (6):

∫
E

μ(f(x))n exp

(
C logγ

(
e+

μ(f(x))

Jf (x)
1
n

))
dx

≤
∫
{x∈E:0<Jf (x)<∞}

μ(f(x))n exp

(
C logγ

(
e+

μ(f(x))

Jf (x)
1
n

))
Jf (x)

Jf (x)
dx

≤
∫
E

μ(f(x))n exp
(
C logγ

(
e+ μ(f(x))j(f(x))

1
n

))
j(f(x))Jf(x) dx

≤ m

∫
{0<μnj< Tn

An
}
μ(y)n exp

(
C logγ

(
e+ μ(y)j(y)

1
n

))
j(y) dy

≤ m

(∫
{1<μnj<Tn}

μ(y)nj(y) exp
(
C logγ

(
e+ μ(y)j(y)

1
n

))
dy

+

∫
{0<μnj<1}

μ(y)nj(y) exp
(
C logγ

(
e+ μ(y)j(y)

1
n

))
dy

)

≤ Cm,n

(∫
{1<μnj<Tn}

μ(y)nj(y) exp
(
C logγ

(
μ(y)j(y)

1
n

))
dy + |Bs|

)
.(13)

Here we assumed that An ≥ 1. The last inequality follows from the fact that the
integrand in the second integral is bounded and {0 < μnj < 1} ⊂ Bs.

Notice that j(y)
n−1
n ≤ g(y) and that j(y) = 0 implies g(y) = 0. Therefore

{1 < Anμ
n−1g < Tn−1} ⊂

{
0 < μnj <

Tn

An

}
.
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Applying the change of variables formula and using the definition of the function g
yields the following approximation for the integral on the right hand side of (6):

∫
{1<Anμn−1g<Tn−1}

μ(y)ng(y)
n

n−1

exp
(
C logγ

(
Anμ(y)g(y)

1
n−1

))
log1−γ

(
Anμ(y)g(y)

1
n−1

) dy

≤ Cn

∫
{0<μnj<Tn

An
}
μ(y)ng(y)

n
n−1

exp
(
C logγ

(
e+ μ(y)g(y)

1
n−1

))
log1−γ

(
e+ μ(y)g(y)

1
n−1

) dy

≤ Cn

∫
E

μ(f(x))nKf (x)
1

n−1

exp

(
C logγ

(
e+ μ(f(x))

(
|Df(x)|
Jf (x)

) 1
n−1

))

log1−γ

(
e+ μ(f(x))

(
|Df(x)|
Jf (x)

) 1
n−1

) dx.(14)

Now the claim follows by combining (13) and (14) with Lemma 2.2. �
Our final lemma is the following inequality:

Lemma 2.4. Let θ, λ, ε > 0. There exists a constant Cθ,λ > 0 such that

(15) ab ≤ exp

(
λ

ε
aθ
)
+ ε

1
θCθ,λb log

1
θ

(
e+

( ε

λ

) 1
θ

b

)
for all a ≥ 1 and b > 0.

Proof. We may assume that

ab > exp

(
λ

ε
aθ
)
.

Let k = 2
θ . There exists M ≥ 0, depending on θ, such that xk ≤ ex for all x ≥ M .

First, let us assume that λ
ε a

θ ≥ M . Then(
λ

ε

)k

akθ ≤ exp

(
λ

ε
aθ
)

< ab,

and thus

exp

(
λ

ε
aθ
)

< ab = akθ−1b <
( ε

λ

) 2
θ

b2.

Now
λ

ε
aθ < 2 log

(
e+

( ε

λ

) 1
θ

b

)
,

and from that we get

ab ≤ ε
1
θ

(
2

λ

) 1
θ

b log
1
θ

(
e+

( ε

λ

) 1
θ

b

)
.

In the second case we assume that

(16)
λ

ε
aθ < M.

Since log
1
θ

(
e+

(
ε
λ

) 1
θ b

)
≥ 1 for all b > 0 and by the assumption (16) we have that

ab ≤ ε
1
θ

(
M

λ

) 1
θ

b log
1
θ

(
e+

( ε

λ

) 1
θ

b

)
.
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The claim follows by choosing Cθ,λ = max
{(

2
λ

) 1
θ ,

(
M
λ

) 1
θ

}
. �

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let

E =

{
x ∈ U : 0 < μ(f(x))nj(f(x)) <

Tn

An

}
.

Since (
|Df(x)|
Jf (x)

) 1
n−1

=
Kf (x)

1
n(n−1)

Jf (x)
1
n

,

we can replace the integral on the right hand side of (12) with

∫
E

μ(f(x))nKf (x)
1

n−1

exp
(
C logγ

(
e+Kf (x)

1
n(n−1)

))
exp

(
C logγ

(
e+ μ(f(x))

Jf (x)
1
n

))

log1−γ

(
e+ μ(f(x))

Jf (x)
1
n

) dx,

which, in turn, due to the trivial inequality exp(loga(e+ t)) ≤ tε for all 0 < a, ε < 1
when t is large enough, we can replace with

(17)

∫
E

μ(f(x))nKf (x)
1

n−1−η

exp

(
C logγ

(
e+ μ(f(x))

Jf (x)
1
n

))

log1−γ

(
e+ μ(f(x))

Jf (x)
1
n

) dx

by fixing arbitrarily small η > 0.
Let

γ =
α(n− 1− η)

α(n− 1− η) + 1
=

α(n− 1)

α(n− 1) + 1
− η̂,

where η̂ > 0. Note that η̂ → 0 as η → 0. Also, let ε > 0 be a small number which
will be chosen later. Next, we will use Lemma 2.4 for

a = Kf (x)
1

n−1−η ,

b = μ(f(x))n
exp

(
C logγ

(
e+ μ(f(x))

Jf (x)
1
n

))

log1−γ

(
e+ μ(f(x))

Jf (x)
1
n

) ,

θ = α(n− 1− η),

λ = εβ,

but before doing so, observe that
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log
1
θ (e+

( ε

λ

) 1
θ

b)

= log
1
θ

⎛
⎜⎜⎝e+

(
1

β

) 1
θ

μ(f(x))n
exp

(
C logγ

(
e+ μ(f(x))

Jf (x)
1
n

))

log1−γ

(
e+ μ(f(x))

Jf (x)
1
n

)
⎞
⎟⎟⎠

≤
(
log

(
e+

(
1

β

) 1
θ

μ(f(x))n

)
+ log

(
e+ exp

(
C logγ

(
e+

μ(f(x))

Jf (x)
1
n

)))) 1
θ

(18)

≤
(
Cn,β,θ + log

(
e+ exp

(
C logγ

(
e+

μ(f(x))

Jf (x)
1
n

)))) 1
θ

,

(19)

where (18) follows from a simple estimate for logarithms and from the fact that

log1−γ

(
e+ μ(f(x))

Jf (x)
1
n

)
≥ 1.

Next, notice that

log

(
e+ exp

(
C logγ

(
e+

μ(f(x))

Jf (x)
1
n

)))
≥ 1.

Therefore we may approximate (19) from above by

Cn,β,θ log
1
θ

(
e+ exp

(
C logγ

(
e+

μ(f(x))

Jf (x)
1
n

)))

≤ Cn,β,θ log
γ
θ

(
e+

μ(f(x))

Jf (x)
1
n

)

= Cn,β,θ log
1−γ

(
e+

μ(f(x))

Jf (x)
1
n

)
.(20)

Now it is easy to see that by using Lemma 2.4 we obtain

μ(f(x))nKf (x)
1

n−1−η

exp

(
C logγ

(
e+ μ(f(x))

Jf (x)
1
n

))

log1−γ

(
e+ μ(f(x))

Jf (x)
1
n

)

≤ exp
(
βKα

f

)
+ ε

1
θ Cn,α,βμ(f(x))

n exp

(
C logγ

(
e+

μ(f(x))

Jf (x)
1
n

))

and therefore we can replace (17) with

(21)

∫
U

exp
(
βKα

f

)
dx+ ε

1
θCn,α,β

∫
E

μ(f(x))n exp

(
C logγ

(
e+

μ(f(x))

Jf (x)
1
n

))
dx.
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By choosing ε small enough, we can subtract the last integral of (21) from the
left hand side of (12) and thus obtain
(22)∫

E

exp

(
C logγ

(
e+

μ(f(x))

Jf (x)
1
n

))
dx ≤ Cm,n,α,β |Bs|

(∫
U

exp
(
βKα

f

)
+ |U |

)
.

Let T → ∞. By the monotone convergence theorem,
(23)∫

U

exp

(
C logγ

(
e+

μ(f(x))

Jf (x)
1
n

))
dx ≤ Cm,n,α,β |Bs|

(∫
U

exp
(
βKα

f

)
+ |U |

)
.

By choosing 0 < δ < 1 we can approximate the distance function μ from below:

μ(y) ≥ (1− δ)s

for all y ∈ δBs = B(f(x), δs). Applying the inequalities log(e + a) + log(e + b) ≤
Cb log(e + ab) for fixed b ≥ 0 and for all a ≥ 0 and aγ + bγ ≤ Cγ(a + b)γ for all
a, b ≥ 0 and 0 < γ < 1 we obtain
(24)∫

Uδ

exp

(
Ĉ logγ

(
e+

1

Jf (x)

))
dx ≤ Cm,n,s,α,β,δ

(∫
U

exp
(
βKα

f

)
+ |U |

)
< ∞,

where Uδ = f−1(δBs) and Ĉ = CCn. By a standard covering argument, it is
enough to show that every point x ∈ Ω has a neighborhood such that the claim
holds. Thus (24) implies (3). �
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