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(Communicated by David Futer)

Abstract. By using non-positively curved cubings of prime alternating link
exteriors, we prove that certain ideal triangulations of their complements, de-
rived from reduced alternating diagrams, are non-degenerate, in the sense that
none of the edges is homotopic relative its endpoints to a peripheral arc. This
guarantees that the hyperbolicity equations for those triangulations for hy-
perbolic alternating links have solutions corresponding to the complete hyper-

bolic structures. Since the ideal triangulations considered in this paper are
often used in the study of the volume conjecture, this result has a potential
application to the volume conjecture.

1. Introduction

Let L be a hyperbolic link in S3 and let M := S3 \ L be the complement of
L. In the approach to the volume conjecture [12, 13], initiated by D. Thurston [16]
and the second author [18,19], a certain ideal triangulation, S, of M derived from a
diagram of L plays a crucial role. Tetrahedra in S correspond to q-factorials in the
Kashaev invariant, and the hyperbolicity (gluing) equations for S and the complex
volume of M are related to the potential function which appears in an integral
expression of the Kashaev invariant.

However, in general, there is no guarantee that the hyperbolicity equations for
S have a geometric solution, i.e., a solution which corresponds to the complete
hyperbolic structure. (See Section 5 for the precise definition of a geometric solu-
tion.) In fact, this fails if and only if some edge of S is inessential in the sense
that it is homotopic to a curve on the peripheral torus. To be precise, for a link
L in S3, the arc in its exterior E(L) := S3 \ N(L) obtained from the ideal edge
of S is homotopic, relative to its endpoints, to an arc in ∂E(L). (Here, N(L) is
an open regular neighborhood of L.) In [11], such an arc is called peripheral. An
inessentail ideal edge has no geodesic representative in the hyperbolic manifold M ,
and conversely, if all ideal edges of S are essential (i.e., not inessential), then the
edges have unique geodesic representatives, which give a geometric solution to the
hyperbolicity equations, though some of the tetrahedra may be flat or negatively
oriented. (See Section 5 for a detailed argument.)

The purpose of this paper is to prove the following theorem, by using non-
positively curved cubings of alternating link exteriors.
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Theorem 1.1. Let L be a hyperbolic link in S3 which has a reduced alternating
diagram D and let S be the ideal triangulation of the complement of L associated
to D. Then the edges of S are essential. In particular, the hyperbolicity equations
obtained from S have a geometric solution.

Non-positively curved cubings of alternating link exteriors were first found by
the pioneering work by Aitchison, Lumsden and Rubinstein [4]: they proved that
if an alternating link L admits a “nicely balanced” alternating diagram, then its
exterior admits a non-positively curved cubing. The existence of non-positively
curved cubing for the exterior of every prime alternating link was first noted in
the literature by Adams [1], where he attributes it to Agol. In fact, Agol gave a
beautiful application of non-positively curved cubings of the exteriors of 2-bridge
links, in his talk [2] in 2002.

The cubings of link exteriors themselves have been essentially known to the
experts from early time. Ideal triangulations derived from the related cubings are
used in the wonderful computer program SnapPea, as explained by Weeks [20]. The
cubing C of a link exterior E(L) is intimately related to the classical Dehn complex
D of L: there is a deformation retraction r : E(L) → D, and C is identified with the
mapping cylinder of the restriction of r to ∂E(L) (see Section 2). It is a classical
result due to Weinbaum [21] that the Dehn presentation of the augmented link
group π1(E(L)) ∗Z obtained from a diagram D of L satisfies the small cancellation
condition if and only if D is a reduced alternating diagram. Moreover, it is known
that the Dehn complex D obtained from a link diagram D is non-positively curved
if and only if D is a prime alternating diagram (see [6], Proposition II.5.43]). This
is translated to the corresponding cubing as follows: the cubed complex C obtained
from a link diagramD is non-positively curved if and only ifD is a prime alternating
diagram (see Proposition 3.3 and Remark 3.4).

This paper is organized as follows. In Section 2, we review the cubings and
ideal triangulations of the exteriors and complements of prime alternating links. In
Section 3, we review some basic facts on cubed complexes, and apply to alternating
link exteriors. We give a proof of Theorem 1.1 in Sections 4 and 5, and state its
consequence in Section 6.

2. Cubical decomposition of link exteriors

Let L be a prime link in S3 which is represented by a connected diagram D, and
E(L) := S3 \N(L) the exterior of L, where N(L) is an open regular neighborhood
of L. D. Thurston [16] described a method for decomposing E(L) into partially
truncated octahedra placed between crossings. He also described a method for
constructing an ideal tetrahedral decomposition of the link complement from the
octahedral decomposition. These decompositions are essentially equivalent to those
described by Weeks,[20], and their details are described by the second author [19].
The octahedral decomposition induces a cubical decomposition of E(L), which is
non-positively curved if and only if the diagram D is reduced and alternating, as
observed in Remark 3.4.

In this section, we recall the cubical decomposition and the ideal triangulation
obtained from it, following [19]. In what follows, we assume that D is a reduced
alternating diagram. We may pick two points P+ and P− in S3, identify S3 \
{P+, P−} with S2 ×R, and assume the following hold. The diagram D is regarded
as a 4-valent graph in S2 × {0}, L ⊂ D × [−1, 1] ⊂ S2 × [−1, 1], and L intersects
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S2 × {0} transversely in 2c points, P1, P2, . . . , P2c, where c is the crossing number
of D. Let D∗ be a graph embedded in S2 × {0} dual to D, such that D ∩ D∗ =
{P1, P2, . . . , P2c}. The vertices of D and D∗ are denoted by X1, X2, . . . , Xc and
R0, R1, . . . , Rc+1 respectively. The closures of the 4c connected components of
S2 \ (D ∪D∗) are denoted by Q1, Q2, . . . , Q4c and

ν : {1, 2, . . . , 4c} → {1, 2, . . . , c},
μ : {1, 2, . . . , 4c} → {0, 1, . . . , c+ 1},

α, β : {1, 2, . . . , 4c} → {0, 1, . . . , 2c− 1},
σ : {1, 2, . . . , 4c} → {−1, 1}

are defined by Figure 1, where 1 ≤ g ≤ 4c.

Figure 1. Definitions of ν, μ, α, β, σ.

The connected components of

L+ = L ∩ (S2 × [0, 1]), L− = L ∩ (S2 × [−1, 0]),

are called overpasses and underpasses of L respectively, and we assume that each
overpass/underpass intersects S2 × {±1} precisely at the point above/below the
corresponding crossing (vertex) of D. Namely, we assume

L ∩ (S2 × {±1}) = {Xn | 1 ≤ n ≤ c} × {±1}.
Observe that S2 × R is decomposed into 4c bi-infinite quadrangular prisms

Q1 × R, Q2 × R, . . . , Q4c × R

each of which looks as in Figure 2, where the bold arcs represent Ig := L+∩(Qg×R)
and Jg := L− ∩ (Qg × R).

Xν(g)

Qg

Rμ(g)

Pβ(g) Pα(g) →

Figure 2. Qg and Qg × R.
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We consider the arcs

A(Xn) := Xn × (1,∞), B(Xn) := Xn × (−∞,−1), C(Xn) := Xn × (−1, 1),(1)

A(Pl) := Pl × (0,∞), B(Pl) := Pl × (−∞, 0), C(Rm) := Rm × R,(2)

where n ∈ {1, 2, . . . , c}, m ∈ {0, 1, . . . , c + 1} and l ∈ {0, 1, . . . , 2c − 1}. Let A(Ig)
and B(Jg) be the 2-cells in ∂(Qg × R) bounded by

{Ig, A(Xν(g)), A(Pα(g))}, {Jg, B(Xν(g)), B(Pβ(g))},
respectively, the shaded ones in Figure 2, where 1 ≤ g ≤ 4c. Then, as each of
the overpasses and underpasses is contractible, we can collapse each connected
component of

⋃4c
g=1 A(Ig) and

⋃4c
g=1 B(Jg) to a vertical edge. Then each Qg × R

becomes an ideal tetrahedron, Sg, in (S2 × R) \ L with six ideal edges

A(Xν(g))=A(Pα(g)), A(Pβ(g)), B(Xν(g))=B(Pβ(g)), B(Pα(g)), C(Xν(g)), C(Rμ(g))

as shown in Figure 3. The family of ideal tetrahedra, {Sg}1≤g≤4c, gives an ideal
triangulation, T , of (S2 × R) \ L.

→→

Figure 3. Deformation from a square bipyramid to a tetrahedron.

Note that {Qg ×R : ν(g) = n} and {Sg : ν(g) = n} intersect ∂N(P±), ∂N(L) as
shown in Figures 4a and 4b, where N(P±) denote open regular neighborhoods of
P± respectively.

For each n ∈ {1, 2, . . . , c}, the union On :=
⋃

ν(g)=n Sg of the four ideal tetra-

hedra sharing the “crossing arc” C(Xn) is regarded as a quotient of an ideal octa-
hedron. To see this, note that Sg is identified with the join C(Xν(g)) ∗ C(Rμ(g)).
Thus On is identified with the join of C(Xn) and Zn :=

⋃
ν(g)=nC(Rμ(g)), which

is a cycle of length 4. This implies that On is regarded as a quotient of an ideal
octahedron. In fact, we can obtain an ideal octahedron by cutting On along A(Xn)
and B(Xn) (see [16], Figure on p. 17 and [18], Figure 2). In the following, we do
not distinguish between On and an ideal octahedron.

By adding the two vertices P± to On (i.e., by “replacing” each of the four ideal
vertices of the octahedron contained in the cycle Zn with a real vertex), and taking
the intersection with E(L) (i.e., truncating the pair of ideal vertices corresponding
to the two ends of the crossing arc C(Xn)), we obtain a partially truncated oc-
tahedron, Ǒn, and the set {Ǒn}1≤n≤c determines a partially truncated octahedral
decomposition of E(L), where P± are the only vertices in the interior of E(L).
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C(Xn)

A(Xn)

B(Xn)

(a) Cut ends of Qg’s.

C(Xn)

A(Xn)

B(Xn)

(b) Cut ends of Sg’s.

Figure 4.

(a) Hn and C(Xn). (b) Upper-half of Ǒn. (c) Lower-half of Ǒn.

Figure 5.

Now note that the join of the midpoint Xn of the crossing arc C(Xn) with
the cycle Zn determines an ideal square in On, which divides On into two ideal
pyramids. The ideal square in On descends to a square, Hn, in Ǒn, and the pair
of pyramids descends to a pair of cubes in Ǒn. See Figures 5a, 5b and 5c. The set
of these pairs of cubes determines a cubic decomposition, C, of E(L). The cubic
decomposition has precisely two vertices P± in the interior of E(L) and the vertices

an := A(Xn) ∩ ∂N(L), bn := B(Xn) ∩ ∂N(L),

in ∂E(L), where 1 ≤ n ≤ c.
We note that the set of the squares determines the Dehn complex, D, of L. For

each cube in C, there is a unique square in D which is a face of the cube. Thus
there is a natural deformation retraction r : C = E(L) → D and C is identified with
the mapping cylinder of the restriction of r to ∂E(L).
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At the end of this section, we recall the ideal triangulation, S, of E(L) which
is used in the study of the volume conjecture by [16], [18, 19]. Roughly speaking,
S is obtained from the ideal triangulation T of S2 × R = S3 \ (L ∪ {P+, P−}) by
engulfing the extra ideal points P± into L, where we suppose c > 3 (see Assumption
3 in [19]). To this end, pick a point, say P0, from L ∩ S2 × {0}, and collapse the
ideal edges A(P0) and B(P0) into an ideal vertex. This forces some of the other
simplexes of T to degenerate. In order to give a more precise description, arrange
Q1, Q2, Q4c−1, Q4c, X1, Xc, R0, Rc+1, P1, P2c−1 as shown in Figure 6, namely the
following hold for the functions introduced in this section:

ν(1) = ν(2) = ν(α−1(1)) = 1, ν(4c) = ν(4c− 1) = ν(β−1(2c− 1)) = c,

μ(1) = μ(4c− 1) = 0, μ(2) = μ(4c) = c+ 1,

α(1) = α(2) = β(4c− 1) = β(4c) = 0.

Rc+1

Q2

Q1Q4c–1

Q4c

R0

P0
P1

X1Xc
P2c–1

Figure 6. A neighborhood of P0 in D.

Then, since A(P0) = A(X1) = A(P1), B(P0) = B(Xc) = B(P2c−1), and since
the collapsing of A(P0) and B(P0) cause collapsing of C(R0) and C(Rc+1) into
ideal vertices, the following degeneration of ideal tetrahedra occur. The pairs of
ideal tetrahedra {S1, S2} and {S4c−1, S4c} collapse into the ideal edges B(X1) and
A(Xc) respectively, and, if g belongs to

(α−1({1, 2c− 1}) ∪ β−1({1, 2c− 1}) ∪ μ−1(0, c+ 1)) \ {1, 2, 4c− 1, 4c},

then Sg collapses into an ideal triangle. The other ideal tetrahedra continue to be
ideal tetrahedra, namely, if g belongs to

Γ = {1, 2, . . . , 4c} \ (α−1({1, 2c− 1}) ∪ β−1({1, 2c− 1}) ∪ μ−1(0, c+ 1)),

then Sg remains to be an ideal tetrahedron in S. See [19] for details. (Though [19]
treats only hyperbolic knot diagrams which satisfy certain assumptions, the same
arguments are available for prime link diagrams which satisfy the same assumptions,
such as reduced alternating diagrams with ≥ 4 crossings.)

In particular, the edges of S are obtained as the images of the following paths
in C:

n : = A(X1) ∪ P+ ∪ A(Xn), (1 < n ≤ c),

βn : = B(Xc) ∪ P− ∪B(Xn), (1 ≤ n < c),

γn : = C(Xn), (1 ≤ n ≤ c),

δm : = A(X1) ∪ P+ ∪ C(Rm) ∪ P− ∪B(Xc), (m �∈ μ(ν−1({1, c}))).
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3. Non-positively curved cubing

Let L, D and C be as in the previous section. Then, by identifying each cube in
C with a unit cube in E3, C is regarded as a cubed complex (see [6], p.115). In this
section, we explain the well-known fact that C is non-positively curved.

We first review some basic facts about a cubed complexW . A path γ : [0, l] → W
is called a piecewise geodesic if there exist

0 = t0 < · · · < ti−1 < ti < · · · < tn = l

such that each γ|[ti−1,ti] is an isometric embedding into some cube. Then there
exists a shortest piecewise geodesic between any two points in W , called a geodesic,
and W becomes a complete geodesic metric space.

For x ∈ W , the set of unit tangent vectors at x is called the geometric link of x
in W and denoted by Lk(x,W ). We can regard Lk(x,W ) as a piecewise spherical
complex, and so it admits the structure of a complete geodesic metric space. Note
that the length of each edge of Lk(x,W ) is equal to π/2. The following lemma is
well-known (see [6], Remark I.5.7).

Lemma 3.1. A piecewise geodesic γ in W is a local geodesic if, for each point x
on γ, the distance between the incoming and the outgoing unit tangent vectors to γ
at x are at least π in Lk(x,W ).

In general, a metric space is said to be non-positively curved if each point in
it has a neighborhood where any geodesic triangle is thinner than a comparison
triangle in E

2, that is, the distance between any points on a geodesic triangle is less
than or equal to the distance between the corresponding points on a comparison
triangle (cf. [6], Definition II.1.2). The following criterion is well-known (see [6],
Theorem II.5.20).

Proposition 3.2 (Gromov’s link condition). A cubed complex W is non-positively
curved if Lk(x,W ) is a simplicial complex which is flag, i.e., any finite subset of
vertices, that is, pairwisely joined by edges, spans a simplex.

The following proposition was first noted in the literature by Adams [1], where
he attributes it to Agol.

Proposition 3.3. Let L be a prime alternating link in S3 represented by a reduced
alternating diagram D, and let C be the cubed complex with underlying space E(L)

constructed from the diagram D. Then C and its double, Ĉ, across ∂E(L) are
non-positively curved.

Proof. Observe that C induces a cubing of ∂E(L), such that each vertex has degree
4 (see Figures 5b and 5c). Thus, for any vertex of C contained in ∂E(L), its link in
C is identified with a unit hemisphere consisting of four spherical triangles which
are regular and right-angled. Hence these vertices satisfy Gromov’s link condition.

For the inner vertex P+ of C, we can observe that the link Lk(P+, C) is obtained
from the cell decomposition of S2 determined by the graph D∗, by subdividing each
region of D∗ as follows. Each region of D∗ contains a unique vertex, say Xn, of D.
Subdivide the region by taking the join of Xn and the edge cycle of D∗ forming the
boundary of the region (see Figure 7). In fact, the vertex Xn of Lk(P+, C) comes
from the edge A(Xn) of C, whereas the vertex Rm(∈ D∗) of Lk(P+, C) comes from
the edge C(Rm) of C (see Figure 5b).
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The checkerboard coloring of the regions of D induces a black and white coloring
of the vertices of D∗. Thus the set of the vertices of Lk(P+, C) is divided into the
following three subsets: the set of the white vertices of D∗, the set of the black
vertices of D∗, and the set of the vertices of D. Moreover, any edge of Lk(P+, C)
joins vertices which belong to different groups. Now pick a triple of vertices of
Lk(P+, C) such that each sub-pair spans an edge in Lk(P+, C). Then the triple
contains a unique vertex from each subset. In particular, it contains a pair of
vertices which form the boundary of an edge, say e, of D∗. The only vertices of
Lk(P+, C) which span an edge with each of the boundary vertices of e are the two
vertices of D dual to the two regions of D∗ containing e in the boundary. Thus
the triple of the vertices span a 2-simplex of Lk(P+, C). Hence Lk(P+, C) satisfies
Gromov’s condition. The same argument works for Lk(P−, C). Thus we have proved
that C is non-positively curved.

Figure 7. A subdivision of the regions of D∗ in Lk(P+, C).

We can easily check that the double Ĉ is also non-positively curved, because
the link in Ĉ of a vertex contained in ∂E(L) is the double of the link in C of the
corresponding vertex and so it is identified with the unit 2-sphere consisting of eight
spherical triangles which are regular and right-angled. �
Remark 3.4. The cubing C can be constructed from any connected link diagram D,
and we can see as in the above proof that C is non-positively curved if and only if
D is a reduced alternating diagram.

4. Proof of the first part of Theorem 1.1

We show that the arcs αn, βn, γn, δm, introduced at the end of Section 2, are
local geodesics in the cubed complex C. Then, since these arcs are orthogonal to
the boundary ∂C, this implies that their doubles in the double Ĉ of C are closed local
geodesics. Since Ĉ is non-positively curved by Proposition 3.3, this in turn implies
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that these loops are not null-homotopic in Ĉ (see [6], Theorem II.4.23). Hence the
arcs αn, βn, γn, δm are essential (non-peripheral) in C = E(L). Since these arcs form
the edge set of S, we obtain the desired result.

We first show that αn = A(X1) ∪ P+ ∪ A(Xn) with 1 < n ≤ c is a local
geodesic in C. Note that αn is a piecewise geodesic consisting of two geodesic arcs
A(X1) and A(Xn), where the two arcs “intersect” Lk(P+, C) at the vertices X1 and
Xn. Since these two vertices belong to the same subset introduced in the proof of
Proposition 3.3, no edge of Lk(P+, C) joins them. Since Lk(P+, C) is a spherical
complex consisting of right-angled regular triangles, this implies that the distance
between the vertices X1 and Xn in Lk(P+, C) is ≥ π. Hence αn is a local geodesic
by Lemma 3.1. The same argument works for βn.

Next, show that δm = A(X1)∪P+∪C(Rm)∪P−∪B(Xc) with m �∈ μ(ν−1({1, c}))
is a local geodesic in C. We have only to show that δm satisfies the condition in
Lemma 3.1 at the vertices P+ and P−. To this end, note that the intersection of
δm with Lk(P+, C) are the vertices X1 and Rm. Since m �∈ μ(ν−1({1})), no edge
of Lk(P+, C) joins them, and hence the distance between X1 and Rm in Lk(P+, C)
is ≥ π. Thus δm satisfies the condition in Lemma 3.1 at P+. The same argument
works for P−. Hence δm is a local geodesic.

The remaining arcs γn are obviously local geodesics, and so we have proved that
the arcs αn, βn, γn, δm are local geodesics. This completes the first part of the proof
of Theorem 1.1. The fact that the crossing edges γn are essential are already known
by [1] and [10], as is noted in [15].

5. Proof of the second part of Theorem 1.1

Let z = (z1, · · · , zd) ∈ (C \ {0, 1})d be a solution of the hyperbolicity equations
(i.e., compatibility equations and completeness equations) for the ideal triangula-
tion S = {Δi}di=1 of the hyperbolic manifold M = S3 \ L, where zi represents
the modulus of the i-th ideal tetrahedron Δi (see [5, 8, 14, 17, 18] and the refer-
ences therein). Then it is well-known that there is a representation ρz : π1(M) →
PSL(2,C) and a ρ-equivariant map Dz :ˆ̃M → H̄

3 which maps each lift Δ̃i of Δi to

a hyperbolic ideal tetrahedron of H3 of modulus zi. Here, ˆ̃M is the space obtained
from the universal cover M̃ = H3 of M = H3/Γ by adding the parabolic fixed
points of the Kleinian group Γ ∼= π1(M). (See [8], Proposition 4 and [9], Chapter 2
for a precise statement and a detailed proof.) We say that a solution z is geometric
if the corresponding representation ρz is discrete and faithful.

By the first part of Theorem 1.1, every edge of S is essential and so has a geodesic
representative. This implies that the modulus, zi, of the straightening of each Δ̃i is
contained in C\{0, 1}, because its four ideal vertices are mutually distinct (though
it may be flat or negatively oriented). By the construction of ρz, we may assume
that ρz is the identity map from π1(M) ∼= Γ to the Kleinian group Γ < PSL(2,C),
and so ρz is discrete and faithful. Thus z is a geometric solution, completing the
proof of the second part of Theorem 1.1.

We note that we can choose Dz so that it descends to a proper map f from
M to the the hyperbolic manifold M = H

3/Γ of degree 1 by (the proof of) [7],
Proposition 3.8. Thus the solution z is also geometric in the sense of [8], Definition
15.
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6. Application

Let L be a hyperbolic link in S3 with a reduced alternating diagram D and M
its complement. Under the same assumption in Section 2, the potential function
associated to D is defined by

V (z;D) =
∑
g∈Γ

σ(g)Li2(z(β(g))/z(α(g))),

where z is a map {2, 3, . . . , 2c− 2} → C such that z(l) = 1 if l ∈ α(μ−1({0, c+1})).
For simplicity, we put

Λ = {2, 3, . . . , 2c− 2} \ α(μ−1({0, c+ 1})).
Then, by Theorem 1.1 and [19], Theorems 2.5 and 2.6, we have the following corol-
lary. (The results in [19] hold not only for hyperbolic knots but also hyperbolic
links.)

Corollary 6.1. The hyperbolicity equations for S are given by

exp

{
z(l)

∂V (z;D)

∂z(l)

}
= 1, l ∈ Λ,

which must have a solution ζ corresponding to the complete hyperbolic structure of
M . Furthermore,

V̂ (ζ,D) = V (ζ;D)−
∑
l∈Λ

log ζ(l)

[
z(l)

∂V (z;D)

∂z(l)

]
z=ζ

gives the complex volume of M modulo π2.

At the end of this paper, we note that Ian Agol [2] had announced the following
beautiful application of non-positively curved cubings of hyperbolic 2-bridge link
exteriors. Each hyperbolic 2-bridge link group admit precisely two parabolic gere-
nating pairs, namely the upper and lower meridian pairs. In fact, he has shown
that any pair of parabolic transformations, which are not equivalent to the upper
and lower meridian pairs, generates a free subgroup of the 2-bridge link group. The
proof is based on the non-positivity of the cubing and the fact that the union of the
“vertical middle planes” of the cubes in C give rise to the checkerboard surfaces as-
sociated with the reduced alternating diagram. (The union of the horizontal middle
planes gives the boundary of a regular neighborhood of the Dehn complex.)
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