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THE SET OF STABLE PRIMES FOR POLYNOMIAL
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(Communicated by Matthew A. Papanikolas)

Abstract. Let K be a number field with ring of integers OK , and let {fk}k∈N

be a sequence of monic polynomials in OK [x] such that for every n ∈ N, the

composition f (n) = f1 ◦ f2 ◦ . . . ◦ fn is irreducible. In this paper we show that
if the size of the Galois group of f (n) is large enough (in a precise sense) as a

function of n, then the set of primes p ⊆ OK such that every f (n) is irreducible
modulo p has density zero. Moreover, we prove that the subset of polynomial
sequences such that the Galois group of f (n) is large enough has density 1, in
an appropriate sense, within the set of all polynomial sequences.

1. Introduction

In recent years, there has been a growing interest in the field of arithmetic dy-
namics (see for example [2], [3], [8], [9], [10], [11], [12], [14], [15]). One of its main
objects of study is the arithmetic of dynamical systems given by a pair (P1(K), f),
where K is a global field and f is a rational function on P1. Standard questions
include the determination of the set of periodic and pre-periodic points, the de-
termination of integral points in orbits, the structure of field extensions attached
to the iterations of f , and many others (see for example [20] for a comprehensive
introduction on the topic).

When looking at the iterates of a rational function, one can construct very nat-
urally an infinite tree, carrying a natural profinite topology, on which the absolute
Galois group of K acts continuously, giving rise to what is called an arboreal Ga-
lois representation (cf. section 2 for details). These extremely interesting objects
resemble in many aspects p-adic representations coming from geometry (see for ex-
ample [13] for a survey), such as the Tate modules attached to elliptic curves. In
the general case, not much is known about the behaviour of arboreal Galois repre-
sentations, but a certain number of results are available when the rational function
has degree two (see [3], [4], [13], and [14]). In particular, it seems that generically
the image of these representations is “large”, i.e., it has finite index in the group
of automorphisms of the appropriate tree. This phenomenon closely recalls Serre’s
open image theorem for elliptic curves without complex multiplication [18].

Focusing on rational functions f which are actually polynomials with coefficients
in the ring of integers of K yields a greater number of arithmetic questions, such as
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the determination of the set of prime divisors in orbits (see [11] and [17]) or, in the
case where all iterates are irreducible, the determination of the set of primes p such
that all iterates of f are irreducible modulo p. Following the terminology of the
existing literature, we will call such primes stable. In [12], the author focuses on the
case of quadratic polynomials and conjectures that, under some hypotheses on the
post-critical orbit of f , the set of stable primes is finite (see [12, Conjecture 6.2]).

In this paper, we address the problem of finding the density of the set of stable
primes under a precise condition of largeness of the attached arboreal Galois rep-
resentation (cf. Theorem 2.3), but for a more general class of objects that we will
now introduce. In particular, our setting can be specialized to that of a dynamical
system given by a single polynomial of any degree.

Let K be a number field with number ring OK , and let {fk}k∈N ⊆ OK [x] be a
sequence of polynomials. For every n ∈ N, let f (n) := f1 ◦ . . .◦fn, and suppose that
f (n) is separable for all n. The study of arithmetic dynamical systems corresponds
to the case where the sequence {fk} is constant. Generalizing the existing con-
struction in arithmetic dynamics, one can attach an arboreal Galois representation
to the sequence {fk}, where the Galois group of f (n) acts on the set of vertices at
level n of an infinite tree. In general, this is a spherically homogeneous tree but not
a complete d-ary tree, unless all the fk’s have equal degree d. Now suppose that
f (n) is irreducible for every n. We call a prime p ⊆ OK stable for {fk} if f (n) is
irreducible modulo p for every n. Our main theorem is then the following.

Theorem 1.1. Suppose that the image of the arboreal Galois representation at-
tached to {fk} is large enough. Then the set of stable primes for {fk} has density
zero.

In section 2 we introduce the arboreal Galois representation attached to {fk}, we
explain the condition of “largeness” mentioned in Theorem 1.1, and we show some
of the consequences of the theorem. In section 3 we describe the structure of the
automorphism group of the infinite tree attached to {fk} and we compute the order
of the automorphism group of the tree truncated at level n. In section 4 we prove
Theorem 1.1, explaining how it follows from an application of Chebotarev density
theorem together with the computations of section 3. Finally, in section 5 we
address the following question: suppose we fix a sequence of degrees {dk}k∈N ⊆ N,
and then we choose “at random” a sequence of polynomials {fk} such that fk has
degree dk for every k. What are the odds that such sequence fulfills the hypotheses
of Theorem 1.1? After introducing an adequate concept of density on the set of
all polynomial sequences {gk}k∈N ⊆ OK [x] such that gk has degree dk for every
k, we prove that the density of the set of polynomial sequences that fulfill such
hypotheses is 1. The proof uses results of Cohen [6] and Odoni [16].

2. Arboreal Galois representations

Let K be a field and let {fk} := {fk}k∈N ⊆ K[x] be a sequence of polynomials.
For every n ≥ 1, we set dn := deg fn and we let f (n) be the composition f1 ◦ f2 ◦
. . . ◦ fn. We assume that f (n) is separable for every n.

It is possible to attach to {fk} an infinite tree T in the following way: the root
of the tree is labeled by 0, and for every n ≥ 1 the vertices at level n are labeled
by the roots of f (n) in K. A vertex α at level n descends from a vertex β at level
n − 1 if and only if fn(α) = β. Note that thanks to the separability assumption,
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every vertex at level n has exactly dn+1 descendants at level n + 1. Such a tree
is called a spherically homogeneous rooted tree (see for example [1] and [5]), and it
depends only on the sequence of the degrees {dk}k∈N, which is called the spherical
index of T . When the spherical index is constant and equal to some d ∈ N, T is
called a complete rooted d-ary tree.

For every n ≥ 1, we let Tn be the tree truncated at level n. This consists of the
finite tree formed by all vertices which have distance at most n from the root.

Figure 1. A spherically homogeneous tree of spherical index
{2, 3, 2, . . .} truncated at level 3.

From now on, we let Gn be the Galois group of f (n). The action of Gn on the
roots of f (n) extends naturally to an action on Tn, and this yields an embedding
of Gn into the group of automorphisms of Tn. Recall that an automorphism of a
tree is a bijection σ of the set of vertices such that a vertex v is connected with a
vertex v′ if and only if σ(v) is connected with σ(v′). It follows immediately that
a tree automorphism induces a permutation of the set of vertices at level n, for
every n. Thus there are obvious projection maps πn : Aut(Tn) → Aut(Tn−1) and
the automorphism group of T can be realized as

Aut(T ) � lim←−
n

Aut(Tn).

On the other hand, it is immediate to check that for every n, the splitting field
of f (n) is contained in the splitting field of f (n+1). Thus, there are surjections
Gn+1 → Gn and the profinite group G{fk} := lim←−

n

Gn acts on T as a subgroup of

Aut(T ), giving rise to a continuous embedding G{fk} → Aut(T ). This motivates
the following definition, generalizing the one given in [3].

Definition 2.1. An arboreal Galois representation of a profinite group G is a
continuous homomorphism G → Aut(T ), where T is a spherically homogeneous
rooted tree.

In the particular case where {fk} is a constant sequence, one recovers [3, Defi-
nition 1.1].

From now on, K will be a number field with ring of integers OK , and fk ∈
OK [x] will be monic for every k ∈ N. We assume throughout the paper that
f (n) is irreducible for every n. We also set d(0) = 1 and for every n ≥ 1 we let
d(n) := deg f (n).
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Definition 2.2. We say that a prime ideal p ⊆ OK is stable for {fk} if f (n) is
irreducible modulo p for every n ≥ 1.

The set of stable primes for {fk} will be denoted by St({fk}).

The main goal of this paper is to prove the following theorem.

Theorem 2.3. Suppose that the index of Gn in Aut(Tn) is o(d(n)). Then St({fk})
has density zero.

Recall that if S is a set of prime ideals of OK , the natural density of S and the
Dirichlet density of S are defined respectively as:

lim
x→∞

|p ∈ S : NK/Q(p) ≤ x|
|p ⊆ OK : NK/Q(p) ≤ x| and lim

s→1+

∑
p∈S NK/Q(p)

−s∑
p⊆OK

NK/Q(p)−s
,

provided that the limits exist. The word “density” in Theorem 2.3 refers to either
concept of density, since the result is true for both. The density of a set of primes
S will be denoted by δ(S). The upper density of S, which is defined using lim sup
in place of lim in the above formulas, will be denoted by δ(S).

Theorem 2.3 has the following immediate consequence.

Corollary 2.4. Suppose that the sequence {dk}k∈N is not eventually 1 (i.e., that
d(n) → +∞) and that the arboreal Galois representation of G{fk} has finite index
image in Aut(T ). Then the set of stable primes for {fk} has density zero.

Proof. Just note that since Gn ≤ Aut(Tn) for every n, the group G{fk} has finite
index in Aut(T ) if and only if the index of Gn in Aut(Tn) is eventually constant,
and therefore in particular it is o(d(n)) as d(n) → +∞. �

Remark 2.5. It is very easy to see that the conclusion of Theorem 2.3 fails if we drop
the assumption on the size of Gn. For example, if {fk} is the constant sequence
with fk = x2 − 2 ∈ Z[x], then the Galois group of f (n) is the cyclic group of order
2n (see [3]). Now [12, Theorem 2.2] shows that, for every fixed n, f (n) is irreducible
modulo p if and only if p ≡ 3, 5 mod 8. Thus in this case, the set of stable primes
for {fk} has density 1/2.

Clearly, one can use Theorem 2.3 in its contrapositive form to prove that the
index of G{fk} in Aut(T ) is infinite. An explicit example can be constructed as

follows. Let p be a fixed prime, and let fk := (x− p2k+1)2 + p2k−1 for every k ≥ 1.

Then [8, Proposition 3.3] shows that if q is a prime with

(
p

q

)
=

(
−p

q

)
= −1,

where

(
·
q

)
denotes the Legendre symbol modulo q, then the composition f (n) is

irreducible modulo q for every n ∈ N. Quadratic reciprocity easily implies the
existence of a set of positive density of such q’s, showing that the index of G{fk} in
Aut(T ) is infinite.

The same argument furnishes a different proof of some cases of [13, Theorem
3.1]: if f ∈ OK [x] is a monic polynomial of degree 2 such that all its iterates
are irreducible and the affine span of its post-critical orbit in the F2-vector space
K∗/K∗2 is finite and does not contain the coset of 1, then the set of stable primes for
f has positive density (see [12, Theorem 6.1]). Thus, by Theorem 2.3 the attached
Galois representation has infinite index in Aut(T ). This applies for example to the
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polynomial (x− t)2 + t− 1 ∈ Z[x], where t ∈ Z is such that ±t and ±(t− 1) are all
non-squares.

When {fk} is a constant sequence of spherical index 2, we fall back in the setting
studied for example in [3], [12], [13], or [14]. Let us briefly recall such setting. Let
φ ∈ K(x) be a rational function of degree 2. A critical point γ of φ is a point
γ ∈ P1 such that φ′(γ) = 0. The map φ is said to be post-critically finite if the
orbit of every critical point under φ is finite. Generalizing in the obvious way the
construction we discussed above, one attaches a complete rooted 2-ary tree T to φ,
and there is a continuous action of the absolute Galois group of K on it, giving rise
to an arboreal Galois representation. Let Gφ be the image of such representation.

Conjecture 2.6 ([13, Conjecture 3.11]). The index of Gφ in Aut(T ) is finite if
and only if one of the following holds:

(1) The map φ is post-critically finite.
(2) φ(r+1)(γ1) = φ(r+1)(γ2) for some r ≥ 1, where γ1 and γ2 are the critical

points of φ.
(3) 0 is periodic under φ.
(4) There is a non-trivial Möbius transformation m that fixes 0 and such that

φ ◦m = m ◦ φ.

Let now f ∈ OK [x] be a monic polynomial of degree 2, let fk = f for every k,
and assume f (n) is irreducible for every n.

Corollary 2.7. Let f be as above and assume Conjecture 2.6. If f is not post-
critically finite, then the set of stable primes for f has density zero.

Proof. By Corollary 2.4, it is enough to check that conditions (2), (3), and (4) are
never satisfied by such a polynomial. Condition (2) clearly does not hold because
f has two distinct critical points, one of which is ∞, and so it is fixed by f , and
the other one is never mapped to ∞ by any iterate of f . Condition (3) cannot
hold because f (n) is irreducible for every n by assumption. A direct computation
shows that if (4) holds for an irreducible polynomial, then this polynomial must
be (x − 1)2 + 1, which is post-critically finite (and conversely, such polynomial
commutes with x/(x− 1)). �

3. The automorphism group of Tn
Let us fix a spherical index {dk}k∈N and let T be the associated spherically ho-

mogeneous tree. In order to describe the group of automorphisms of the truncated
tree Tn, we first recall the construction of the wreath product of groups. Let G,H
be two groups and R be a set on which G acts by permutations from the left. If
g ∈ G and r ∈ R, we denote by g · r the action of g on r. Let HR :=

∏
r∈R Hr,

where each Hr is an isomorphic copy of H. The action of G extends naturally to
HR via g · (hr)r∈R = (hg−1·r)r∈R. This defines a homomorphism

Φ: G → Aut(HR)

g �→ (ϕg : (hr)r �→ g · (hr)r).

The wreath product of G by H is defined by:

G R H := G�Φ HR.
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Now suppose that G is a subgroup of the symmetric group on d symbols Sd and
H is a subgroup of Se. Let R := {1, . . . , d} and T = {1, . . . , e}. Then G R H acts
from the left on R× T via the following rule:

(g, (hr)r) · (r0, t0) = (g · r0, hg·r0 · t0).
Theorem 3.1 ([5, Theorem 2.1.15]). The automorphism group of Tn is isomorphic
to the wreath product

Sd1
 Sd2

 . . .  Sdn
.

The wreath product of groups is associative and therefore Theorem 3.1 implies
that we can think of Aut(Tn) as Aut(Tn−1)  Sdn

; we will make use of this fact in
what follows. From now on, we denote by Wn the automorphism group of Tn.

Corollary 3.2. The order of Wn is

n∏
i=1

(di!)
d(i−1)

.

Proof. If G,H are finite groups with G acting on a finite set R, it is clear from the
definition that |G RH| = |G| · |H||R|. The claim follows by an easy induction using
Theorem 3.1 and the fact that Sd1

 Sd2
 . . .  Sdn

acts on d(n) symbols. �
Remark 3.3. It is useful to understand how elements of Wn act on the vertices
of Tn. Notice that Wn is a subgroup of Sd(n) by construction, and the set Vn of
the vertices at level n has cardinality d(n). In fact, since automorphisms of Tn
preserve connected vertices, in order to describe the action of Wn on the vertices
of Tn it is enough to specify the action of Wn on Vn. For every i ∈ {1, . . . , n},
let Ri be the set {1, . . . , di}. Each element v ∈ Vn can be uniquely identified by
a sequence (t1, . . . , tn) where ti ∈ Ri for every i. This identification comes from
labeling the descendants of a vertex at level i with the elements of Ri+1, so that
the sequence (t1, . . . , tn) describes the unique path from the root of the tree to the
corresponding vertex in Vn. Now, elements of Wn are of the form (g, (hr)r∈R(n−1)),

where g ∈ Wn−1, hr ∈ Sdn
for every r and R(n−1) = R1 × . . .×Rn−1. Thus, g acts

inductively on the sequence (t1, . . . , tn−1), yielding a new sequence (t′1, . . . , t
′
n−1),

and we have that

(g, (hr)r∈R(n−1)) · (t1, . . . , tn) = (t′1, . . . , t
′
n−1, h(t′1,...,t

′
n−1)

· tn).

4. Proof of the main theorem

Let us recall the hypotheses: let {fk} ⊆ OK [x] be a sequence of monic poly-
nomials of spherical index {dk}, let Gn = Gal(f (n)) and suppose that [Aut(Tn) :
Gn] = o(d(n)). Our goal is to show that δ(St({fk})) = 0.

Let St(f (n)) be the set of primes p such that f (n) is irreducible modulo p. Notice
that St(f (i)) ⊆ St(f (j)) whenever i ≥ j. It is immediate to see that

St({fk}) =
⋂
n∈N

St(f (n)).

Since St({fk}) ⊆ St(f (n)) for every n, then δ(St({fk})) ≤ δ(St(f (n))) for every n.
Therefore, in order to prove Theorem 2.3 it is enough to show that δ(St(f (n))) exists
for every n and converges to 0 as n → ∞. In fact, if this happens, then δ(St(f (n)))
converges to 0 as well, forcing δ(St({fk})) = 0 and finally δ(St({fk})) = 0.

Thus, we reduced the proof of Theorem 2.3 to proving the following claim:

(♠) The density of St(f (n)) exists and converges to 0 as n → ∞.
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Let us now recall the following fundamental theorem, which is a weaker version
of Chebotarev’s density theorem.

Theorem 4.1 (Frobenius density theorem). Let g(x) ∈ OK [x] be monic and irre-
ducible of degree d. Let G ⊆ Sd be the Galois group of g. Let a1 ≤ a2 ≤ . . . ≤ at
be natural numbers such that a1 + . . . + at = d. Let Γ ⊆ G be the set of elements
whose decomposition in disjoint cycles has the form c1 · c2 · . . . · ct, where ci is a
cycle of length ai. Then the set

{primes p ⊆ OK s.t. g(x) has decomposition type (a1, . . . , at) modulo p}

has density
|Γ|
|G| .

Recall that in our setting Gn is the Galois group of f (n), and is therefore a
subgroup of Sd(n) . The key lemma which allows us to prove claim (♠) is the
following. Recall that Wn = Aut(Tn).

Lemma 4.2. Let Cn ⊆ Wn be the set of cycles of length d(n). Then
|Cn|
|Wn|

=
1

d(n)
.

Let us first show that Lemma 4.2 implies claim (♠). Since Gn ≤ Wn, the set
Γn ⊆ Gn of cycles of length d(n) is a subset of Cn. Thus, by Frobenius density
theorem we get that

δ(St(f (n))) =
|Γn|
|Gn|

≤ |Cn|
|Gn|

=
|Cn|
|Wn|

· [Wn : Gn].

Now Lemma 4.2, together with the fact that, by hypothesis, [Wn : Gn] = o(d(n)),
implies that δ(St(f (n))) → 0.

Proof of Lemma 4.2. By Corollary 3.2, the statement of the lemma is equivalent
to proving that:

|Cn| =
n∏

i=1

(di − 1)!(di!)
d(i−1)−1.

We will prove this by induction on n. For n = 1, the claim is true because W1 is
the symmetric group on d1 symbols, and thus it contains exactly (d1 − 1)! cycles of
length d1. In order to prove the claim for Cn, we need a characterization of cycles
of length d(n+1) inside Wn+1. For every i ∈ {1, . . . , n}, let Ri := {1, . . . , di} and
let R(n) = R1 × . . .×Rn. Recall that, by Theorem 3.1, Wn+1 = Wn R(n) Sdn+1

for
n ≥ 1, and that for every n, Wn is naturally a subgroup of Sd(n) acting on the set of
vertices of T at level n as explained in Remark 3.3. Let g = (g, (hr)r∈R(n)) ∈ Wn+1.
We claim that g ∈ Cn+1 if and only if the following two conditions hold:

(1) g ∈ Cn;

(2) for every r ∈ R(n), the element

d(n)∏
i=1

hg−i·r ∈ Sdn+1
is a cycle of length dn+1.

To prove this, let us first assume that g ∈ Cn+1 and suppose that there is a cycle
of length a in the decomposition of g into disjoint cycles. Then there is a vertex v
of T at level n such that ga · v = v, and therefore ga permutes the dn+1 vertices at
level n + 1 that descend from v. If such a permutation contains a cycle of length
b, it follows that there exists a vertex w, descending from v, such that gab ·w = w.
Since a ≤ d(n) and b ≤ dn+1, equalities must hold because g is a cycle of length
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d(n+1) and therefore no vertex at level n + 1 can be mapped to itself with less
than d(n+1) iterations of g. This argument shows that g ∈ Cn and that since

gd
(n)

=

⎛
⎝id,

⎛
⎝d(n)∏

i=1

hg−i·r

⎞
⎠

r∈R(n)

⎞
⎠, then

d(n)∏
i=1

hg−i·r is a cycle of length dn+1 for

every r ∈ R(n).
Conversely, let g = (g, (hr)r∈R(n)) ∈ Wn+1 have properties (1) and (2). Suppose

that g contains a cycle of length a. Then there is a vertex v of T at level n+1 such
that ga · v = v, which implies in particular that ga · v has the same parent of v.
Since g acts on the set of vertices at level n and is a cycle of length d(n), this proves

that a = d(n)b, for some b ≤ dn+1. Since gd
(n)

=

⎛
⎝id,

⎛
⎝d(n)∏

i=1

hg−i·r

⎞
⎠

r∈R(n)

⎞
⎠, it

follows that there exists some r0 ∈ R(n) such that
d(n)∏
i=1

hg−i·r0 permutes the vertices

with the same parent of v. This permutation is a cycle of length dn+1 by (2) and
this proves, together with the fact that ga · v = v, that b = dn+1, and finally that
g ∈ Cn+1.

We are now ready to enumerate the elements in Cn+1. Let g be an elment of Cn

and fix r0 ∈ R(n). For every i ∈ {1, . . . , d(n)} choose hg−i·r0 ∈ Sdn+1
such that the

element

h := hg−1·r0 · hg−2·r0 · . . . · hg−d(n) ·r0

is a cycle of length dn+1 (notice that since g is a cycle of maximal length, the set

{g−1 · r0, . . . , g−d(n) · r0} coincides with R(n)). We claim that g := (g, (hr)r∈R(n))

is a cycle of length d(n+1). By the characterization that we proved above, this

is equivalent to proving that hr :=
d(n)∏
i=1

hg−i·r is a cycle of length dn+1 for every

r ∈ R(n). Let j ∈ {1, . . . , d(n)} be the unique element such that g−j · r = r0. Then
h = hg−j−1·r · hg−j−2·r · . . . · hg−j−d(n) ·r, and setting

k := hg−1·r · hg−2·r · . . . · hg−j ·r,

we have the equality

hr = khk−1.

This proves that h and hr are conjugate in Sdn+1
, and therefore also hr is a cycle

of length dn+1.
In other words, we have proved that for every g ∈ Cn, in order to construct an

element (g, (hr)r∈R(n)) ∈ Wn+1 lying in Cn+1 it is necessary and sufficient to fix

r0 ∈ R(n) and to find, for every i ∈ {1, . . . , d(n)}, an element hg−i·r0 ∈ Sdn+1
such

that

d(n)∏
i=1

hg−i·r0 is a cycle of length dn+1. For every g ∈ Cn, we have complete

freedom in choosing hg−1·r0 , hg−2·r0 , . . . , hg−d(n)+1·r0
, which means that we have
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(dn+1!)
d(n)−1 choices; we must then have

h
g−d(n) ·r0

=

⎛
⎝d(n)−1∏

i=1

hg−i·r0

⎞
⎠

−1

· c,

where c is a cycle of length dn+1. This means that we are left with (dn+1 − 1)!
choices for c, because this is the number of cycles of length dn+1. All in all, we have

(dn+1 − 1)!(dn+1!)
d(n)−1

choices for every element g ∈ Cn. Since by the induction

hypothesis we have that |Cn| =
∏n

i=1(di − 1)!(di!)
d(i−1)−1

, we easily get that

|Cn+1| = (dn+1−1)!(dn+1!)
d(n)−1·

n∏
i=1

(di−1)!(di!)
d(i−1)−1

=

n+1∏
i=1

(di−1)!·(di!)d
(i−1)−1

,

as desired. �

5. The generic case

It is a very hard problem, in general, to compute explicitly the Galois groups
Gn = Gal(f (n)) for a given sequence {fk} ⊆ OK [x], even when such sequence is
constant (see [2], [4], or [21] for examples in degrees 2 and 3). It is natural to
ask what is the generic behaviour of a sequence of fixed spherical index. In this
section we will prove that for any fixed spherical degree {dk}, the set of sequences
{fk} of spherical degree {dk} whose associated arboreal Galois representation is
surjective has density 1, in an adequate sense. This shows in particular that the
set of sequences that fulfill the hypotheses of Theorem 2.3 has density 1.

Let us first recall the notion of natural density for subsets of On
K (cf. [7]). Let

m := [K : Q], fix a Z-basis B := {ω1, . . . , ωm} for OK and define

OK [N,B] :=
{

m∑
i=1

aiωi ∈ OK : |ai| ≤ N ∀i ∈ {1, . . . ,m}
}
.

The density of a subset A ⊆ On
K (with respect to B) is defined as

D(A) := lim
N→∞

|A ∩OK [N,B]n|
|OK [N,B]n| ,

provided that the limit exists. As On
K is a countably infinite set, there is no uniform

probability distribution on it. The above notion of density is to be thought of as
the limit, as N → ∞, of the probability that a point chosen uniformly at random
inside the mn-dimensional hypercube of side N and centered in the origin belongs
to A, after choosing an identification of On

K with Zmn.
From now on, we will fix a spherical index {dk}k∈N. For every n ∈ N, let Xn :=∏n
i=1 O

di

K and let X :=
∏∞

i=1 O
di

K . The set Xn can be naturally identified with the set
of n-tuples of monic polynomials {f1, . . . , fn} such that each fi has degree di, simply

by mapping each fi to the di-tuple of its coefficients in Odi

K ⊆ Xn. Analogously, the
set X can be identified with the set of sequences of monic polynomials {fk} ⊆ OK [x]
of spherical index {dk}. We will assume these identifications implicitly in what

follows. Identifying Xn with O
∑n

i=1 di

K in the obvious way, we get a well-defined
notion of density on Xn. Let πn : X → Xn be the natural projection map.
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Definition 5.1. The density of a subset A ⊆ X (with respect to B) is defined as

lim
n→∞

D(πn(A)),

provided that the limit exists.

Again, this does not define a probability distribution on X . However, one can
think of choosing a sequence {fk} as an analogue of a discrete stochastic process;
our definition of density on X serves then as an analogous of the concept of joint
distribution of the process.

Recall that we denote by Wn the full automorphism group of the spherically
homogeneous tree of spherical index {dk} truncated at level n, and that for a
polynomial sequence {fk}, we denote by Gn the Galois group of f (n) = f1 ◦ . . .◦fn.
The goal of this section is to prove the following theorem.

Theorem 5.2. Let A ⊆ X be the set of all polynomial sequences {fk} such that
Gn � Wn for every n ∈ N. Then D(πn(A)) = 1 for every n, and therefore D(A) = 1.

To prove the theorem, we need to recall the following results.

Theorem 5.3 ([16, Corollary 8.4]). Let F be a field of characteristic 0, and let
f ∈ F [x] be monic and squarefree with Galois group G over F . For every � ≥ 2, let
t1, . . . , t� be indeterminates over F and let g(x, t1, . . . , t�) := x�+ t1x

�−1+ . . .+ t� ∈
F [x, t1, . . . , t�]. Then the Galois group of f ◦ g over F (t1, . . . , t�) is isomorphic to
the wreath product G  S�.

The following theorem is stated in greater generality in [6]. We report it here in
a simpler version which suffices for our purposes.

Theorem 5.4. Let K be a number field, let x, t1, . . . , t� be indeterminates over K,
and let f(x, t1, . . . , t�) ∈ OK [x, t1, . . . , t�] have Galois group G over K(t1, . . . , t�).
Then there exist constants c1, c2, depending on f,K, and B, such that for all N >
c1, the number of �-tuples (α1, . . . , α�) ∈ OK [N,B]� such that the Galois group of
f(x, α1, . . . , α�) over K is not isomorphic to G does not exceed c2N

m(�−1/2) logN .

Proof. See [6, Theorem 2.1]. We remark that the set denoted by OK [N,B] by us,
coincides with the set denoted by ZK(Nm) in [6]. �

Proof of Theorem 5.2. We first notice that for every n ∈ N, we have that

πn(A) = {(f1, . . . , fn) ∈ Xn : Gal(f (i)) � Wi for every i ∈ {1, . . . , n}}.
In fact, by definition the set πn(A) coincides with the set of n-tuples of polynomials
(f1, . . . , fn) that satisfy the following two conditions:

i) Gi � Wi for every i ∈ {1, . . . , n};
ii) there exists a sequence of polynomials {fn+k}k∈N of spherical index

{dn+k}k∈N such that Gi � Wi for every i > n.

Theorems 5.3 and 5.4 show that for every n-tuple of polynomials satisfying i) it is
possible to construct a sequence (and in fact infinitely many) {fn+k}k∈N satisfying
ii): let (f1, . . . , fs) ∈ Xs for some s ≥ n be such thatGi � Wi for every i ∈ {1, . . . , s}
and let g := xds+1 + t1x

ds+1−1 + . . . + tds+1
∈ K[x, t1, . . . , tds+1

]. Then by Theo-

rem 5.3, the polynomial f (s) ◦ g has Galois group Ws+1 over K(t1, . . . , tds+1
) and

by Theorem 5.4 there exist infinitely many specializations (α1, . . . , αds+1
) ∈ Ods+1

K

such that (f (s) ◦ g)(x, α1, . . . , αds+1
) has Galois group Ws+1. Thus, it is enough
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to set fs+1 := g(x, α1, . . . , αds+1
) and to apply the same argument inductively to

obtain a sequence {fn+k}k∈N satisfying ii).
To compute the density of πn(A), for every i ∈ {1, . . . , n} set

gi(x, t
(i)
1 , . . . , t

(i)
di
) := xdi + t

(i)
1 xdi−1 + . . .+ t

(i)
di

∈ K(t
(i)
1 , . . . , t

(i)
di
)[x].

Here x and the t
(i)
j ’s are algebraically independent indeterminates over K. It is a

well-known fact (see for example [16, Corollary 7.3]) that the Galois group of g1 over

K(t
(1)
1 , . . . , t

(1)
d1

) is isomorphic to Sd1
. Now it follows from Theorem 5.3 with F =

K(t
(1)
1 , . . . , t

(1)
d1

) that the Galois group of g1 ◦ g2 over K(t
(1)
1 , . . . , t

(1)
d1

, t
(2)
1 , . . . , t

(2)
d2

)
is Sd1

 Sd2
. Repeating inductively the same argument shows that for every i ∈

{1, . . . , n} the Galois group of g(i) := g1 ◦ g2 ◦ . . . ◦ gi over K(t
(1)
1 , . . . , t

(i)
di
) is Wi.

Letting Di :=
∑i

j=1 dj for every i ∈ {1, . . . , n}, we therefore have that the set

πn(A) ∩ OK [N,B]Dn coincides with the set

{(αj)
Dn
j=1 ∈ OK [N,B]Dn : Gal(g(i)(x, α1, . . . , αDi

)) � Wi ∀ i ∈ {1, . . . , n}}.
By Theorem 5.4, we can find constants c1, c2, depending on all the gi’s, on B
and on K, such that for all N > c1 and for all i ∈ {1, . . . , n}, the number of
(α1, . . . , αDi

) ∈ OK [N,B]Di such that the Galois group of g(i)(α1, . . . , αDi
) is not

Wi does not exceed c2N
m(Di−1/2) logN . Letting

Bi := {(α1, . . . , αDn
) ∈ OK [N,B]Dn : Gal(g(i)(x, α1, . . . , αDi

)) �� Wi}
for every i ∈ {1, . . . , n}, it follows that |Bi| is bounded by c2N

m(Dn−1/2) logN .
Since OK [N,B]Dn \ πn(A) ⊆

⋃n
i=1 Bi, we have that

|πn(A) ∩ OK [N,B]Dn | ≥ |OK [N,B]Dn | −
n∑

i=1

|Bi|

≥ |OK [N,B]Dn | − nc2N
m(Dn−1/2) logN,

and the claim follows simply by the fact that |OK [N,B]Dn | = (2N + 1)mDn . �

Remark 5.5. It is possible to prove a slightly sharper statement than the one of
Theorem 5.2. One can show, using the arguments described in [19, Chapter 9],
that there exists a thin set (in the sense of Serre) S ⊆ KDn such that set for all

(αj)
Dn
j=1 ∈ KDn \ S, one has Gal(g(i)(x, α1, . . . , αDi

)) � Wi for every i ∈ {1, . . . , n}
(we are using the notation of the proof of Theorem 5.2). It follows that πn(A)
is “co-thin” in Xn for every n and therefore, in particular, it has density 1 by
[19, p. 134]. On the other hand, the use of Theorem 5.4 yields a better asymptotic
on |πn(A) ∩ OK [N,B]Dn |.
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