
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 7, July 2018, Pages 2937–2952
http://dx.doi.org/10.1090/proc/13961

Article electronically published on February 8, 2018

ON THE C1,α REGULARITY OF p-HARMONIC FUNCTIONS

IN THE HEISENBERG GROUP

DIEGO RICCIOTTI

(Communicated by Jeremy Tyson)

Abstract. We present a proof of the local Hölder regularity of the horizontal
derivatives of weak solutions to the p-Laplace equation in the Heisenberg group
H

1 for p > 4.

1. Introduction

We present a proof of the local Hölder regularity of derivatives of weak solutions
to the p-Laplace equation in the Heisenberg group H

1 for the range p > 4. Our
notation for the first Heisenberg group is H = H

1 = (R3, ∗). Here, indicating points
x, y ∈ H by x = (x1, x2, z) and y = (y1, y2, s), the group operation is

x ∗ y = (x1, x2, z) ∗ (y1, y2, s) =
(
x1 + y1, x2 + y2, z + s+

1

2
(x1y2 − x2y1)

)
,

and a basis of left-invariant vector fields for the associated Lie algebra h is given by

X1 = ∂x1
− x2

2
∂z, X2 = ∂x2

+
x1

2
∂z, and T = ∂z .

If u : Ω −→ R is a function from an open subset of H we indicate by ∇Hu =
(X1u,X2u) the horizontal gradient of u. We denote by HW 1,p(Ω) the Sobolev
space of functions u such that both u and ∇Hu ∈ Lp(Ω).

We study the regularity of solutions to the p-Laplace equation:

(1.1)
2∑

i=1

Xi

(
|∇Hu|p−2 Xiu

)
= 0 in Ω.

The main result is the following:

Theorem 1.1. Let u ∈ HW 1,p(Ω) be a weak solution of the p-Laplace equation
(1.1) for p > 4 and let BR0

� Ω. Then there exists β = β(p) ∈ (0, 1) such that for
every l ∈ {1, 2} we have

oscBR
(Xlu) ≤ Cp ‖∇Hu‖L∞(BR0

)

(
R

R0

)β

for all R ≤ R0

2
,

where Cp is a constant depending only on p.
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In this work Br(x0) denotes a Carnot-Carathéodory ball of radius r and cen-
ter x0 (we omit the center when it is not essential). We recall that the Carnot-
Carathéodory distance between x and y ∈ H is defined as

dcc(x, y) = inf{l(Γ ) | Γ ∈ S(x, y)} .

Here S(x, y) denotes the set of all horizontal subunitary curves joining x and y, i.e.,

absolutely continuous curves Γ : [0, T ] −→ Ω such that Γ ′(t) =
∑2

j=1 αj(t)Xj(Γ (t))

for some real valued functions αj with
∑2

j=1 αj(t)
2 ≤ 1. The length of such a curve

is defined to be l(Γ ) = T .
Moreover we recall that the Lebesgue measure is the Haar measure of the group

and the homogeneous dimension is Q = 4.
To prove regularity results in general one considers a family of approximated

nondegenerate problems and tries to produce estimates independent of the non-
degeneracy parameter in such a way that they can be applied to the degenerate
equation by passing to the limit. More precisely, here we consider the nondegenerate
equations

(1.2)

2∑
i=1

Xi

((
δ2 + |∇Hu|2

) p−2
2 Xiu

)
= 0 in Ω

for a parameter δ > 0 . Equation (1.1) corresponds to the degenerate case δ = 0.
The Heisenberg group presents new challenges with respect to its Euclidean

counterpart , since we only assume that u is in the horizontal Sobolev space HW 1,p,
and differentiating the equation produces terms involving the vertical derivative Tu,
due to the noncommutativity of the horizontal vector fields. This constitutes the
main difficulty.

For p = 2 it is now classical that the solutions of equation (1.1) are C∞ [14].
For p �= 2 the Hölder regularity of solutions of equations modeled on (1.2) was
established by Capogna and Garofalo [3] and Lu [18]. Later Manfredi and Mingione
[20] were able to prove C1,α regularity in the nondegenerate case for 2 ≤ p < c(n) <
4, and by adapting an argument used by Capogna they achieve C∞ regularity for
this range of values of p. The starting point is the integrability result for the vertical
derivative Tu ∈ Lp established by Domokos for 1 < p < 4 in [7], where he extends

integrability results considered by Marchi for 1 + 1√
5
< p < 1 +

√
5 in [21], [22].

Mingione, Zatorska-Goldstein, and Zhong proved in [23] that the Euclidean gra-
dient of solutions to the nondegenerate equation are C1,α for 2 ≤ p < 4 and also that
solutions to the degenerate equation are locally Lipschitz continuous for 2 ≤ p < 4.

Zhong in [26] extended the Hilbert-Haar theory to the Heisenberg group setting
and proved that solutions to the degenerate equation (1.1) are locally Lipschitz for
the full range 1 < p < ∞. For an account of this theory, further historical details
and additional references see [24].

As for the Hölder continuity of the horizontal derivatives for the degenerate
equation (1.1) the only published result for p �= 2 has been obtained by Manfredi
and Domokos in [9], [8] via the Cordes perturbation technique for p near 2.

The proof of the Hölder continuity of the horizontal derivatives contained in this
work uses the particular form of the equation in H

1 and new integration by parts

for the second derivatives that produce weights of the form (δ2 + |∇Hu|)
p−4
2 . This

is the reason why our proof is only valid in the first Heisenberg group H
1 and for

the range p > 4.
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2. Preliminaries

2.1. The p-Laplace equation. We will consider the nondegenerate p-Laplace
equation (1.2). Denoting z = (z1, z2) ∈ R

2 and calling

ai(z) = (δ2 + |z|2)
p−2
2 zi and w = δ2 + |∇Hu|2 ,

equation (1.2) rewrites as

(2.1)
2∑

i=1

Xiai(∇Hu) = 0 in Ω

and satisfies the following ellipticity and growth conditions for all p > 1:

2∑
i,j=1

∂zjai(∇Hu)ξiξj ≥ cpw
p−2
2 |ξ|2,

|ai(∇Hu)| ≤ w
p−1
2 ,

|∂zjai(∇Hu)| ≤ Cpw
p−2
2 ,

|∂zs∂zjai(∇Hu)| ≤ Cpw
p−3
2 ,

(2.2)

and

(2.3)

∣∣∣∣∂zjai(z)∂zlal(z)

∣∣∣∣ ≤ Cp for all i, j, l ∈ {1, 2}.

We remark that the proofs presented in this work depend only on these properties;
therefore they extend to more general equations of p-Laplacean type as in (2.1) for
ai of class C

2 satisfying (2.2) and (2.3).
We say that a function u ∈ HW 1,p(Ω) is a weak solution of (1.2) if

(2.4)

∫
Ω

w
p−2
2 〈∇Hu,∇Hϕ〉 dx = 0 for all ϕ ∈ HW 1,p

0 (Ω) ,

where HW 1,p
0 (Ω) is the closure of the space of C∞ compactly supported functions

with respect to the horizontal Sobolev norm.

2.2. Previous results. We now collect some known results about the nondegen-
erate equation (1.2) that will be used in the following sections. We refer to [24] for
a detailed presentation and complete proofs.

First we have that solutions to the nondegenerate p-Laplace equation (1.2) are
smooth. This was proved by Capogna in [2] for p ≥ 2 and extended to the full
range 1 < p < ∞ in [24, Chapter 4] by adapting techniques of Domokos in [7].

As a consequence we have

(2.5)
2∑

i,j=1

∂zjai(∇Hu)XiXju = 0 a.e. in Ω.

Hence we can express X1X1u (respectively X2X2u) in terms of XiXju where at
least one index is a 2 (respectively a 1). This will be a crucial point later.

We now collect the equations satisfied by the horizontal and vertical derivatives
(see [24], Lemma 4.1):
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Lemma 2.1. The functions X1u, X2u, and Tu are weak solutions respectively of
the following equations (in Ω):

2∑
i=1

Xi

⎛
⎝ 2∑

j=1

∂zjai(∇Hu)XjX1u

⎞
⎠+

2∑
i=1

Xi (∂z2ai(∇Hu)Tu) + T (a2(∇Hu)) = 0,

(2.6)

2∑
i=1

Xi

⎛
⎝ 2∑

j=1

∂zjai(∇Hu)XjX2u

⎞
⎠−

2∑
i=1

Xi (∂z1ai(∇Hu)Tu)− T (a1(∇Hu)) = 0,

(2.7)

2∑
i=1

Xi

⎛
⎝ 2∑

j=1

∂zjai(∇Hu)XjTu

⎞
⎠ = 0.

(2.8)

In [26] Zhong established the weighted higher order integrability of Tu as follows:

Lemma 2.2. For all q > 4 and ξ ∈ C∞
0 (Ω) we have

(2.9)

∫
Ω

ξq w
p−2
2 |Tu|q dx ≤ C(q)

(
‖∇Hξ‖2L∞ + ‖ξTξ‖L∞

) q
2

∫
supp(ξ)

w
p−2+q

2 dx,

where C(q) = C
q−2
2

p qq+8 and Cp depends only on p.

For the sake of completeness we give a proof in the Appendix.

3. De Giorgi classes in the Heisenberg group

We now describe a type of De Giorgi class in the Heisenberg group. These kinds
of spaces were introduced and studied by De Giorgi in the Euclidean case (see [5]).
We will use the standard notation for super- (sub)level sets of a measurable function

A+
k,r = A+

k,r(f) = Br ∩ {f > k},
A−

k,r = A−
k,r(f) = Br ∩ {f < k}.

Definition 3.1 (De Giorgi class in the Heisenberg group). Let Ω ⊂ H be open, let

γ, χ be positive real constants, and let q > 4. A function f ∈ HW 1,2

loc
(Ω)∩L∞

loc(Ω)

belongs to the De Giorgi class DG+(Ω, γ, χ, q) if

(3.1)

∫
A+

h,r′

|∇Hf |2 dx ≤ γ

(r − r′)2
sup
Br

|(f − h)+|2|A+
k,r|+ χ|A+

k,r|
1− 2

q

for some concentric balls Br′ ⊂ Br � Ω and levels h ∈ R.

In this section we consider an arbitrary ball BR � Ω and denote M = M(R) =
supBR

f and m = m(R) = inf
BR

f .

We take the following lemma from [15], Lemma 2.3, where it is proved in a more
general setting.

Lemma 3.2. Let l > k, f ∈ HW 1,1
loc (Ω), Br � Ω. Then if |Br \A+

k,r| > 0 we have

(3.2) (l − k)|A+
l,r|1−

1
4 ≤ Cr4

|Br \A+
k,r|

∫
A+

k,r\A
+
l,r

|∇Hf | dx,



REGULARITY IN THE HEISENBERG GROUP 2941

where C is a purely numeric constant.

The next lemma is adapted from Lemma 2.3 in [19] and Lemma 6.1 in [16].

Lemma 3.3. Let 0 < λ0, λ1 < 1, and let k < M . Suppose that f ∈ DG+(Ω, γ, χ, q)
for h ∈ [k, λ0k + (1 − λ0)M ] and for r′ < r ∈ [λ1R,R]. Then there exists θ =
θ(γ, λ0, λ1) ∈ (0, 1) such that if

M − k ≥ χ
1
2R1− 4

q ,

then

|A+
k,R| ≤ θ|BR| implies f ≤ λ0k + (1− λ0)M a.e. in Bλ1R.

The following lemma is adapted from Lemma 2.4 in [19] and Lemma 6.2 in [16].

Lemma 3.4. Let 0 < λ1 < 1 and k < M . Suppose f ∈ DG+(Ω, γ, χ, q) for
h ∈ [k,M ] and for r′ = λ1R, r = R. If there exists a constant 0 < C0 < 1 such
that |A+

k,λ1R
| ≤ C0|Bλ1R|, then given 0 < θ < 1 there exists s = s(γ, λ1, C0, θ) ∈ N

such that

if M − k ≥ 2sχ
1
2R1− 4

q , then |A+
ks,λ1R

| ≤ θ|Bλ1R|,

where ks = k + (1− 2−s)(M − k) is a level set between k and M .

Combining the previous lemmas we get an estimate for the decay of the oscillation
of functions in the De Giorgi class. We are adapting it from Lemma 2.5 in [19] and
from [16].

Lemma 3.5 (Oscillation estimate). Let 0 < λ1 < 1, and suppose that for radii
r′ < r ∈ [λ1R,R] we have f ∈ DG+(Ω, γ, χ, q) for h ∈ [m+M

2 ,M ] and −f ∈
DG+(Ω, γ, χ, q) for h ∈ [−M,−m+M

2 ] . Then there exists A = A(γ, λ1) ∈ (0, 1)
such that

(3.3) oscBλ1R
f ≤ AoscBR

f +BR1− 4
q ,

where

B =
χ

1
2

4(1−A)
.

4. Main estimate

From now on we will fix a ball BR0
� Ω, and for a concentric ball BR ⊂ BR0

we
introduce the notation

μ(R) = max
1≤l≤2

‖Xlu‖L∞(BR) and λ(R) =
1

2
μ(R).

In this section we prove the following proposition, which contains the main esti-
mates and constitutes the novel contribution of this work.

Proposition 4.1. Let BR0
� Ω and let u ∈ HW 1,p(Ω) be a weak solution of the

nondegenerate equation (1.2) for p > 4. For every 0 < r′ < r < R0

2 , l = 1, 2, and



2942 DIEGO RICCIOTTI

for every q > max{4, 2 + 4
p−4} we have∫

Br′

w
p−2
2

∣∣∇H(Xlu− k)+
∣∣2 dx(4.1)

≤ Cp

(r − r′)2

∫
Br

w
p−2
2 |(Xlu− k)+|2 dx+ χ

∣∣∣A+
k,r(Xlu)

∣∣∣1− 2
q

,∫
Br′

w
p−2
2

∣∣∇H(Xlu− k)−
∣∣2 dx(4.2)

≤ Cp

(r − r′)2

∫
Br

w
p−2
2 |(Xlu− k)−|2 dx+ χ

∣∣∣A−
k,r(Xlu)

∣∣∣1− 2
q

.

The inequalities (4.1) hold for levels k ≥ −μ(R0), while (4.2) hold for levels k ≤
μ(R0). The constant Cp depends only on p, and the parameter χ is given by

(4.3) χ =
Cpq

6

R2
0

(
δ2 + μ(R0)

2
) p

2 |BR0
|
2
q .

Proof. We will prove (4.1) for l = 1; the other estimates follow in a similar fashion.
We use the notation vl = (Xlu− k)+ = max{Xlu− k, 0}. Fix 0 < r′ < r < R0

2 and

let φ = ξ2v1, where ξ is a cut-off function between Br′ and Br with |∇Hξ| ≤ C
(r−r′) .

We denote A+
k,r(X1u) for simplicity by A+

k,r and we use the usual convention of sum

on repeated indices. Test equation (2.6) with φ to get

J1 :=

∫
Br

ξ2 ∂zjai(∇Hu)XjX1uXiv1 dx = −2

∫
Br

ξ ∂zjai(∇Hu)XjX1uXiξ v1 dx

−
∫
Br

ξ2 ∂z2ai(∇Hu)Xiv1 Tu dx

− 2

∫
Br

ξ ∂z2ai(∇Hu)Xiξ Tu v1 dx

−
∫
Br

a2(∇Hu)T (ξ
2v1) dx

=: J2 + J3 + J4 + J5.

Routine calculations using Young’s inequality and (2.2) allow us to estimate Ji
for 1 ≤ i ≤ 4 as follows:

∫
Br

ξ2w
p−2
2 |∇Hv1|2 dx ≤ C

∫
Br

|∇Hξ|2 w
p−2
2 v21 dx+ C

∫
A+

k,r

ξ2w
p−2
2 |Tu|2 dx

+

∣∣∣∣
∫
Br

a2(∇Hu)T (ξ
2v1) dx

∣∣∣∣ .

(4.4)

The new idea is to estimate the last integral in the previous inequality by integrating
by parts twice. First, integrating by parts with respect to the field T we get∫

Br

a2(∇Hu)T (ξ
2v1) dx = −

∫
Br

T (a2(∇Hu)) ξ
2v1 dx

= −
∫
Br

∂zja2(∇Hu)XjTu ξ
2 v1 dx,
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and then integrating with respect to the fields Xj for j = 1, 2 we obtain

−
∫
Br

∂zja2(∇Hu)XjTu ξ
2 v1 dx =

∫
Br

TuXj

(
∂zja2(∇Hu)ξ

2v1
)
dx

=

∫
Br

Tu ∂zs∂zja2(∇Hu)XjXsu ξ
2 v1 dx

+ 2

∫
Br

Tu ∂zja2(∇Hu) ξ Xjξ v1 dx

+

∫
Br

Tu ∂zja2(∇Hu) ξ
2Xjv1 dx

=: J5,1 + J5,2 + J5,3.

Note that J5,2 and J5,3 can be estimated respectively as J4 and J3.

Denoting J5,1 :=
∑
s,j

Js,j
5,1 we have

∣∣∣∣∣∣
∑
j

J1,j
5,1

∣∣∣∣∣∣ ≤ Cp

∫
Br

ξ2w
p−3
2 |∇Hv1| v1 |Tu| dx ≤ Cpε

∫
Br

ξ2 w
p−2
2 |∇Hv1|2 dx

+
Cp

ε

∫
Br

ξ2 w
p−4
2 |Tu|2 v21 dx

(4.5)

and

∣∣∣J2,1
5,1

∣∣∣ ≤ ∫
Br

|∂z2∂z1a2(∇Hu)X1X2uTu ξ
2 v1| dx

≤
∫
Br

|∂z2∂z1a2(∇Hu)X2X1uTu| ξ2 v1 dx

+

∫
Br

|∂z2∂z1a2(∇Hu)| |Tu|2 ξ2 v1 dx.

The first term of the last inequality can be estimated as in (4.5). For the other
term we have

∫
Br

|∂z2∂z1a2(∇Hu)| |Tu|2 ξ2 v1 dx ≤ Cp

∫
Br

ξ2 w
p−3
2 |Tu|2 v1 dx

≤ Cp

∫
A+

k,r

ξ2 w
p−2
2 |Tu|2 dx

+ Cp

∫
Br

ξ2 w
p−4
2 |Tu|2 v21 dx.
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Now another key step is to use the equation in (2.5) and (2.3) to get

|J2,2
5,1 | =

∣∣∣∣
∫
Br

∂z2∂z2a2(∇Hu)X2X2u ξ
2 v1 Tu dx

∣∣∣∣
≤ Cp

∫
Br

|∂z2∂z2a2(∇Hu)X1X1uTu| ξ2 v1 dx

+ Cp

∫
Br

|∂z2∂z2a2(∇Hu)X2X1uTu| ξ2 v1 dx

+ Cp

∫
Br

|∂z2∂z2a2(∇Hu)X1X2uTu| ξ2 v1 dx

=: F1 + F2 + F3.

Note that F1 and F2 can be estimated as J1,j
5,1 , while F3 can be estimated as J2,1

5,1 .

Choosing ε small enough (4.4) becomes

∫
Br

ξ2w
p−2
2 |∇Hv1|2 dx ≤ C

∫
Br

|∇Hξ|2 w
p−2
2 v21 dx+ C

∫
A+

k,r

ξ2w
p−2
2 |Tu|2 dx

+ C

∫
Br

ξ2 w
p−4
2 |Tu|2 v21 dx

=: I1 + I2 + I3.

(4.6)

We only need to estimate I2 and I3. We use Hölder’s inequality with exponent q/2
and Lemma 2.2:

I2 ≤
(∫

A+
k,r

ξq w
p−2
2 |Tu|q dx

) 2
q
(∫

A+
k,r

w
p−2
2 dx

)1− 2
q

≤
(∫

BR0

ηq w
p−2
2 |Tu|q dx

) 2
q
(∫

A+
k,r

w
p−2
2 dx

)1− 2
q

≤
((

‖∇Hη‖2L∞ + ‖ηTη‖L∞

) q
2

∫
BR0

w
p−2+q

2 dx

) 2
q(
δ2 + μ(r)2

) p−2
2 (1− 2

q )
∣∣∣A+

k,r

∣∣∣1− 2
q

≤ Cp q
6

R2
0

(
δ2 + μ(R0)

2
) p

2 |BR0
|
2
q

∣∣∣A+
k,r

∣∣∣1− 2
q

,

where η is a cut-off function between BR0
2

and BR0
with |∇Hη| ≤ C

R0
. In a similar

way and noting that v21 ≤ 2(δ2 + μ(R0)
2) for k ≥ −μ(R0) we get

I3 ≤
(
δ2 + μ(R0)

2
)(∫

A+
k,r

ξq w
p−2
2 |Tu|q dx

) 2
q
(∫

A+
k,r

w
p−4
2 − 2

q−2 dx

)1− 2
q

≤
(
δ2 + μ(R0)

2
)((

‖∇Hη‖2L∞ + ‖ηTη‖L∞

) q
2

∫
BR0

w
p−2+q

2 dx

) 2
q

×
(
δ2 + μ(r)2

)( p−4
2 − 2

q−2 )(1−
2
q )

∣∣∣A+
k,r

∣∣∣1− 2
q

≤ Cp q
6

R2
0

(
δ2 + μ(R0)

2
) p

2 |BR0
|
2
q

∣∣∣A+
k,r

∣∣∣1− 2
q

. �
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Remark 4.2. Note that the main difficulty in the proof is estimating the terms con-
taining Tu. In particular in J5 we integrate by parts twice to avoid dealing with
terms involving ∇HTu. Then we use the equation in order to estimate terms with
X2X2u appropriately with quantities independent of δ or that can be absorbed in
the right hand side.

5. Oscillation estimate

In this section we prove our main result Theorem 1.1. Recall that we fixed a ball
BR0

� Ω and we now consider an arbitrary concentric ball BR ⊂ BR0
2
.

Remark 5.1. Let u ∈ HW 1,p(Ω) be a weak solution of the nondegenerate equation
(1.2) for p > 4. For δ ≥ λ(R) we easily get that for every λ1 ∈ (0, 1) there exists
A = A(p, λ1) such that

oscBλ1R
(Xlu) ≤ AoscBR

(Xlu) +BRα for every l ∈ {1, 2},

where

B =
Cpq

6
p (δ2 + μ(R0)

2)
1
2

4(1−A)Rα
0

and α =

(
1− 4

q

)
2

p
.

Proof. Since δ ≥ λ(R) we can get rid of the weight and obtain that Xlu is in a
De Giorgi class. Indeed from (4.1) we get∫

Br′

|∇Hvl|2 dx ≤ Cp

(r − r′)2

∫
Br

v2l dx+
2p−2χ

μ(R)p−2

∣∣∣A+
k,r(Xlu)

∣∣∣1− 2
q

for all levels k > −μ(R0) and radii r′ < r < R. Now if

(5.1) μ(R) ≥ χ
1
pR(1− 4

q )
2
p ,

denoting

χ′ = Cpq
12
p (δ2 + μ(R0)

2)

(
R

R0

)2(1− 4
q )

2
p

R2( 4
q−1)

we get that Xlu ∈ DG+(BR0
, Cp, χ

′, q) for all levels k > −μ(R0) and radii r′ < r <
R.

Analogously from (4.2) we get also that −Xlu ∈ DG+(BR0
, Cp, χ

′, q) for all
levels k < μ(R0) and radii r′ < r < R. Hence we can apply the oscillation estimate
in Theorem 3.5 to get for any λ1 ∈ (0, 1) the existence of A = A(p, λ1) ∈ (0, 1) such
that for every l ∈ {1, 2} we have

oscBλ1R
(Xlu) ≤ AoscBR

(Xlu) +B′R1− 4
q ,

where 4(1 − A)B′ = (χ′)
1
2 . By the definition of χ′ and combining with the case

when (5.1) does not hold, we get the result. �

We now consider the interesting case when the equation degenerates, namely
δ < λ(R). Here we face an alternative: either the maximum μ(R) has the right
‘Hölder decay’ or the horizontal gradient∇Hu is bounded away from zero, and hence
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the equation behaves like the nondegenerate case in Remark 5.1. More precisely
we have:

Proposition 5.2. Let u ∈ HW 1,p(Ω) be a weak solution of the nondegenerate
equation (1.2) for p > 4 and consider BR ⊂ BR0

2
. Then there exist θ = θ(p) ∈ (0, 1)

and A = A(p) ∈ (0, 1) such that:

Case 1. If for some l ∈ {1, 2} we have either

(5.2)

∣∣∣∣BR ∩
{
Xl ≥

1

2
μ(R)

}∣∣∣∣ ≥ θ|BR|

or

(5.3)

∣∣∣∣BR ∩
{
Xl ≤ −1

2
μ(R)

}∣∣∣∣ ≥ θ|BR|,

then

either μ(R) ≤ cpχ
1
pR(1− 4

q )
2
p or |Xlu| ≥

1

32
μ(R) a.e. in BR/2,

where cp = 2(4/3)
2
p .

Case 2. If for every l ∈ {1, 2} neither (5.2) nor (5.3) holds, then

(5.4) μ(R/2) ≤ Aμ(R) +BRα,

where

B =
Cpq

6
p

2(1−A)

μ(R0)

Rα
0

and α =

(
1− 4

q

)
2

p
.

Proof. Case 1: Consider (5.3). We will show that it implies Xlu ≤ − 1
32μ(R)

provided μ(R) ≥ cpχ
1
pR(1− 4

q )
2
p . Define the auxiliary function

Vl = |Xlu|
p
2 sign(Xlu).

Observe that |Vl| ≤ (2λ(R))
p
2 on BR. Also

(5.5) |∇HVl|2 =
p2

4
|Xlu|p−2|∇HXlu|2.

Denote h = |k| p2 sign(k) = g(k) and note that {Xl > k} = {Vl > h}. Therefore
(4.1) becomes∫

A+

h,r′(Vl)

|∇HVl|2 dx ≤ Cp

∫
Br′

w
p−2
2 |∇Hvl|2 dx

≤ Cp

(r − r′)2
(μ(r)− k)2(δ2 + μ(r)2)

p−2
2 |A+

h,r(Vl)|

+ χ|A+
h,r(Vl)|1−

2
q

≤ Cp

(r − r′)2
(λ(R))p|A+

h,r(Vl)|+ χ|A+
h,r(Vl)|1−

2
q

(5.6)

for k > −λ(R) and r′ < r ≤ R. Denoting H = H(R) = (λ(R))
p
2 the inequality

(5.6) rewrites as

(5.7)

∫
A+

h,r′(Vl)

|∇HVl|2 dx ≤ Cp

(r − r′)2
(H(R))2|A+

h,r(Vl)|+ χ|A+
h,r(Vl)|1−

2
q
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for levels h > −H(R) and radii r′ < r ≤ R. Now denote M(R2 ) = supBR/2
Vl.

Case a. M(R2 ) < −H(R)
4 .

This means Xlu < 0 in BR/2 and after some algebraic manipulations

Xlu < −μ(R)

32
on BR/2.

Case b. M(R2 ) ≥ −H(R)
4 .

For levels h ∈ [−H(R),−H(R)/2] we have supBR/2
(Vl − h)+ ≥ H(R)

4 ; therefore

(H(R))2

16
≤ sup

Br

|(Vl − h)+|2 for r ∈ [R/2, R].

Hence, from (5.7) we get that Vl ∈ DG+(BR0
, Cp, χ, q) for levels h ∈ [−H(R),

−H(R)/2] and radii r′ < r ∈ [R/2, R]. Apply Lemma 3.3 with k = −H(R), λ0 =
2

p
2 +1/2

2
p
2 +1

, λ1 = 1/2 to get the existence of θ1 = θ1(p) ∈ (0, 1) such that |A+
−H,R(Vl)|

≤ θ1|BR| implies that Vl ≤ −H(R)
2 on BR/2, provided M(R) + H(R) ≥ χ

1
2R1− 4

q .
This is true if

(5.8) μ(R) ≥ 2

(
4

3

) 2
p

χ
1
pR(1− 4

q )
2
p .

Then as in Case a, we obtain

Xlu < −μ(R)

8
in BR/2.

Observe that {Vl > −H(R)} = {Xlu > −λ(R)} = {Xlu > −μ(R)/2}. Passing to
the complements we have proved that there exists θ = 1−θ1 such that (5.3) implies
that Xlu ≤ −μ(R)/32 on BR/2, provided (5.8).

If (5.2) holds, then we proceed similarly and we get the conclusion of Case 1.

Case 2: If for the θ found in Case 1 neither (5.2) nor (5.3) holds for any l ∈ {1, 2},
then there exist 1

2 < λ1 < 1 and 0 < C0 < 1 such that

(5.9)

∣∣∣∣Bλ1R ∩
{
Xl ≥

1

2
μ(R)

}∣∣∣∣ ≤ C0|Bλ1R|

and

(5.10)

∣∣∣∣Bλ1R ∩
{
Xl ≤ −1

2
μ(R)

}∣∣∣∣ ≤ C0|Bλ1R|

are satisfied for every l ∈ {1, 2}. Considering levels k ∈ [μ(R)
2 , μ(R)], on {Xlu > k}

we have

kp−2 ≤ w
p−2
2 ≤ Cpk

p−2.

Therefore in (4.1) we can get rid of the weight:∫
Br′

|∇Hvl|2 dx ≤ C

(r − r′)2

∫
Br

v2l dx+
2p−2χ

μ(R)p−2

∣∣∣A+
k,r(Xlu)

∣∣∣1− 2
q

,

and proceeding as in Remark 5.1, if

(5.11) μ(R) ≥ χ
1
pR(1− 4

q )
2
p
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we get that Xlu ∈ DG+(BR0
, Cp, χ

′, q) for levels k ∈ [μ(R)
2 , μ(R)], radii r′ < r < R

with

χ′ = Cpq
12
p λ(R0)

2

(
R

R0

)2(1− 4
q )

2
p

R2( 4
q−1).

Apply Lemma 3.4 with λ1 and C0 as in (5.9), k = μ(R)
2 to conclude that given

θ0 ∈ (0, 1) there exists a natural number s = s(p, λ1, C0, θ0) such that either

(5.12) μ(R) ≤ 2s+1(χ′)
1
2R1− 4

q

or

(5.13) |A+
ks,λ1R

| ≤ θ|Bλ1R|,

where ks = μ(R)(1− 2−s−1).
Now in the case (5.13) we want to use Lemma 3.3 for radii r′ < r ∈ [R/2, λ1R],

k = ks = (1− 2−s−1)μ(R), λ0 = 1/2. This can be applied if

(5.14) ks < sup
Bλ1R

(Xlu).

Then we would conclude that either

Xlu ≤ 1

2
ks +

1

2
μ(λ1R) ≤

(
1− 1

2s+1

)
1

2
μ(R) +

1

2
μ(R)

= μ(R)

(
1− 1

2s+2

)
a.e. in BR

2

(5.15)

or

(5.16) sup
λ1R

(Xlu) ≤
(
1− 1

2s+1

)
μ(R) + (χ′)

1
2R1− 4

q .

If (5.14) is not true, then we get

(5.17) sup
BR/2

(Xlu) ≤ sup
λ1R

(Xlu) ≤ ks =

(
1− 1

2s+1

)
μ(R).

Repeating the same steps for −Xlu using assumption (5.10) and the estimate (4.2),
we will find the same alternatives, except instead of (5.15)-(5.17) we will have

Xlu ≥ −μ(R)

(
1− 1

2s+2

)
− (χ′)

1
2R1− 4

q a.e. in BR
2
.(5.18)

In conclusion, combining all the cases we get

μ(R/2) ≤
(
1− 1

2s+2

)
μ(R) + cpq

6
p 2s+1λ(R0)

(
R

R0

)(1− 4
q )

2
p

.

�
Now we need the following technical lemma, adapted from Lemma 7.3 in [12]:

Lemma 5.3. Let 0 < A, λ, α < 1 with A �= λα and B,R0 ≥ 0. Let ϕ : [0,+∞[−→
[0,+∞[ be an increasing function such that

(5.19) ϕ(λR) ≤ Aϕ(R) +BRα for all R ≤ R0.

Then for every R ≤ R0 we have

(5.20) ϕ(r) ≤ 1

A

( r

R

)min{logλ A,α}
[
ϕ(R) +

BRα

|A− λα|

]
for all r ≤ R.
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We finally prove Theorem 1.1.

Proof of Theorem 1.1. We prove the result for u ∈ HW 1,p(Ω), the weak solution
of the nondegenerate equation (1.2). Then we can obtain the estimate for solutions
to the degenerate equation (1.1) by an approximation argument as in [24, Theorem
5.3].

The alternatives in Proposition 5.2 can be combined in either

(5.21) μ(R/2) ≤ Aμ(R) +BRα

or

(5.22) |Xlu| ≥
1

32
μ(R) a.e. in BR/2.

In this last case we have

w
p−2
2 ≥

(
1

32

)p−2

μ(R)p−2 a.e. in BR
2
.

Since also

w
p−2
2 ≤

(
δ2 + μ(R)2

) p−2
2 ≤ Cpμ(R)p−2 in BR,

from the estimate (4.1) we get∫
Br′

|∇Hvl|2 dx ≤ C

(r − r′)2

∫
Br

v2l dx+
χ

μ(R)p−2

∣∣∣A+
k,r(Xlu)

∣∣∣1− 2
q

for every r′ < r ≤ R/2 and for every level k > −μ(R0). Now as before, if

(5.23) μ(R) ≥ χ
1
pR(1− 4

q )
2
p

we get vl ∈ DG+(BR0
, Cp, χ

′, q) for every r′ < r ≤ R/2 and for every level k >
−μ(R0). The same is true for −vl, with levels k < μ(R0), so proceeding as in the
proof of Remark 5.1, we are in the position to apply the oscillation Lemma 3.5 to
conclude there exists A = A(p) ∈ (0, 1) such that
(5.24)

oscBR/4
(Xlu) ≤ AoscBR/2

(Xlu) +BRα ≤ AoscBR
(Xlu) +BRα for all R ≤ R0

2
,

where B and α are as in Proposition 5.2.
Now apply Lemma 5.3 to (5.21) and (5.24) with λ = 1/4, and A and B as given

in (5.2). Noting that oscBr
(Xlu) ≤ 2μ(r) we can combine all the estimates, and

hence the theorem is proved with β = min{− log4(A) , α}. �

Remark 5.4. From the explicit expression of β and B we see that the estimate
blows up when q goes to infinity; hence the Hölder exponent found with this proof
satisfies the constraint 0 < β < 2

p .

6. Appendix: A proof of Lemma 2.2

We use the following estimates of Zhong [26] (see also [24], Lemmas 5.3 and 5.4).

Lemma 6.1. Let q ≥ 4 and ξ ∈ C∞
0 (Ω). Then

∫
Ω

ξq w
p−2
2 |Tu|q−2 |∇2

H
u|2 dx ≤ C

q−2
2

p (q − 1)q−2 ‖∇Hξ‖q−2
L∞

∫
Ω

ξ2w
p+q−4

2 |∇2
H
u|2 dx .

(6.1)
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Lemma 6.2. Let q ≥ 4 and ξ ∈ C∞
0 (Ω). Then∫

Ω

ξ2w
p+q−4

2 |∇2
H
u|2 dx ≤ Cp

(
‖∇Hξ‖2L∞ + ξ ‖Tξ‖L∞

)
(q − 1)10

∫
supp(ξ)

w
p+q−2

2 dx.

Lemma 6.1 follows by using φ = ξq|Tu|q−2Xiu as test functions in equations

(2.6) and (2.7), while Lemma 6.2 follows by using φ = ξ2w
q−2
2 Xiu and the estimate

in Lemma 6.1.

Proof of Lemma 2.2. Using |Tu| ≤ 2|∇2
H
u| and Lemmas 6.1 and 6.2 we have for

q ≥ 4,

∫
Ω

ξq w
p−2
2 |Tu|q dx ≤ 2

∫
Ω

ξq w
p−2
2 |Tu|q−2 |∇2

H
u|2 dx

≤ C
q−2
2

p (q − 1)q−2 ‖∇Hξ‖q−2
L∞

∫
Ω

ξ2 w
p+q−4

2 |∇2
H
u|2 dx

≤ C
q−2
q (q)q+8

(
‖∇Hξ‖2L∞ + ξ ‖Tξ‖L∞

) q
2

∫
supp(ξ)

w
p+q−2

2 dx.

(6.2)

�

Note 6.3. While working on this paper the January 2017 preprint [4] was brought
to my attention. This manuscript contains a general statement valid for all p > 2
and generalizes the regularity results proved above. The proof in [4] is based on the
proof put forward by Zhong in [26], which I have credited throughout. The proof in
this manuscript is different in the way it handles the term that is here denoted by
J5 in the proof of Proposition 4.1. In [4] additional iterations are used to control
this term, while here we use a double integration by parts and the structure of
the equation. We also point out the recent preprint [27] which addresses the case
1 < p < 2.
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