
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 7, July 2018, Pages 3097–3109
http://dx.doi.org/10.1090/proc/13967

Article electronically published on March 19, 2018

SOME NEW COMPUTABLE STRUCTURES OF HIGH RANK
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(Communicated by Mirna Džamonja)

Abstract. We give several new examples of computable structures of high
Scott rank. For earlier known computable structures of Scott rank ωCK

1 ,
the computable infinitary theory is ℵ0-categorical. Millar and Sacks asked
whether this was always the case. We answer this question by constructing
an example whose computable infinitary theory has non-isomorphic countable
models. The standard known computable structures of Scott rank ωCK

1 +
1 have infinite indiscernible sequences. We give two constructions with no
indiscernible ordered triple.

1. Introduction

Our main result answers an open problem posed by Millar and Sacks [12]. They
asked whether every computable structure of Scott rank ωCK

1 is completely de-
termined by the computable sentences it satisfies. We give a negative answer by
building a computable structure of Scott rank ωCK

1 whose computable infinitary
theory is not ℵ0-categorical. This is a new model of high Scott rank which is
fundamentally different from all previously constructed models.

The Scott rank of a structure measures the internal complexity. We give one
definition below. There are other definitions, which assign slightly different ordinals,
but the important distinctions are the same for all definitions in current use. In
particular, if one definition assigns Scott rank ωCK

1 + 1 or ωCK
1 to a particular

computable structure, then the other definitions do the same.
Let A be a countable structure for a computable language. Our definition of

Scott rank is based on a family of equivalence relations ∼α, for countable ordinals α.
Scott’s original definition [14] was based on a slightly different family of equivalence
relations.

Definition 1.1. Let ā and b̄ be tuples in A of the same finite length. Then

(1) ā ∼0 b̄ if ā and b̄ satisfy the same atomic formulas.
(2) For α > 0, ā ∼α b̄ if:

• for each β < α and c̄, there exists d̄ such that ā, c̄ ∼β b̄, d̄, and
• for each β < α and d̄, there exists c̄ such that ā, c̄ ∼β b̄, d̄.

For later use, we extend the definition ∼α to allow tuples from different struc-
tures.
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Definition 1.2. Let A and B be structures for the same language, and let ā and
b̄ be tuples of the same length in A, B, respectively.

(1) (A, ā) ∼0 (B, b̄) if ā and b̄ satisfy the same atomic formulas in their respec-
tive structures.

(2) For α > 0, (A, ā) ∼α (B, b̄) if:
• for each β < α and c̄ in A, there exists d̄ in B such that (A, ā, c̄) ∼β

(B, b̄, d̄), and
• for each β < α and d̄ in B, there exists c̄ in A such that (A, ā, c̄) ∼β

(B, b̄, d̄).

Remark. If (A, ā) ∼α (B, b̄), then for any Σα formula ϕ(x̄) of Lω1ω, A |= ϕ(ā) iff
B |= ϕ(b̄).

We define Scott rank, first for a tuple in a structure A, and then for the structure
itself.

Definition 1.3.

(1) The Scott rank of a tuple ā is the least α such that for all b̄, if ā ∼α b̄, then
for all γ > α, ā ∼γ b̄.

(2) The Scott rank of the structure A is the least ordinal greater than the Scott
ranks of all tuples in A.

Nadel [13] observed that for a computable structure A, two tuples are automor-
phic just in case they satisfy the same computable infinitary formulas. This implies
that the Scott rank of A is at most ωCK

1 + 1. The following is well-known.

Fact. Let A be a computable structure.

(1) A has computable Scott rank iff there is a computable ordinal α such that
for all tuples ā in A, the orbit of ā is defined by a computable Σα formula.

(2) A has Scott rank ωCK
1 iff for each tuple ā, the orbit is defined by a com-

putable infinitary formula, but for each computable ordinal α, there is a
tuple ā whose orbit is not defined by a computable Σα formula.

(3) A has Scott rank ωCK
1 + 1 iff there is a tuple ā whose orbit is not defined

by a computable infinitary formula.

There are familiar examples of computable structures having various computable
ordinal ranks. The canonical example of a computable structure of Scott rank
ωCK
1 + 1 is the Harrison ordering, a linear order with order type ωCK

1 (1 + η) (see
[5]). Producing a computable structure of Scott rank ωCK

1 took longer. Makkai
gave an example of an arithmetical structure of Scott rank ωCK

1 [11], a “group-
tree”. In [10], Makkai’s construction is re-worked to give a computable structure.
In [2], there is a simpler example, a computable tree of Scott rank ωCK

1 . In [1], the
tree is used to produce further structures in familiar classes—a field, a group, etc.1

These examples of computable structures of Scott rank ωCK
1 all have the feature

that the computable infinitary theory is ℵ0-categorical. The conjunction of the
sentences in the computable infinitary theory forms a Scott sentence. In [12], Millar
and Sacks produced a structure A of Scott rank ωCK

1 such that the computable
infinitary theory of A is not ℵ0-categorical. The structure A is not computable;

1Although [10] was not published until 2011, it was written before [2], which was published in
2006, and [1], which was published in 2009.
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it is not even hyperarithmetical, but it has the feature that ωA
1 = ωCK

1 . This means
that A lives in a fattening of the admissible set LωCK

1
.

In [12], Millar and Sacks asked whether there is a computable structure of Scott
rank ωCK

1 whose computable infinitary theory is not ℵ0-categorical. The question is
asked again in [1]. Millar and Sacks also asked whether there are similar examples
for other countable admissible ordinals. In [4], Freer proved the analog of the result
of Millar and Sacks, producing, for an arbitrary countable admissible ordinal α, a
structure A with ωA

1 = α, such that the theory of A in the admissible fragment
Lα is not ℵ0-categorical. Freer’s structure is not in Lα, but in a fattening of Lα.
The main result of the present paper is an answer to the question of Millar and
Sacks mentioned above: there is a computable structure of Scott rank ωCK

1 whose
computable infinitary theory is not ℵ0-categorical. The construction appears in
Section 2. The essential idea of the construction is that the types over the model
we build will encode ascending sequences through the Harrison linear order, but
this coding will be “hidden” in the sense that the coding of an element a from the
Harrison linear order, where a is identified with an ordinal α, will require on the
order of α jumps. The non-principal type will be the type of a sequence that is
cofinal in the well-founded part of the Harrison linear order.

By an “indiscernible sequence”, we mean an infinite sequence that is indiscernible
for Lω1ω formulas.

Definition 1.4. Fix a structure A. An indiscernible sequence in A is a sequence
(ai)i∈ω of elements of A such that any two finite subsequences ai1 , . . . , ain and
bj1 , . . . , bjn (with i1 < i2 < · · · < in and j1 < j2 < · · · < jn) satisfy the same Lω1ω

formulas.

The Harrison ordering obviously has an infinite indiscernible sequence. Other
examples of computable structures of Scott rank ωCK

1 + 1 share this feature. Gon-
charov and Knight (unpublished) asked whether every computable structure of
Scott rank ωCK

1 + 1 has an infinite indiscernible sequence. At the same time, they
also noticed that the structures of Scott rank ωCK

1 constructed by Makkai [11] and
Knight and Millar [10] did not have an infinite indiscernible sequence.

In Section 3, we describe two constructions producing computable structures
of Scott rank ωCK

1 + 1 with not even an indiscernible ordered triple. The first is
produced by taking a Fräıssé limit with infinitely many infinite equivalence classes
and putting the structure of the Harrison ordering on the equivalence classes. Al-
though this structure has no indiscernible triples, it is effectively bi-interpretable
with the Harrison ordering [6], and hence it has an infinite indiscernible sequence
of imaginaries.

The second example is a modified version of Makkai’s construction [11]. Makkai
gave a “computable operator” taking an input tree T to a group-tree A(T )—the
group-tree A(T ) is computable uniformly in the input tree T . The structure A(T )
is built by putting a group structure on each level of the tree (the language of the
structure A(T ) does not include the group operation, but, instead, has a collection
of unary functions). Makkai constructed a Δ0

2 “thin” tree T such that A(T ) had
Scott rank ωCK

1 . Knight and Millar [10] modified the construction to make the
input tree (and hence the output group-tree) computable. All of the elements of
A(T ) are definable from a collection of parameters gn, one at each level. Hence,
A(T ) does not have an indiscernible ordered triple. We will show that if our input
tree T is the sequence of descending sequences in the Harrison ordering, then the
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resulting group-tree A(T ) has Scott rank ωCK
1 + 1, but it still does not have an

indiscernible triple (or even an indiscernible triple of imaginaries).

2. A structure of Scott rank ωCK
1 whose infinitary theory

is not ℵ0-categorical

In this section, our goal is to prove the following.

Theorem 2.1. There is a computable structure M with Scott rank ωCK
1 such that

the computable infinitary theory of M is not ℵ0-categorical.

We will use some material on trees from [2]. The trees are isomorphic to subtrees
of ω<ω. We use a language with a successor relation. Here are the facts that we
need. There is a computable tree T ∗ of Scott rank ωCK

1 . In addition, for a fixed Π1
1

path P through O, there is a family of approximating trees (T a)a∈P of computable
Scott rank. For a ∈ P such that |a| = α, T a has tree rank at most ω(α + 1), and
T ∗ ∼α T a. The family (T a)a∈P is computable uniformly in a, and the tree ranks
of the nodes of T a are also computable, uniformly in a, in the sense that we can
effectively label the nodes of T a by pairs (b, n), where σ ∈ T a has label (b, n) for
b ∈ P just in case σ has tree rank ω · β + n for |b| = β. The tree T ∗ and the
approximations T a are all “rank-homogeneous”.

The computable structure M we build to prove the theorem will essentially be of
the following form. We will identify the well-founded part of the Harrison ordering
with a path P through O, so that we can assign to each element a of the Harrison
ordering a tree T a (with T a = T ∗ if a is in the non-well-founded part of O). The
elements of M will represent finite ascending sequences in the Harrison ordering.
Fix an element x of M representing the finite ascending sequence σ. For each
finite ascending sequence τ through the Harrison ordering, with last element a, we
will code whether or not τ � σ. If τ � σ, we will attach a copy of T a to x in
a certain way, and if not, then we will attach a copy of T ∗ to x; this will be the
only way in which x codes σ. Note that if a is not in the well-founded part of
the Harrison ordering, then T a = T ∗ and so there is no distinction made. If a is
in the well-founded part of the Harrison ordering, say corresponding to an ordinal
α, then we will have T a ∼α T ∗, and so if α is large, it is difficult to tell whether
τ � σ. In a computable model, no element x can represent an infinite ascending
sequence σ which is cofinal in the well-founded part of the Harrison ordering. On
the other hand, one can see by a compactness argument that the infinitary theory
cannot forbid such a sequence, as with computable formulas of bounded rank one
cannot tell the difference between T a and T ∗ for large enough a in the standard
part of the Harrison ordering. So this gives a non-principal type which is omitted
from M. Since there is a model realizing this type, the infinitary theory of M is
not ℵ0-categorical.

Definition 2.2. A tree T is rank-homogeneous provided that for each node x at
level n, if x has tree rank α and there is a node at level n + 1 (not necessarily a
successor of x) of tree rank β < α, then x has infinitely many successors of tree
rank β. Also, for each node x at level n, if x has infinite rank, then it has infinitely
many successors of infinite rank, in addition to infinitely many of each ordinal rank
β that occurs at level n+ 1.

A rank-homogeneous tree can be completely described by saying which ordinal
ranks appear at each level. Moreover, the following definition and lemma show
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how this is stratified: to describe a rank-homogeneous tree up to the αth level of
back-and-forth relations, one needs to say which ordinal ranks ≤ α appear at each
level.

Definition 2.3. For rank-homogeneous trees A and B, with ā in A and b̄ in B, we
write (A, ā) ≈α (B, b̄) provided that

(1) for all n, the tree ranks less than ωα of nodes at level n are the same in A
and B,

(2) the subtree of A “generated” by ā (by closing under predecessors) is iso-
morphic to the subtree of B generated by b̄, with an isomorphism taking ā
to b̄,

(3) for corresponding elements x in the subtree of A generated by ā and x′ in
the subtree of B generated by b̄, either the tree ranks of x and x′ match or
else both are at least ω · α.

Lemma 2.4. Let A and B each be one of our trees T ∗ or T a. If (A, ā) ≈α

(B, b̄), then (A, ā) ∼α (B, b̄).
Proof. The statement is clear for α = 0. Also, if α is a limit ordinal and the
statement holds for all β < α, then it holds for α. Supposing that it holds for α,
we prove it for α+1. For simplicity, suppose that ā and b̄ are subtrees. Let a be an
element of ā that has a new successor c at the top of a finite subtree c̄. Let b be the
element corresponding to a. We need d and d̄ matching c and c̄. If the tree ranks
of a and b match and are less than ω(α+ 1), then we can choose d and d̄ with tree
ranks matching the corresponding elements of c and c̄. If the tree ranks of a and b
are at least ω(α+1) and the tree rank of c and the elements of c̄ are at least ω ·α,
then we choose d and d̄ also with tree ranks at least ω ·α. We can choose d of rank
ω · α+ n for n sufficiently large to leave room for choosing the rest of d̄. If some of
the elements of c̄ have tree ranks less than ω · α, then we choose the corresponding
elements of d̄ with matching tree ranks. �

Given a, we can effectively find a Scott sentence for T a. We give the tree rank
of the top node, and for each n, we say what are the tree ranks of nodes at level n.
Finally, we say that the tree is “rank-homogeneous”; i.e., for all x at level n of tree
rank β and all γ < β such that there is a node of tree rank γ at level n+ 1, x has
infinitely many successors of tree rank γ. This is effective since we have, uniformly
in a, a function giving the ranks of the nodes of T a.

We want a computable copy (U,<U , SU ) of the Harrison ordering with the suc-
cessor relation, with a family of trees (Tu)u∈U , uniformly computable in u, such
that if pred(u) has order type α with notation a ∈ P , then Tu

∼= T a, and if pred(u)
is not well-ordered, then Tu

∼= T ∗.

Lemma 2.5. There is a computable structure A with universe the union of disjoint
sets U and V , with an ordering < of type ωCK

1 (1+η) and successor relation S on U
and with a function Q from V to U such that for each u ∈ U , Q−1(u) is an infinite
set, with a tree structure Tu. If pred(u) has order type α with notation a ∈ P , then
Tu

∼= T a. If pred(u) is not well-ordered, then Tu
∼= T ∗.

Proof. To prove the lemma, we use Barwise-Kreisel Compactness. Let Γ be a Π1
1

set of computable infinitary sentences in the language of A saying that U and V are
disjoint, U is linearly ordered by <U , SU is the successor relation on the ordering,
Q maps V onto U such that for each u ∈ U , Q−1(u) is infinite, and ST is the union
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of successor relations putting a tree structure Tu on the set Q−1(u), with further
axioms guaranteeing the following:

(1) for each computable ordinal α, the ordering (U,<U ) has an initial segment
of type α,

(2) for each computable ordinal α, each u ∈ U is the left endpoint of an interval
of type ωα,

(3) the ordering (U,<U ) has no infinite hyperarithmetical decreasing sequence,
(4) for each u ∈ U , if pred(u) has order type α, where a ∈ P is the notation

for α, then Tu
∼= T a,

(5) for a computable ordinal α, if u <U v, where pred(u) has order type α,
then Tu and Tv satisfy the same computable Σα sentences.

For a hyperarithmetical set Γ′ ⊆ Γ, there is a computable ordinal γ bounding the
ordinals α corresponding to sentences in Γ′ of types (1), (2), (4), and (5). Then we
get a model of Γ′ as follows. We fix computable sets U and V in advance. Let c be
the notation for γ in P . Since <O −pred(c) is c.e., we have a computable function
f from U 1 − 1 onto <O −pred(c). For x, y ∈ U , x <U y iff f(x) <O f(y). Let
SU (x, y) iff f(y) = 2f(x). If f(x) = a, then Tx

∼= T a. Since every hyperarithmetical
subset of Γ has a model, the whole set does. In this model, (U,<U ) has order
type ωCK

1 (1 + η). For u ∈ U such that pred(u) is not well-ordered, Tu satisfies
the computable infinitary sentences true in T ∗. Since Tu is computable, it must be
isomorphic to T ∗. �

Lemma 2.6. Let I be the well-ordered initial segment of U of order type ωCK
1 .

There is a uniformly computable sequence (Rn)n∈ω of infinite subsets of U with the
following properties:

(1) R0 contains some element of I,
(2) for each n, there exists u ∈ I that is an upper bound on Rn ∩ I,
(3) for each u ∈ Rn, u+ 1 ∈ Rn+1,
(4)

⋃
n Rn is unbounded in the well-ordered initial segment of U .

Proof. Fix u0 /∈ I, u1 ∈ I. Let R0 consist of all elements of u ≥ u0, plus u1. Given
Rm for m ≤ n, let Rn+1 consist of the successors in U of each u ∈ Rn, plus the
ω-first element of U not in

⋃
m≤nRm. �

Let T be the tree of finite sequences (u1, . . . , un) that are increasing in (U,<U ),
with un ∈ Rn. We define a function H that takes each non-empty sequence σ ∈ T
to its last term un. This function is obviously computable. We are about to
describe the structure M. The language includes unary predicates A and B, a
binary relation S, and for each τ ∈ T , a binary relation Cτ . In M, we will interpret
A and B as disjoint sets. We will think of Cτ as associating to each x ∈ A a subset
T(τ,x) of B, where for distinct pairs (τ, x) and (τ ′, x′), the sets T(τ,x) and T(τ ′,x′)

are disjoint. The relation S will be interpreted as a successor relation that puts a
tree structure on each set T(τ,x).

For the structure M, we let AM consist of (codes for) the elements of T . For
each σ ∈ A and τ ∈ T , we define SM so that

T(τ,σ)
∼=

{
Tu if τ � σ & H(τ ) = u,
T ∗ if τ �� σ.
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The structure M is computable. We note that for u ∈ T , if pred(u) is well-
ordered, then Tu is isomorphic to the appropriate T a, while if pred(u) is not well-
ordered, then Tu is isomorphic to T ∗.

To show that the computable infinitary theory of M is not ℵ0-categorical, we
produce a second model N , not isomorphic to M. We want a path through T with
special features.

Lemma 2.7. There is a path π through T such that for all n, π(n) ∈ Rn and
ran(π) is cofinal in I.

Proof. Let (un)n∈ω be a list of the elements of I. Let π(0) ∈ R0 ∩ I. Given π(n),
take the first k such that uk > π(n). We choose π(n+ 1) to be some v > π(n) in
Rn+1 ∩ I. If possible, we take v ≥ uk. Since I is cofinal in

⋃
n Rn, there is some m

such that Rm ∩ I has an element v ≥ uk, and then the same is true for all m′ ≥ m.
So, for each k, we will come to m such that we can choose π(m) ≥ uk. �

Let N be the extension of M with an additional element of AN representing the
path π. We define SN on T(τ,π) so that

T(τ,π)
∼=

{
Tu if H(τ ) = u and τ � π,
T ∗ otherwise.

Lemma 2.8. M and N are not isomorphic.

Proof. For a fixed σ ∈ T , there are only finitely many τ such that τ � σ. In M,
for a fixed σ, all but finitely many of the trees T(τ,σ) are isomorphic to T ∗. On
the other hand, in N , there are infinitely many initial segments τ of π with T(τ,π)

isomorphic to some Tu � T ∗. Thus, no element ofM can be mapped isomorphically
to π ∈ N . �

Definition 2.9. We write A �∞ B if for any computable infinitary formula ϕ(x̄)
and any ā in A, A |= ϕ(ā) iff B |= ϕ(ā).

To show that N satisfies the computable infinitary theory of M, we show that
M �∞ N . For this, it is enough to show that for any computable ordinal α and
any tuple ā ∈ M, (M, ā) ∼α (N , ā).

Lemma 2.10. Let A and B be structures, each isomorphic to one of M or N . Let
ā = (a1, . . . , an) be a tuple in A, and let b̄ = (b1, . . . , bn) be a tuple in B of the same
length. Suppose that:

(1) ā and b̄ satisfy the same atomic formulas,
(2) for each ai and the corresponding bi in the predicate A (and with u being

the element of U with pred(u) having order type α), for each n, if one of
ai(n) or bi(n) is defined and ≤U u, then ai(n) = bi(n), and

(3) for each ai and corresponding bi, both in A, and for each τ ∈ T , we have
(T(τ,ai), c̄) ∼α (T(τ,bi), d̄), where c̄ consists of the elements from ā that are

in T(τ,ai) and d̄ consists of the corresponding elements from b̄.

(We assume that for each element a of the tuple ā that is in the predicate B, the
corresponding element a′ of the predicate A with a ∈ T(τ,a′) is also present in the

tuple ā. We make a similar assumption about b̄.) Then (A, ā) ∼α (B, b̄).

Note that if ā and b̄ both consist solely of elements from the predicate A, then
(1) and (2) imply (3).
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Proof. We argue by induction on α. Suppose that ā and b̄ satisfy the conditions
above for α. Given β < α and ā′ a tuple in A, we will find a tuple b̄′ in B such
that ā, ā′ and b̄, b̄′ satisfy the conditions above for β. It suffices to assume about ā′

that for each element a of the tuple ā′ that is in the predicate B, the corresponding
element a′ of the predicate A with a ∈ T(τ,a′) is present in the tuple ā, ā′.

First, for each a′i ∈ A, we choose b′i such that for all τ ∈ T , T(τ,a′
i)
∼α T(τ,b′i)

. If

a′i ∈ T , then we choose b′i = a′i, if possible. However, it may be that a′i is already in
b̄. So, instead, let n be the length of a′i, and choose b′i = a′iˆ〈v〉 for some sufficiently
large v ∈ Rn with pred(v) ill-founded. For each τ , if τ � a′i, then τ � b′i, so that
T(τ,a′

i)
∼= Tu

∼= T(τ,b′i)
for some u. If τ � a′i, then either τ � b′i or τ = b′i (whence

H(τ ) = v). Either way, T(τ,a′
i)
∼= T ∗ ∼= T(τ,b′i)

by choice of v.

If, instead, a′i = π, let u ∈ U be such that pred(u) is well-founded with order
type α. Let σ be the initial segment of π consisting of all of the entries v of π
with v ≤U u. Let b′i be a code for σˆ〈v〉 for some v ∈ Rn with pred(v) ill-founded,
which is sufficiently large that b′i codes a new element. Then for all τ � σ, we
have τ � π and so T(τ,a′

i)
∼= T(τ,b′i)

. For all τ � σ, either τ � π, in which case
T(τ,a′

i)
∼= T ∗ ∼= T(τ,b′i)

, or τ � π, in which case T(τ,a′
i)

∼= Tv ∼α T ∗ ∼= T(τ,b′i)
for

some v >U u. In this manner, we may reduce to the case where ā′i contains only
elements of the predicate B.

For each element a from ā in the predicate A, let b be the corresponding element
from b̄. Fix τ ∈ T . Let c̄ consist of the elements from ā, and let c̄′ consist of the
elements from ā′ that are in T(τ,a). Similarly, let d̄ consist of the elements from

b̄ that are in T(τ,b). By assumption, (T(τ,a), c̄) ∼α (T(τ,b), d̄). Thus, there is d̄′

such that (T(τ,a), c̄, c̄
′) ∼β (T(τ,b), d̄, d̄

′). The tuple b̄′ consists of the elements of the

tuples d̄′ for each a and τ . �

Lemma 2.11. Let M �∞ N .

Proof. Let ā be a tuple in M. Then by the previous lemma, (M, ā) ∼α (N , ā). It
follows that for any Σα formula ϕ(x̄), if M |= ϕ(ā), then N |= ϕ(ā). This proves
the lemma. �

Lemma 2.12. M has Scott rank ωCK
1 .

Proof. First, note that there is an automorphism of M taking σ1 ∈ A to σ2 ∈ A if
and only if for each τ ∈ T , T(τ,σ1) is isomorphic to T(τ,σ2). This is the case if and
only if for each n, if pred(σ1(n)) or pred(σ2(n)) is well-founded, then σ1(n) = σ2(n).

Fix σ ∈ A. We define the orbit of σ by saying, for the finitely many τ � σ with
H(τ ) = u and pred(u) well-founded, that T(τ,σ) is isomorphic to Tu, and for each
other τ , that T(τ,σ)

∼= T ∗. We can express the former by a computable formula
using the Scott sentences of the Tu. For the latter, note that it suffices to say
that T(τ,σ) is isomorphic to T ∗ for only those τ of length at most n + 1, where
n is the length of σ. We cannot express this directly by a computable infinitary
formula, but there is a computable infinitary formula that is satisfied in M exactly
by such elements of A. Let α < ωCK

1 be large enough that for all elements v of
R0, . . . , Rn with pred(v) well-founded (recalling that such v are not cofinal in the
initial segment of U of order type ωCK

1 ), Tv �α T ∗. Then, for τ of length at most
n+ 1, T(τ,σ) is isomorphic to T ∗ if and only if T(τ,σ) ∼α T ∗. This can be expressed
by a computable infinitary formula.
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The Scott rank of a tuple b̄ in T(τ,σ) is not greater than the Scott rank of b̄ in

M. Therefore, the Scott rank of M is at least ωCK
1 , since there are many τ and

σ such that Tτ,σ is isomorphic to T ∗, which has Scott rank ωCK
1 . The Scott rank

of M is at most ωCK
1 , since we can define the orbit of any tuple by a computable

infinitary formula. For a tuple ū, v̄ in M, where ū ∈ A and v̄ ∈ B, we can define
the orbit as follows: for each element σ ∈ A in the tuple ū, we give a definition as
above, and if b̄ is the part of the tuple v̄ in a particular tree T(τ,σ), then we say

what the orbit of b̄ is in T(τ,σ). Here we use the fact that each of the trees T(τ,σ)

itself has Scott rank at most ωCK
1 . �

3. A structure of Scott rank ωCK
1 + 1 without indiscernibles

We begin this section by proving the following:

Theorem 3.1. There is a computable structure of Scott rank ωCK
1 + 1 with no

indiscernible ordered triple.

As our structure will be a Fräıssé limit, we begin by recalling some of the def-
initions and results required. Recall that the age of a structure is the class K of
finitely generated substructures. If K is the age of a structure, then it satisfies the
following two conditions:

Hereditary property (HP): If A ∈ K and B is a finitely generated sub-
structure of A, then B ∈ K.

Joint embedding property (JEP): If A and B are in K, then there is C
in K such that both A and B embed in C.

Fräıssé showed that the converse is true: any non-empty countable set K of finitely
generated structures satisfying these two conditions is the age of a countable struc-
ture. Moreover, suppose that K further satisfies the following condition:

Amalgamation property (AP): For any structures A, B1, and B2 in K
and embeddings i1 and i2 of A into B1 and B2 respectively, there is a
structure C in K and embeddings j1 and j2 of B1 and B2 into C so that the
images j1 ◦ i1(A) and j2 ◦ i2(A) coincide.

In this case, there is a unique homogeneous countable structure whose age is K,
where by homogeneous we mean that any isomorphism between countable substruc-
tures extends to an automorphism of the whole structure. We call this homogeneous
structure the Fräıssé limit of the class K.

For a discussion of Fräıssé limits from the point of view of computability, see [3].
In that paper it is shown that if a class K of finite structures satisfies the HP , the
JEP , and the AP , then there is a computable presentation of the Fräıssé limit. (If
the structures are not finite, then we need computable versions of the JEP and
the AP .) We note that Henson [7] gave an example of a homogeneous triangle-free
graph.

Proof of Theorem 3.1. We define a class K of finite structures with signature con-
sisting of binary relations E and (Ci)i∈ω. We view the relations Ci as “colors”
(in the sense of Ramsey theory) with which we color (unordered) pairs of vertices.
A finite structure A will be in K if E is an equivalence relation, the Ci color the
unordered pairs of vertices (i.e., xCiy if and only if yCix) with exactly one color
per edge, and there are no monochromatic triangles ; i.e., there are no i ∈ ω and
x, y, z ∈ A with xCiy, yCiz, and zCix.
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Claim 1. K satisfies the hereditary property (HP ), amalgamation property (AP ),
and the joint embedding property (JEP ).

Proof of Claim 1. The HP is clear. To see that K has the AP , suppose that
A ⊆ B, C are structures in K. We define a structure D ∈ K extending B and C.
We can extend the equivalence relation to D. Since there are only finitely many
elements of A and B, only finitely many colors have been used so far. To color
edges (x, y), where x ∈ B −A and y ∈ C −A, simply choose i that has not colored
any edge yet, and color (x, y) with i. This cannot introduce any monochromatic
triangles. A similar argument, omitting A, shows that K has the JEP . �

Note that we can effectively list the structures of K. Thus, K has a computable
Fräıssé limit M, and M has, as its Scott sentence, a computable infinitary sentence
ϕ. Models of ϕ have infinitely many equivalence classes, all of which have infinitely
many elements. Now, let N be an expansion of M with a linear order ≤ of order
type ωCK

1 (1+η) on the equivalence classes. The structureN has a computable copy,
since we can find an effective labeling of the equivalence classes by elements of ω and
use the Harrison ordering. Let R : A → ωCK

1 (1+η) be the resulting effective order-
preserving map, which respects equivalence classes and which induces a bijection
between the equivalence classes and elements of ωCK

1 (1 + η).

Claim 2. For α ≥ 1 and tuples x̄, ȳ in N , x̄ ∼α ȳ in N if and only if R(x̄) ∼α R(ȳ)
in ωCK

1 (1 + η) and x̄ ≡at ȳ, where x̄ ≡at ȳ if x̄ and ȳ satisfy the same atomic
formulas in N .

Proof of Claim 2. Suppose that R(x̄) ∼α R(ȳ) and x̄ ≡at ȳ. Then we will show
that x̄ ∼α ȳ. Take β < α and x̄′ a new tuple of elements. Then there is ā in
ωCK
1 (1 + η) such that R(x̄)R(x̄′) ∼β R(ȳ)ā. Choose z̄ such that R(z̄) = ā. Let ȳ′

be a tuple of new symbols of the same length as z̄. Consider the finite structure, in
the signature of K, defined on the elements ȳ, ȳ′, z̄ as follows. The relations E and
Ci are defined on ȳ and z̄ as in N . We set y′iEzi, and the equivalence classes are
completely determined by this. Define yiCky

′
j if and only if xiCkx

′
j (and y′iCky

′
j if

and only if x′
iCkx

′
j). There are no monochromatic triangles among ȳ, ȳ′, or among

ȳ, z̄. Since we have only used finitely many colors so far, we can color the remaining
pairs so that there are no monochromatic triangles.

The finite structure we have defined is in the class K, so we can find a realization
of ȳ′ in N . Then R(ȳ′) = ā, so that R(x̄), R(x̄′) ∼β R(ȳ), R(ȳ′). Also, x̄, x̄′ ≡at

ȳ, ȳ′. Thus, x̄, x̄′ ∼β ȳ, ȳ′ by the inductive hypothesis (or, for β = 0, because
x̄, x̄′ ∼β ȳ, ȳ′). So, we have shown that x̄ ∼α ȳ. On the other hand, if x̄ �≡at ȳ,
then it is immediate that x̄ �α ȳ. If R(x̄) �α R(ȳ), then it is not hard to see that
x̄ �α ȳ. �

Claim 3. Let SR(N ) = ωCK
1 + 1.

Proof of Claim 3. Let x ∈ N be such that R(x) is in the ill-founded part of
ωCK
1 (1 + η). We claim that SR(x) = ωCK

1 . Fix α < ωCK
1 . Let y be such that

pred(R(y)) is well-founded and R(x) ∼α R(y). Now, there is no automorphism
of the Harrison ordering taking R(y) to R(x), so there is no automorphism of N
taking y to x. Thus, x and y are in different automorphism orbits. Since x and y
are singletons, x ≡at y. Thus, by the previous claim, x ∼α y. Since α was arbitrary,
SR(x) = ωCK

1 , completing the proof of the claim. �
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Claim 4. N has no indiscernible ordered triple.

Proof of Claim 4. It suffices to show that no three singleton elements are order in-
discernible. Given x, y, and z, let i be such that xCiy. Since N has no monochro-
matic triangles, it cannot be the case that yCiz and xCiz. Thus x, y, and z are
not indiscernible. �

This completes the proof of Theorem 3.1. �

Note that this construction is, in some sense, cheating. The structure N is effec-
tively bi-interpretable with the Harrison ordering (see [6]): the Harrison ordering
lives inside N as the definable quotient modulo the definable equivalence relation
E. The indiscernible sequence of the Harrison ordering becomes an indiscernible
sequence of imaginaries in N .

Definition 3.2. Fix a structure A. An indiscernible sequence of imaginaries of
A is a sequence (Ei)i∈ω of equivalence classes of A, modulo some Lω1ω-definable
equivalence relation, such that for any two finite subsequences Ei1 , . . . , Ein and
Ej1 , . . . , Ejn (with i1 < i2 < · · · < in and j1 < j2 < · · · < jn) there is an automor-
phism of A mapping Eik to Ejk .

Proposition 3.3. Let N be the structure from Theorem 3.1. Then N has an
indiscernible sequence of imaginaries.

Proof. The map R defined just before Claim 2 above induced a bijection between
the E-equivalence classes and the elements of ωCK

1 (1 + η). We claim that each au-
tomorphism of ωCK

1 (1+η) induces an automorphism of N . Then, since ωCK
1 (1+η)

has an indiscernible sequence, N will have an indiscernible sequence of imaginar-
ies, namely the E-equivalence classes in bijection to the indiscernible sequence of
ωCK
1 (1 + η).
It suffices to see that in the Fräıssé limit M, any permutation π of the E-

equivalence classes extends to an automorphism of M. Let ā and b̄ be tuples of
elements of M of the same length satisfying the same atomic formulas, and such
that if ai is in the jth equivalence class, then bi is in the π(j)th equivalence class.
Let c be an additional element of M. We can find an element d of M such that
d is in the π(j)th equivalence class (if c was in the jth equivalence class) and
such that b̄, d is colored in the same way as ā, c. We can do this since ā, c has no
monochromatic triangles. This lets us construct the desired automorphism using a
back-and-forth construction. �

A construction similar to that of Theorem 3.1 allows us to turn any structure
M into a structure M∗ that is effectively bi-interpretable with M, but has no
indiscernible triples. Two structures which are effectively bi-interpretable have
many of the same computability-theoretic properties; for example, they have the
same computable dimension (see [8]). In light of this, we want not just a structure
M with Scott rank ωCK

1 + 1 and no indiscernible sequence, but a structure M
with Scott rank ωCK

1 +1 and no indiscernible sequence of imaginaries. To produce
such a structure, we use a construction originally due to Makkai [11] and refined
by Knight and Millar [10] (see also [9]). Makkai used this construction to produce
an arithmetical structure of Scott rank ωCK

1 , and Knight and Millar used it to give
the first example of a computable structure of Scott rank ωCK

1 .
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Let T ⊆ ω<ω be a tree. We will define a new structure A(T ). Let Tn be the
set of nodes at the nth level of T . For each n, we define Gn = P<ω(Tn) to be the
collection of finite subsets of Tn. Now, Gn forms an abelian group under symmetric
difference Δ. The identity element of Gn is the empty set, which we denote by idn.
Let G =

⋃
n Gn. The tree structure on T induces a tree structure on G, which we

will define using a predecessor relation p. Given a ∈ Gn+1, write a = {t1, . . . , tn}.
Then set p(a) to be the sum of the predecessors of t1, . . . , tn. An element t∗ is in p(a)
if and only if the number of successors of t∗ in a is odd. We have p(idn+1) = idn.
Note that p is a homomorphism from Gn+1 to Gn. For each a ∈ G, we will define a
unary function fa. If a ∈ Gm and b ∈ Gn, let k = min(m,n). Let a∗ and b∗ be the
p-predecessors of a and b that are in Gk: a

∗ = pm−k(a) and b∗ = pn−k(b). Then set
fa(b) = a∗Δb∗, noting that fa(b) = fb(a). Let A(T ) be the structure (T, (fa)a∈G).

We note the following facts from [10]. Since a ∈ Gn if and only if fidn
(a) = a and

for all m < n, fidm(a) �= a, Gn is preserved under automorphisms of A(T ). Also,
p is preserved under automorphisms as for a ∈ Gn+1 and b ∈ Gn, p(a) = b if and
only if fidn

(a) = b. Finally, for any a ∈ Gn, a = fa(idn), and so any automorphism
of A(T ) is determined by the images of the elements idn.

Lemma 3.4 (Lemma 3.3 of [10]). Let a ∈ Gn, with a �= idn. Then the tree rank of
a is the minimum of the tree ranks of t for t ∈ a.

Lemma 3.5 (Lemma 3.6 of [10]). For a ∈ Gn, a ≡β idn if and only if the tree rank
of a is at least ω · β.
Theorem 3.6 (Theorem 3.7 and Lemma 4.3 of [10]). There is a computable tree
T such that SR(A(T )) = ωCK

1 .

Lemma 3.7. Let T be a tree. Then A(T ) does not have an indiscernible ordered
triple of imaginaries.

Proof. Suppose to the contrary that there is a definable equivalence relation with
three equivalence classes E1, E2, and E3 that form an indiscernible triple. Fix
a ∈ E1. Let n be such that a ∈ Gn. There are automorphisms of A(T ), one taking
E1 to E2, and one taking E1 to E3. So, E2 and E3 both contain elements of Gn.
Let g be an automorphism of A(T ) fixing E1. Then for each b ∈ Gn, b = fbΔa(a),
and so g(b) = fbΔa(g(a)). Hence, the action of g on Gn is entirely determined by
where g sends a. Thus, there cannot be two automorphisms of A(T ), one fixing
E1, E2, and E3 and the other fixing E1 and mapping E2 to E3. This contradicts
the order-indiscerniblity of E1, E2, and E3. �
Theorem 3.8. There is a computable tree T such that A(T ) has Scott rank ωCK

1 +1.

Proof. Let T be the tree of finite decreasing sequences in the Harrison ordering.
We claim that A(T ) has Scott rank ωCK

1 + 1. Note that at each level of T , there
are elements of every computable tree rank, and there are elements with infinite
tree rank. Let G be the tree defined from T as above. Then by Lemma 3.4, at each
level of G, there are elements of every computable tree rank, and there are elements
with infinite tree rank. Fix n. Given β < ωCK

1 , there is a ∈ Gn with computable
tree rank at least ω · β. By Lemma 3.5, a ≡β idn, but a �≡γ idn for some γ > β.
Hence SR(idn) = ωCK

1 . It follows that SR(A(T )) = ωCK
1 + 1. �

Corollary 3.9. There are computable structures M of Scott rank ωCK
1 and of

ωCK
1 + 1 that have no indiscernible ordered triples of imaginaries.
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Proof. This follows from Lemma 3.7 and Theorems 3.6 and 3.8. �
We end with an open question.

Question. Is there a structure of Scott rank ωCK
1 that is computably approximable

and has no indiscernible sequences of imaginaries?
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