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ON BRANCHES OF POSITIVE SOLUTIONS FOR p-LAPLACIAN

PROBLEMS AT THE EXTREME VALUE OF THE NEHARI

MANIFOLD METHOD

YAVDAT ILYASOV AND KAYE SILVA

(Communicated by Catherine Sulem)

Abstract. This paper is concerned with variational continuation of branches
of solutions for nonlinear boundary value problems, which involve the
p-Laplacian, an indefinite nonlinearity, and depend on a real parameter λ.
A special focus is given to the extreme value λ∗ of the Nehari manifold that
determines the threshold of applicability of the Nehari manifold method. In
the main result the existence of two branches of positive solutions for the cases
where the parameter λ lies above the threshold λ∗ is obtained.

1. Introduction

We study the following p-Laplacian problem with indefinite nonlinearity:

(1.1)

{
−Δpu = λ|u|p−2u+ f |u|γ−2u in Ω,

u = 0 on ∂Ω.

Here Ω denotes a bounded domain in R
N with C1-boundary ∂Ω, λ is a real pa-

rameter, 1 < p < γ < p∗, where p∗ is the critical Sobolev exponent, f ∈ Ld(Ω)
where d ≥ p∗/(p∗ − γ) if p < N , and d > 1 if p ≥ N . We suppose that (1.1) has an
indefinite nonlinearity, i.e., f changes sign in Ω. By a solution of (1.1) we mean a

critical point u ∈ W := W 1,p
0 (Ω) of the energy functional

Φλ(u) =
1

p

∫
|∇u|pdx− λ

p

∫
|u|pdx− 1

γ

∫
f |u|γdx,

where W 1,p
0 (Ω) is the standard Sobolev space.

The problems with the indefinite nonliearity of type (1.1) have been intesively
studied; see, e.g., Alama & Tarantello [1], Berestycki, Capuzzo–Dolcetta & Niren-
berg [3], and Ouyang [14]. One of the fruitful approaches in the study of such
problems is the Nehari manifold method [13] where solutions are obtained through
the constrained minimization problem

(1.2) min{Φλ(u) : u ∈ Nλ}

with the Nehari manifold Nλ := {u ∈ W \ 0 : DuΦλ(u)(u) = 0} (see, e.g., Drábek
& Pohozaev [7], Il’yasov [8, 10], and Ouyang [14]).
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The applicability of the Nehari manifold method to (1.1) depends on the param-
eter λ. Indeed, (1.1) possesses the so-called extreme value of the Nehari manifold
method [10]

(1.3) λ∗ = inf

{∫
|∇u|pdx∫
|u|pdx :

∫
f |u|γdx ≥ 0, u ∈ W \ 0

}
,

which was known to be the first found by Ouyang [14]. A feature of λ∗ is that it
defines a threshold for the applicability of the Nehari manifold method so that for
any λ < λ∗ the set Nλ is a C1-manifold of codimension 1 in W wherein for any
λ ≥ λ∗ there is u ∈ Nλ such that Φ′′

λ(u) := D2
uuΦλ(u)(u, u) = 0. Moreover, Φλ

is unbounded from below over Nλ if λ ≥ λ∗ (see, e.g., [10]). It is remarkable that
once the extreme value (1.3) is detected, one is able to directly find solutions for
(1.1) as λ < λ∗, by means of the Nehari minimization problems (1.2) (see, e.g., [14]
for p = 2 and [7, 8] for 1 < p < +∞).

A natural question which arises from this is whether there are any positive
solutions of (1.1) for λ > λ∗. An answer for this question, in the case p = 2,
follows from the works of Alama & Tarantello [1] and Ouyang [14], where the
authors proved that (1.1) possesses a branch of minimal positive solution for λ
belonging to the whole interval (−∞,Λ], for some Λ > λ∗, and does not admit any
positive solutions for λ > Λ. However, the approach used in [1, 14] is based on
the application of the local continuation method [4], which essentially involves an
analysis of the corresponding linearized problems.

The main aim of the present paper is to give a contribution in the investigation
of the branches of solutions for the problems where the application of local contin-
uation methods can cause difficulty. Our approach is based on the development of
the Nehari manifold method where we focus also on obtaining a new knowledge on
the extreme value of the Nehari manifold method.

Let us state our main results. Denote

Ω+ = {x ∈ Ω : f+(x) �= 0}, Ω− = {x ∈ Ω : f−(x) �= 0},

and Ω0 = Ω \ (Ω+ ∪ Ω−). We write U �= ∅ if the interior int(U) of a set U ⊂ R
n is

nonempty. We denote (λ1(int(U)), φ1(int(U))) the first eigenpair of −Δp on int(U)
with zero Dirichlet boundary conditions. It is known that λ1(int(U)) is positive,
simple and isolated, and φ1(int(U)) is positive [12]. To simplify notations, we write
λ1 := λ1(Ω), φ1 := φ1(Ω).

Throughout the paper, we assume that Ω+ �= ∅. Furthermore, we shall need the
following assumption:

(f1): If Ω0 �= ∅, then λ1(int(Ω
0 ∪ Ω+)) < λ1(int(Ω

0)).

Notice that if Ω0∪Ω+ �= ∅, then λ∗ < +∞ and for sufficiently large λ > λ1, problem
(1.1) has no positive solutions for any λ > λ (see, e.g., [9]).

Our main result is the following

Theorem 1.1. Let 1 < p < γ < p∗ and suppose that Ω+ �= ∅, F (φ1) :=
∫
f |φ1|γdx

< 0 and (f1) is satisfied. Then there exists Λ ∈ (λ∗, λ] such that for all λ ∈ (λ∗,Λ)
problem (1.1) admits at least two positive weak solutions uλ, uλ. Moreover,

(i): Φ′′
λ(uλ) > 0,Φ′′

λ(uλ) > 0 and Φλ(uλ) < Φλ(uλ) < 0 for any λ ∈ (λ∗,Λ);
(ii): Φλ(uλ) ↑ Φλ∗(uλ∗) as λ ↓ λ∗.
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This paper is organized as follows. Section 2 contains preliminaries. In Section
3, we show the existence of solutions uλ. In Section 4, we show the existence of
solutions uλ and conclude the proof of Theorem 1.1. In the Appendix, we provide
some technical and auxiliary results.

2. Preliminaries

In what follows, the norm in W we will denote by ‖ · ‖. Write

Hλ(u) =

∫
|∇u|p dx− λ

∫
|u|p dx, F (u) =

∫
f(x)|u|γ , u ∈ W.

Then

Φλ(u) =
1

p
Hλ(u)−

1

γ
F (u), Nλ = {u ∈ W \ 0 : Hλ(u)− F (u) = 0}.

To our aims, it is sufficient to use the following Nehari submanifold:

N+
λ := {u ∈ Nλ : DuuΦλ(u)(u, u) > 0}

which we shall use in the fibering representation [8, 15]:

N+
λ = {u = sv : s = s+λ (v), v ∈ Θ+

λ },
where Θ+

λ = {v ∈ W \ 0 : Hλ(v) < 0, F (v) < 0} and

(2.1) s+λ (v) =

(
Hλ(v)

F (v)

)1/(γ−p)

.

Thus we are able to introduce

J+
λ (v) =: Φλ(s

+
λ (v)v) = −cp,γ

|Hλ(v)|γ/(γ−p)

|F (v)|p/(γ−p)
, v ∈ Θ+

λ ,(2.2)

where cp,γ = (γ − p)/pγ.
Observe, J+

λ is the 0-homogeneous functional on N+
λ , i.e., J+

λ (su) = J+
λ (u) for

any s > 0, u ∈ N+
λ . It is worth pointing out that (1.3) implies

Θ+
λ = {v ∈ W \ 0 : Hλ(v) < 0}

for any λ ∈ (λ1, λ
∗). In what follows, we write ∂Θ+

λ = {v ∈ W \ 0 : Hλ(v) = 0}
and the closure of Θ+

λ we denote by Θ
+

λ .
It is not hard to prove (see, e.g., [8])

Proposition 2.1. If DvJ
+
λ (v)(η) = 0 for any η ∈ W \ 0, then s+λ (v)v weakly

satisfies (1.1).

Consider the following minimization problem:

Ĵ+
λ := min{J+

λ (v)| v ∈ Θ+
λ }.(2.3)

Lemma 2.2. Suppose the assumptions of Theorem 1.1 are satisfied. Then

(a): λ1 < λ∗ < ∞.
(b): There exists a minimizer φ∗

1 of the problem (1.3) such that φ∗
1 > 0 and

φ∗
1 ∈ C1,α(Ω) for some α ∈ (0, 1). Moreover, any minimizer φ∗

1 of (1.3)
weakly satisfies, up to a scalar multiplier, to (1.1) for λ = λ∗ and Hλ∗(φ∗

1) =
F (φ∗

1) = 0.

(c): Ĵ+
λ∗ > −∞ and there exists a minimizer vλ∗ ∈ Θ+

λ∗ of J+
λ∗(vλ∗) so that

uλ∗ := s2(vλ∗)vλ∗ satisfies (1.1) and uλ∗ > 0.
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Proof. The proof of (a) can be found in [8, 9]. Furthermore, by [8], there exists a
nonzero minimizer φ∗

1 of (1.3) such that φ∗
1 ≥ 0. Hence by the Lagrange multiplier

rule there exist μ0, μ1 ≥ 0, |μ0|+ |μ1| �= 0 such that

(2.4) μ0DvHλ∗(φ∗
1) = μ1DvF (φ∗

1).

Since φ∗
1 is a minimizer of (1.3), then Hλ∗(φ∗

1) = 0 and therefore μ1F (φ∗
1) = 0.

Suppose μ0 = 0; then f |φ∗
1|γ−2φ∗

1 = 0 a.e. in Ω. This is possible only if supp φ∗
1

⊂ Ω0. Thus if Ω0 = ∅, then we get a contradiction. Assume that Ω0 �= ∅. Then there
exist eigenpairs (λ1(int(Ω

0)), φ1(int(Ω
0))) and (λ1(int(Ω

0∪Ω+)), φ1(int(Ω
0∪Ω+))).

Since φ1(int(Ω
0)) ∈ W 1,p

0 (int(Ω0)) and Hλ∗(φ∗
1) = 0, λ1(int(Ω

0)) ≤ λ∗. On the
other hand, the assumption (f1) entails the strong inequality λ1(int(Ω

0 ∪ Ω+)) <
λ1(int(Ω

0)). Hence we get a contradiction because λ∗ ≤ λ̄ ≤ λ1(int(Ω
0 ∪Ω+)) (see

[9]). Thus μ0 �= 0.
Suppose μ1 = 0; then DuHλ∗(φ∗

1) = 0. By the Harnack inequality (see [17]) we
have φ∗

1 > 0 in Ω. But this is possible only if λ∗ = λ1, φ
∗
1 = φ1 (see [12]). However,

by (1.3), F (φ∗
1) ≥ 0 which contradicts the assumption F (φ1) < 0. Hence μ1 > 0

and therefore F (φ∗
1) = 0 and there exists t(μ) > 0 such that t(μ)φ∗

1 satisfies (1.1).
The Harnack inequality and regularity of solutions for the p-Laplacian equation
yields that φ∗

1 > 0 and φ∗
1 ∈ C1,α(Ω) for some α ∈ (0, 1). Thus we have proved (b).

Let us prove (c). By [8] there is a limit

(2.5) Ĵ+
λ → J̄+(λ∗) ≥ −∞ as λ ↑ λ∗,

and there exists a weak positive solution uλ∗ of (1.1) such that J̄+(λ∗) = J+
λ∗(uλ∗).

It is clear that Ĵ+
λ∗ ≤ J̄+(λ∗). Thus, we will obtain the proof if we show that

Ĵ+
λ∗ = J̄+(λ∗). Suppose, contrary to our claim, that Ĵ+

λ∗ < J̄+(λ∗). We prove that

this is impossible if Ĵ+
λ∗ = −∞. The proof in the other case is similar.

Since Ĵ+
λ∗ = −∞, for every K > 0, one can find vK ∈ Θ+

λ∗ such that J+
λ∗(vK) <

J̄+(λ∗) − K. Since J+
λ (vK) → J+

λ∗(vK), for every ε > 0, there exists δ > 0 such

that |J+
λ (vK)− J+

λ∗(vK)| < ε as |λ−λ∗| < δ. In view of (2.5), we may assume that

there holds also |Ĵ+
λ − J̄+(λ∗)| < ε if |λ− λ∗| < δ. Then

J̄+(λ∗)− ε < Ĵ+
λ ≤ J+

λ (vK) < J+
λ∗(vK) + ε < J̄+(λ∗)−K + ε.

Since K > 0, ε > 0 may be chosen arbitrarily, we get a contradiction. �

We need also

Corollary 2.3. There exists μ0 ∈ (λ1, λ
∗) such that any minimizer wλ∗ of (2.3)

for λ = λ∗ satisfies Hμ0
(wλ∗) < 0.

Proof. Suppose the assertion of the corollary is false. Then there exists a sequence
wn ∈ Θ+

λ∗ such that Ĵ+
λ∗ = J+

λ∗(wn) and Hλ∗(wn) → 0 as n → ∞. By homogeneity

of J+
λ∗(v) we may assume that ||wn|| = 1, n = 1, 2, .... Hence by reflexivity of W

and the embedding theorems there exists a subsequence, which we still denote by
(wn), such that wn ⇀ w weakly in W and wn → w strongly in Lq(Ω), 1 < q < p∗

for some w ∈ W . Since Hλ∗(wn) < 0, n = 1, 2, ..., it follows that w �= 0. Observe

J+
λ∗(wn) = −cp,γ

|Hλ∗(wn)|γ/(γ−p)

|F (wn)|p/(γ−p)
= −cp,γs

+
λ∗(wn)

p|Hλ∗(wn)|.
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From this and since J+
λ∗(wn) = Ĵ+

λ∗ < 0, it follows that s+λ∗(wn) → ∞ and F (wn) →
0. Hence F (w) = 0 and therefore Hλ∗(w) = 0 which implies by (b), Lemma 2.2
that w = φ∗

1 > 0. Note that

−Δpwn − λ∗|wn|p−2wn − s+λ∗(wn)
γ−pf |wn|γ−2wn = 0, n = 1, 2, . . . .

Thus s+λ∗(wn) → ∞ implies f(φ∗
1)

γ−1 = 0 a.e. in Ω, which is absurd. �

Corollary 2.4. For each μ ∈ (λ1, λ
∗), there is cμ < 0 such that F (v) ≤ cμ ∀v ∈

Θ
+

μ ∩ S1, where S1 := {u ∈ W : ‖u‖ = 1}.

Proof. Let μ < λ∗ and assume contrary to our claim that there exists a sequence

vn ∈ Θ
+

μ ∩ S1 such that F (vn) → 0 as n → ∞. Then by reflexivity of W and the
embedding theorems we may assume that vn ⇀ v weakly in W and vn → v strongly
in Lq(Ω) for 1 < q < p∗. Since Hμ(vn) ≤ 0, n = 1, 2, ..., we conclude v �= 0. Thus,
by the weakly lower-semicontinuity of

∫
|∇v|pdx we conclude that

Hλ∗(v) ≤ lim inf
n→∞

Hλ∗(vn) = lim inf
n→∞

(Hμ(vn) + (μ− λ∗)

∫
|vn|p dx) < 0.

But this contradicts the definition of λ∗ since F (v) = 0. �

3. Local minima solution

In this section, we show the existence of local minima type solutions uλ for (1.1).
Let us consider the following family of constrained minimization problems:

(3.1) Ĵ+
λ (μ) = inf{J+

λ (v) : v ∈ Θ+
μ }

parametrized by λ ≥ λ∗ and μ ∈ (λ1, λ
∗).

Proposition 3.1. For each λ ≥ λ∗ and μ ∈ (λ1, λ
∗) there holds

(a): Ĵ+
λ (μ) > −∞;

(b): there exists a minimizer vλ(μ) of (3.1).

Proof. (a) follows immediately from Corollary 2.4. Let us prove (b). Take a

minimizing sequence vn ∈ Θ+
μ of (3.1), that is, J+

λ (vn) → Ĵ+
λ (μ) > −∞ as n → ∞.

Arguing as in the proof of Corollary 2.3 one may infer that there exist v ∈ W \0 and
a subsequence, which we still denote by (vn), such that vn ⇀ v weakly in W and
vn → v strongly in Lq(Ω) for 1 < q < p∗. Hence, Hμ(v) ≤ lim infn→∞ Hμ(vn) ≤
0, F (v) = limn→∞ F (vn) < 0 and therefore v ∈ Θ

+

μ , J
+
λ (v) ≤ lim infn→∞ J+

λ (vn) =

Ĵ+
λ (μ). In view of (3.1), this is possible only if J+

λ (v) = Ĵ+
λ (μ), that is, v is a

minimizer of (3.1). �

We denote the set of minimizers for (3.1) by Sλ(μ) = {v ∈ Θ
+

μ : J+
λ (v) = Ĵ+

λ (μ)}
and let S∂

λ (μ) = {v ∈ Sλ(μ) : Hμ(v) = 0}.

Lemma 3.2. Let λ0 ≥ λ∗ and μ ∈ (λ1, λ
∗) be such that S∂

λ0
(μ) = ∅. Then there

exists ε > 0 such that S∂
λ(μ) = ∅ for each λ ∈ [λ0, λ0 + ε).

Proof. Suppose the lemma is false. Then we can find a sequence λn → λ0 such
that vn := v+λn

(μ) ∈ ∂Θ+
μ , n = 1, 2, .... Arguing as above one may infer that

there exist v ∈ W \ 0 and a subsequence, which we still denote by (vn), such that
vn ⇀ v weakly in W and vn → v strongly in Lq(Ω) for 1 < q < p∗. This implies
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Hμ(v) ≤ lim infn→∞ Hμ(vn) = 0, F (v) = limn→∞ F (vn) < 0 and therefore v ∈ Θ
+

μ .
Furthermore,

(3.2) J+
λ0
(v) ≤ lim inf

n→∞
J+
λn

(vn) =: J̃ < +∞.

From the Poincaré inequality and Corollary 2.4, we have that for all w ∈ Θ
+

μ and
λ ≥ λ1

|(−J+
λ (w))

γ−p
γ − (−J+

λ0
(w))

γ−p
γ | = |λ− λ0|G(w)

|F (w)|p/γ ≤ |λ− λ0|
λ1

1

|cμ|p/γ
.

Thus, J+
λn

(w) → J+
λ0
(w) uniformly on w ∈ Θ

+

μ as n → ∞ and therefore J̃ = Ĵ+
λ0
(μ).

Hence if J+
λ0
(v) < Ĵ+

λ0
(μ), we obtain a contradiction since v ∈ Θ

+

μ . On the other

hand, if J+
λ0
(v) = Ĵ+

λ0
(μ), then Hμ0

(v) = 0 and v = vλ0
(μ). Consequently vλ0

(μ) ∈
S∂
λ0
(μ) which contradicts the assumption S∂

λ0
(μ) = ∅. �

Let us prove the existence of the solution uλ in Theorem 1.1.

Lemma 3.3. Let 1 < p < γ < p∗ and suppose that Ω+ �= ∅, F (φ1) < 0 and (f1)
is satisfied. Then there exists Λ > λ∗ such that for all λ ∈ (λ∗,Λ) problem (1.1)
admits a positive weak solution uλ such that

(li): Φ′′
λ(uλ) > 0 and Φλ(uλ) < 0;

(lii): Φλ(uλ) ↑ Φλ∗(uλ∗) as λ ↓ λ∗.

Proof. By Corollary 2.3, there exists μ0 ∈ (λ1, λ
∗) such that S∂

λ∗(μ0) = ∅. Thus
Lemma 3.2 implies that there exists Λ > λ∗ such that S∂

λ(μ0) = ∅ for all λ ∈
(λ∗,Λ). Since by Proposition 3.1, Sλ(μ) �= ∅ for λ ≥ λ∗, we conclude that for every
λ ∈ (λ∗,Λ) there exists a minimizer vλ(μ0) of (3.1) such that vλ(μ0) ∈ Θ+

μ0
. This

and Proposition 2.1 yield that uλ = s+λ (vλ(μ0))vλ(μ0) is a weak solution of (1.1)
for λ ∈ (λ∗,Λ).

By virtue of J+
λ (v) = J+

λ (|v|) and |v| ∈ Θ+
μ0

for any v ∈ Θ+
μ0
, we may assume that

uλ ≥ 0 in Ω. Now by the Harnack inequality (see [17]) we conclude that u+
λ > 0 in

Ω.
Since v+λ ∈ Θ+

λ , we get (li). Let us prove assertion (lii). Notice that from

(3.1) it follows that Φλ∗(uλ∗) = Ĵ+
λ∗(μ0) ≥ Ĵ+

λ (μ0) for any λ > λ∗. Thus if we
suppose that assertion (lii) is false, then we could find a sequence λn ↓ λ∗ such that

J+
λn

(vλn
(μ0)) → J+

λ∗ < Ĵ+
λ∗(μ0). Then as above, we may assume that vλn

(μ0) ⇀ v

weakly in W and vn → v strongly in Lp(Ω), Lγ(Ω) as n → ∞ with v �= 0. This

implies that v ∈ Θ
+

μ0
and J+

λ∗(v) < Ĵ+
λ∗(μ0). Thus we get a contradiction. �

From the proof of Lemma 3.3 we see that the solution uλ may depend on the
parameter μ ∈ (λ1, λ

∗). However, we can prove that at least locally with respect
to μ there is no such dependence.

Corollary 3.4. Let λ ≥ λ∗ and μ0 ∈ (λ1, λ
∗). Suppose that S∂

λ (μ0) = ∅. Then
there exists ε > 0 such that Sλ(μ0) = Sλ(μ) for all μ ∈ (μ0 − ε, μ0 + ε).

Proof. Conversely, suppose that there is (μn) such that μn → μ0 and ∃vn ∈ Sλ(μn)\
Sλ(μ0). Then J+

λ (vn) < Ĵ+
λ (μ0) and vn ∈ Θ+

μn
\ Θ+

μ0
. Arguing as in the proof of

Proposition 3.1 it can be shown that there exists a subsequence (which we denote

again (vn)) such that vn → v strongly in W 1,2. Hence, J+
λ (v) = Ĵ+

λ (μ0) and

v ∈ ∂Θ+
μ0
, that is, v ∈ S∂

λ(μ0) which is a contradiction. �
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4. Mountain pass solution

In this section, for λ ∈ (λ∗,Λ), we will find the second positive solution ūλ for
(1.1) of a mountain pass type.

Fix μ0 ∈ (λ1, λ
∗) such that Hμ0

(wλ∗) < 0 for any minimizer wλ∗ of (2.3) with
λ = λ∗. The existence of μ0 follows from Corollary 2.3.

Let λ ∈ (λ∗,Λ). Define

(4.1) μλ = sup{μ ∈ (μ0, λ
∗) : Ĵ+

λ (μ) = Ĵ+
λ (μ0)}.

Proposition 4.1. For each λ ∈ (λ∗,Λ) there holds

(a): μ0 < μλ < λ∗;

(b): Ĵ+
λ (μλ) = Ĵ+

λ (μ0) and S∂
λ (μ

λ) �= ∅.

Proof. (a) By Corollary 2.3, S∂
λ∗(μ0) = ∅ and by Corollary 3.4, Sλ(μ0) = Sλ(μ) for

μ ∈ (μ0, μ0 + ε) and some ε > 0. Hence, μ0 < μλ. Notice that by Proposition 5.1

from the Appendix, the function Ĵ+
λ (μ) is continuous with respect to μ ∈ (μ0, λ

∗).

Hence and since Ĵ+
λ (μ) → −∞ as μ → λ∗, there is μ′ ∈ (μ0, λ

∗) such that Ĵ+
λ (μ0) >

Ĵ+
λ (μ) for each μ ∈ (μ′, λ∗). Thus μλ ≤ μ′ < λ∗ < +∞.

(b) Continuity of Ĵ+
λ (·) and (4.1) yield Ĵ+

λ (μλ) = Ĵ+
λ (μ0). Suppose, contrary to

our claim, that S∂
λ(μ

λ) = ∅. Then by Corollary 3.4, there is ε′ > 0 such that for

μ ∈ (μλ, μλ + ε′), Sλ(μ
λ) = Sλ(μ) and consequently Ĵ+

λ (μ) = Ĵ+
λ (μλ) = Ĵ+

λ (μ0),
which is a contradiction. �

Observe, for any λ ∈ (λ∗,Λ) and μ ∈ (λ1, λ
∗), if w ∈ S∂

λ (μ
λ); then |w| ∈ S∂

λ (μ
λ).

For each λ ∈ (λ∗,Λ), fix 0 ≤ wλ ∈ S∂
λ(μ

λ) and let 0 < uλ ∈ Θ+
μ0

be the solution
that has been found in Lemma 3.3. Define

(4.2) cλ = inf
η∈Γλ

max
t∈[0,1]

Φλ(η(t)),

where

Γλ = {η ∈ C([0, 1],W ) : η(0) = uλ, η(1) = wλ}.

Proposition 4.2. For each λ ∈ (λ∗,Λ) there exists jλ such that

Φλ(u) ≥ jλ > Ĵ+
λ (μ0) ∀ u ∈ ∂Θ+

μ0
.

Proof. Evidently, S∂
λ (μ0) = ∅ implies

jλ := inf{J+
λ (v) : v ∈ ∂Θ+

μ } > Ĵ+
λ (μ0), ∀ λ ∈ (λ∗,Λ).

Thus for any u ∈ ∂Θ+
μ0
, one has

Φλ(u) ≥ Φλ(s
+
λ (u)u) = J+

λ (u) ≥ jλ > Ĵ+
λ (μ0).

�

Let us show that every path from Γλ intersects ∂Θ+
μ0
.

Proposition 4.3. Let λ ∈ (λ∗,Λ). Then for any η ∈ Γλ there exists t0 ∈ (0, 1)
such that η(t0) ∈ ∂Θ+

μ0
.

Proof. Notice Hμ0
(η(0)) = Hμ0

(uλ) < 0 while Hμ0
(η(1)) = Hμ0

(wλ) > 0 because

wλ ∈ Θ+
λ∗ \Θ

+

μ0
. Thus by the continuity of Hμ0

(η(·)), there is t0 ∈ (0, 1) such that
Hμ0

(η(t0)) = 0. �
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Using [5] we are able to prove

Proposition 4.4. For each λ ∈ (λ∗,Λ), there is η ∈ Γλ such that Hλ∗(η(t)) < c < 0
for all t ∈ [0, 1]

Proof. Consider the path η(t) = [(1 − t)up
λ + twp

λ]
1/p, t ∈ [0, 1]. Once uλ > 0,

{x ∈ Ω : uλ(x) = wλ(x) = 0} = ∅. Hence we may apply Proposition 5.2 from the
Appendix and thus η ∈ C([0, 1],W ) and for t ∈ [0, 1] we have

Hλ∗(η(t)) =

∫
|∇η(t)|p − λ∗

∫
|η(t)|p

≤ (1− t)

∫
|∇uλ|p + t

∫
|∇wλ|p − λ∗

(
(1− t)

∫
|uλ|p + t

∫
|wλ|p

)
= (1− t)Hλ∗(uλ) + tHλ∗(wλ) < 0

≤ max{Hλ∗(uλ), Hλ∗(wλ)},
since Hλ∗(uλ) < 0, Hλ∗(wλ) < 0. �

Corollary 4.5. For all λ ∈ (λ∗,Λ) there holds

(4.3) Ĵ+
λ (μ0) < cλ < 0.

Proof. Let us start with the first inequality. Take any η ∈ Γλ. From Proposition
4.3, there is t0 ∈ (0, 1) such that η(t0) ∈ ∂Θ+

μ0
, therefore by Proposition 4.2,

maxt∈[0,1] Φλ(η(t)) ≥ Φλ(η(t0)) > Ĵ+
λ (μ0) and consequently Ĵ+

λ (μ0) < cλ. Let η be
given by Proposition 4.4. Then

Φλ(η(t)) = J+
λ (η(t)) < 0 ∀ t ∈ [0, 1],

which implies that cλ < 0. �

Now we are able to find the second solution ūλ.

Lemma 4.6. For each λ ∈ (λ∗,Λ), cλ is a critical value of Φλ. Furthermore, there
exists uλ such that Φλ(s

+
λ (uλ) = cλ, uλ is a weak solution of (1.1) and uλ > 0 in

Ω.

Proof. Since Φλ(u) = Φλ(|u|) for all u ∈ W , then by (4.2) there is a sequence of
paths ηn ≥ 0 in Ω such that

lim
n→∞

max
t∈[0,1]

Φ(ηn(t)) = cλ.

Now, following [11], let us introduce for each ε > 0

ηn,ε = {u ∈ W : inf
t∈[0,1]

‖u− ηn(t)‖ ≤ ε} ∩Kcλ,2ε,

where Kcλ,2ε = {u ∈ W : |Φλ(u) − cλ| ≤ 2ε}. Then by Theorem E.5 from [11],
there is a sequence un ∈ W satisfying

(4.4) Φλ(un) → cλ, DuΦλ(un) → 0,

and

(4.5) inf
t∈[0,1]

‖un − ηn(t)‖ → 0.

By Corollary 4.5 we know that cλ < 0. Thus, in view of (4.4) we can apply
Proposition 5.3 to conclude that un → uλ ∈ W \ 0 so that Φλ(uλ) = cλ and
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DuΦλ(uλ) = 0. Moreover, once (4.5) is satisfied, we also have that uλ ≥ 0. Now
applying the Harnack inequality [17] we deduce that uλ > 0 in Ω. �

Conclusion of the proof of Theorem 1.1. Let Λ > λ∗ be given by Lemma 3.3. Then
Lemma 3.3 and Lemma 4.6 yield the existence of positive weak solutions uλ, uλ.
Since cλ < 0, Φλ(uλ) < 0. Thus, by virtue that uλ is a critical value of Φλ, we
conclude that Φ′′

λ(uλ) > 0. Corollary 4.5 and Lemma 4.6 imply that Φλ(uλ) <
Φλ(uλ) < 0 for any λ ∈ (λ∗,Λ). Hence and by (li), Lemma 3.3 we get assertion (i)
of the theorem. The proof of (ii) follows from (lii), Lemma 3.3. �

5. Appendix

Proposition 5.1. For any λ ≥ λ∗, the function μ �→ Ĵ+
λ (μ) is continuous over the

interval (λ1, λ
∗).

Proof. Let μ ∈ (λ1, λ
∗). Suppose, contrary to our claim, that there is μn → μ and

r > 0 such that |Ĵ+
λ (μn)− Ĵ+

λ (μ)| > r for all n, or equivalently

(5.1) Ĵ+
λ (μn) > Ĵ+

λ (μ) + r or Ĵ+
λ (μ) > Ĵ+

λ (μn) + r,

for sufficiently large n. Suppose the first inequality is true, i.e., Ĵ+
λ (μn) > Ĵ2

λ(μ)+r.
From (3.1) this is possible only if μn < μ. Moreover, we can assume without loss of

generality that μn is monotone increasing and consequently Ĵ2
λ(μn) is decreasing.

Thus Ĵ+
λ (μn) → I > Ĵ+

λ (μ).

By Proposition 3.1, there is v ∈ Sλ(μ), that is, J2
λ(v) = Ĵ+

λ (μ). Suppose v ∈
Sλ(μ) \ S∂

λ(μ); then convergence μn → μ entails that there is n such that v ∈
Θ2

μn
. However J+

λ (v) ≥ Ĵ+
λ (μn) which contradicts J+

λ (v) = Ĵ+
λ (μ) < I ≤ Ĵ+

λ (μn).

Suppose now that v ∈ S∂
λ(μ). Then, taking into account the continuity of J+

λ (u)

on Θ+
μ , we can choose w ∈ Θ+

μ such that J+
λ (v) ≤ J+

λ (w) < I. However, there is n

such that w ∈ Θ+
μn

. This implies Ĵ+
λ (μn) ≤ J+

λ (w) < I which is absurd.
Now suppose the second inequality in (5.1) is true. Then μ < μn and we may

assume that μn is decreasing. Consequently Ĵ+
λ (μn) is increasing and Ĵ+

λ (μn) →
I < Ĵ+

λ (μ). From Proposition 3.1, there is vn such that vn ∈ Sλ(μn). If vn ∈ Θ+
μ

for some n, then Ĵ+
λ (μ) ≤ J+

λ (vn) = Ĵ+
λ (μn) which contradicts the assumption

Ĵ+
λ (μ) > Ĵ+

λ (μn). Thus it is only possible that vn ∈ Θ
+

μn
\ Θ+

μ for all n = 1, 2, ....
Arguing as above one may infer that there exist v ∈ W \ 0 and a subsequence,
which we still denote by (vn), such that vn ⇀ v weakly in W and vn → v strongly
in Lq(Ω) for 1 < q < p∗. Then

Hμ(v) ≤ lim inf
n→∞

Hμn
(vn) ≤ 0, F (v) = lim

n→∞
F (vn) < 0,

which implies that v ∈ Θ
+

μ and

Ĵ+
λ (μ) ≤ J+

λ (v) ≤ lim inf
n→∞

J+
λn

(vn) = I,

which is absurd because I < Ĵ+
λ (μ). �

The next result can be found in the paper of Dı́az & Saá [5]. We give a proof of
it for the reader’s convenience.
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Proposition 5.2. Let u, v ∈ W \ 0, u, v ≥ 0 in Ω and define η(t) = [(1 − t)up +
tvp]1/p for t ∈ [0, 1]. Suppose that the set {x ∈ Ω : u(x) = v(x) = 0} has zero
Lebesgue measure. Then

|∇η(t)|p ≤ (1− t)|∇u|p + t|∇v|p ∀ t ∈ [0, 1], a.e. in Ω

and η ∈ C([0, 1],W ).

Proof. First note that∇η(t) = [(1−t)up+tvp](1−p)/p[(1−t)up−1∇u+tvp−1∇v]. Let
p′ be the conjugate exponent of p, i.e., 1/p+1/p′ = 1. From the Hölder inequality,
we have

|∇η(t)| ≤ [(1− t)up + tvp](1−p)/p[(1− t)up−1|∇u|+ tvp−1|∇v|]
(5.2)

= [(1− t)up + tvp](1−p)/p[(1− t)1/p
′
up−1(1− t)1/p|∇u|+ t1/p

′
vp−1t1/p|∇v|]

≤ [(1− t)up + tvp](1−p)/p[(1− t)up + tvp]1/p
′
[(1− t)|∇u|p + t|∇v|p]1/p a.e. in Ω

for all t ∈ [0, 1]. Once {x ∈ Ω : u(x) = v(x) = 0} has zero Lebesgue measure, we
have that (1− t)up + tvp > 0 a.e. in Ω, for all t ∈ (0, 1) and therefore, from (5.2),
we conclude that

|∇η(t)| ≤ [(1− t)|∇u|p + t|∇v|p]1/p ∀ t ∈ [0, 1], a.e. in Ω

which implies

|∇η(t)|p ≤ (1− t)|∇u|p + t|∇v|p, ∀ t ∈ [0, 1], a.e. in Ω.

Consequently η ∈ W for all t ∈ [0, 1]. The continuity of η follows by a standard
application of the Lebesgue theorem. �

The proof of the next proposition is standard (see Ambrosetti & Rabinowitz [2]
as well as the related papers of Alama & Tarantello [1], and Pucci & Rădulescu
[16]). We include its sketch for the convenience of the reader.

Proposition 5.3. Suppose that un ∈ W \ 0 is a (P.-S.) sequence at level c < 0,
i.e.,

Φλ(un) → c < 0, DuΦ(un) → 0.

Then un has a strong convergent subsequence with nonzero limit point u ∈ W \ 0
satisfying Φλ(u) = c and DuΦ(u) = 0.

Proof. The assumption DuΦλ(un) → 0 entails (Hλ(un) − F (un))/‖un‖p = o(1).
On the other hand, from the limit Φλ(un) → c as n → ∞, we also have

Hλ(un) =
p

γ
F (un) + pc+ o(1), n → ∞.

Thus

0 = lim
n→∞

Hλ(un)− F (un)

‖un‖p
= lim

n→∞

[(
p

γ
− 1

)
F (un)/‖un‖p +

pc+ o(1)

‖un‖

]
.

From this it is not hard to show that ‖un‖ is bounded and ||un|| ≥ δ > 0 for some
constance δ. Thus we may assume un ⇀ u in W , un → u in Lp(Ω) and Lγ(Ω) and
u �= 0. Hence and since DuΦ(un) → 0 as n → ∞, we have

lim sup
n→∞

〈−Δpun, un − u〉 = 0.

Thus by the S+ property of the p-Laplacian operator (see [6]) we derive that un → u
strongly in W . �
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