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KAMRAN LAMEI AND NAVID NEMATI

(Communicated by Irena Peeva)

Abstract. We extend to one dimensional quotients the result of A. Conca
and S. Murai on the convexity of the regularity of Koszul cycles. By providing
a relation between the regularity of Koszul cycles and Koszul homologies we
prove a sharp regularity bound for the Koszul homologies of a homogeneous

ideal in a polynomial ring under the same conditions.

1. Introduction

A classic way to describe projective variety and its properties is by means of
its defining equations and syzygies among them. In this regard, M. Green and
R. Lazarsfeld defined the property Np which, roughly speaking, refers to the sim-
plicity of syzygies of the homogeneous coordinate ring of a smooth projective variety
embedded by a very ample line bundle. M. Green in [5] proved that the coordi-
nate ring of the image of Veronese embedding of degree d satisfies the property
Nd. W. Bruns, A. Conca, and T. Römer [1] improved this result so that the d-th
Veronese subring of a polynomial ring has Green-Lazarsfeld index larger than or
equal to d + 1. Their approach is based on investigation of the homological in-
variants of the Koszul cycles and Koszul homologies of d-th power of the maximal
ideal.

With the aforementioned motivation A. Conca and S. Murai studied the
Castelnuovo-Mumford regularity of the Koszul cycles Zt(I, S) of a homogeneous
ideal in a polynomial ring S. Under mild assumptions on the base field A.Conca
and S. Murai proved that regularity of Koszul cycles Zi(I, S) as a function of i is
subadditive when dimS/I = 0 as follows:

reg(Zs+t(I, S)) ≤ reg(Zt(I, S)) + reg(Zs(I, S)).

We make a generalization showing that with the same assumptions on the base field
the same formula holds when dimS/I ≤ 1.

From the convexity of the regularity of Koszul cycles in dimension 0, A. Conca
and S. Murai [3, Corollary 3.3] obtained a bound on the regularity of Koszul ho-
mologies. Inspired by the remarkable result of M. Chardin and P. Symonds [4] on
the regularity of cycles and homologies of a general complex, first we determine
the regularity of Koszul cycles by the regularity of the previous Koszul homologies.
Let S be a polynomial ring and let I be a homogeneous ideal of S. If dimS/I ≤ 1,
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then for all 0 < i < μ(I)

reg(Zi(I, S)) = max
0<j<n

{reg(Hi−j(I, S)) + j + 1}.

Here μ(I) is the minimal number of generators of I.
As an application we state a sharp bound for the regularity of Koszul homologies

in dimension 1 which is a refinement of the result of A. Conca and S. Murai in
dimension 0. Let I be an ideal of S and dimS/I ≤ 1; then we have the following
inequalities between Koszul homologies of I for all i, j ≥ 1:

reg(Hi+j−1(I, S)) ≤ max
1≤α,β≤n−1

{reg(Hi−α(I, S)) + reg(Hj−β(I, S)) + α+ β}.

2. Preliminaries

Let S = k[x1, . . . , xn] be a polynomial ring over a field k and let M be a finitely
generated graded S-module. A minimal free resolution of M is an exact sequence

0 → Fp → Fp−1 → · · · → F0 → M → 0,

where each Fi is a graded S-free module of the form Fi =
⊕

S(−j)βi,j(M) such that
the number of basis elements is minimal and each map is graded. The value βi,j(M)
is called the i-th graded Betti numbers of M of degree j. Note that the minimal
free resolution of M is unique up to isomorphism so the graded Betti numbers are
uniquely determined.

Let I=(f1, . . . , fr) be a graded S-ideal minimally generated in degrees d1, · · · , dr.
Define K(I, S) =

⊕
Kt(I, S) as the Koszul complex associated to the S-linear map

φ : F0 =
⊕

S(−di) → S in which φ(ei) = fi. Let K(I,M) = K(I, S) ⊗ M and
denote Zt(I,M), Bt(I,M), and Ht(I,M) the cycles, boundaries and homologies
of K(I,M), respectively, at the homological position t. We use Zt(I), Bt(I), and
Ht(I) whenever M = S. We set Kt(I, S) = 0 for t < 0.

Remark 2.1. The Koszul complex does depend on the choice of the generators, but
it is unique up to isomorphism if we choose a minimal set of generators. Since we
only deal with the case that the set of generators is minimal, we use K(I) instead
of K(f1, . . . , fr).

Let m = (x1 . . . , xn) be the graded maximal ideal of S. For a finitely generated
module M define the Čech complex as follows:

C•
m(M) : 0 → M →

⊕
1≤i≤n

Mxi
→

⊕
1≤i,j≤n

Mxixj
→ · · · → Mx1...xn

→ 0.

The local cohomology modules of an S-module M are the homologies of the Čech
complex. It is a well-known fact that each local cohomology module is artinian so
we can identify the last nonzero degree of each of them. We define

ami (M) := end(Hi
m(M)) = max{j |Hi

m(M)j �= 0};

then the Castelnuovo-Mumford regularity of module M is defined as follows:

Definition 2.2. Let S = k[x1, . . . , xn] be a polynomial ring, let m = (x1, . . . , xn)
be a unique graded maximal ideal of S, and let M be a finitely generated S-module;
then

reg(M) = max{ami (M) + i}.
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3. Regularity of Koszul cycles

In this section we will present a generalization of a result about convexity of
regularity of Koszul cycles of A. Conca and S. Murai.

The following result is due to W. Bruns, A. Conca and T. Römer in [2]

Lemma 3.1 ([2, Lemma 2.4]). Let S be a polynomial ring, let I be a homogeneous
ideal of S, and let M be a finitely generated graded S-module. Suppose that the

element

(
s+ t
s

)
is invertible in S. Then Zs+t(I,M) is a direct summand of

Zs(I, Zt(I,M))

The following lemma allows us to compare regularities of different terms of exact
sequences and basically it plays the main role in the generalization of the result of
A. Conca and S. Murai [3] on the convexity of regularity of Koszul cycles.

Lemma 3.2. Let L : 0 −→ L4
d4−→ L3

d3−→ L2
d2−→ L1 −→ 0 be an exact sequence

of finitely generated graded S-modules such that L1 and L4 have dimension ≤ 1,
and depthL2 ≥ 2; then

reg(L3) = max{reg(L4), reg(L2), reg(L1)− 1},
in particular reg(L2) ≤ reg(L3).

Proof. First we decompose the complex L into the following short exact sequences:

0 −→ L4
d4−→ L3

can.−→ coker(d4) −→ 0,

0 −→ coker(d4)
d̄3−→ L2

d2−→ L1 −→ 0.

Given the above short exact sequences, one can obtain the following induced long
exact sequences on local cohomology:

(I) · · · −→ Hi
m(L4) → Hi

m(L3) → Hi
m(coker(d4)) → Hi+1

m (L4) −→ · · ·
(II) · · · −→ Hi

m(L2) → Hi
m(L1) → Hi+1

m (coker(d4)) → Hi+1
m (L2) −→ · · ·

Hi
m(L4) = 0 for i ≥ 2 as dimL4 ≤ 1, thus (I) gives

(3.1) H2
m(L3) ∼= H2

m(coker(d4)).

As dimL1 ≤ 1, by (II) we have

Hi
m(coker(d4))

∼= Hi
m(L2) ∀i ≥ 3.

As depthL2 ≥ 2 and Hi
m(L1) = 0 for i = 0, 1, by (II)

(3.2) H0
m(L1) ∼= H1

m(coker(d4)) and H0
m(coker(d4)) = 0.

From the exact sequences (I) and (3.2) we get the following short exact sequences:

0 → H1
m(L4) → H1

m(L3) → H0
m(L1) → 0.

Also the exact sequences (II) and (3.1) give

0 → H1
m(L1) → H2

m(L3) → H2
m(L2) → 0.

As a result we have

aim(L3) =

⎧⎪⎪⎨
⎪⎪⎩

a0m(L4) if i = 0,
max{a1m(L4), a

0
m(L1)} if i = 1,

max{a2m(L2), a
1
m(L1)} if i = 2,

aim(L2) if i ≥ 3,
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which proves the statement. �

Proposition 3.3. Let S = k[x1, . . . , xn] be a polynomial ring, let M be a finitely
generated graded S-module with depthM ≥ 2, and let I be a graded ideal of S such
that dimS/I � 1; then

reg(Zt(Zs(I,M))) � reg(Zt(I)) + reg(Zs(I,M)).

Proof. By definition one has the following exact sequences:

(†) 0 → Zs(I,M)) → Ks(I,M)
dt→ Ks−1(I,M),

(‡) 0 → Zt(I, Zs(I,M)) → Kt(I, Zs(I,M))
dt→ Kt−1(I, Zs(I,M)).

Note thatKs(I,M) andKs−1(I,M) are direct sums of copies ofM ; (†) then implies
that depthZs(I,M) � min{2, depthM} = 2. Using (‡), depthZt(I, Zs(I,M)) ≥
min{2, depthZs(I,M)} = 2.

For the canonical map in [2, section 5]

us,t : Zt(I)⊗ Zs(I,M) → Zt(I, Zs(I,M)).

Proposition 5.1 in [2] gives an exact sequence,

0 → ker(us,t) → Zt(I)⊗ Zs(I,M) → Zt(Zs(I,M))

→ TorS1 (
Ks−1(I,M)

Bs−1(I,M)
, Zt(I)) → 0.

Notice that after localization at prime ideals not in the support of S/I all the
Koszul cycles become a direct sum of copies of M and the map us,t becomes an

isomorphism. Therefore, TorS1 (
Ks−1(I,M)

Bs−1(I,M)
, Zt(I)) and ker(us,t) are supported in

S/I, hence have a dimension at most 1.
Thus the conditions of Lemma 3.2 are fulfilled, and this lemma gives:

reg(Zt(Zs(I,M))) � reg(Zt(I,M)⊗ Zs(I,M)).

Notice that TorR1 (Zt(I), Zs(I,M)) has Krull dimension at most 1 because Zt(I)
is free when we localize at prime ideals not in the support of S/I. So we apply
Corollary 3.1 in [6] to get

reg(Zt(I,M)⊗ Zs(I,M)) � reg(Zt(I)) + reg(Zs(I,M)).

As a result we get

reg(Zt(Zs(I,M))) � reg(Zt(I)) + reg(Zs(I,M)).

�

Theorem 3.4. Let S = k[x1, . . . , xn] and let I be a graded ideal of S. If dimS/I �
1 and the characteristic of k is 0 or larger than s+ t, then

reg(Zs+t(I)) � reg(Zt(I)) + reg(Zs(I)).

Proof. The theorem follows from Proposition 3.3 and Lemma 3.1. �
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4. Regularity of Koszul homologies

We start this section with a fact which is likely part of folklore but we did not
find in the classical references.

Proposition 4.1. Let S = k[x1, . . . , xn] be a polynomial ring and I be an ideal of
S minimaly generated by f1 . . . , fr. Then Zi(I) ⊂ mKi(I) for all i.

Proof. Suppose it is not; then there exists z ∈ Zi(I) that is not in mKi(I). By
symmetry we may assume it has the form:

z = e1 ∧ · · · ∧ ei +
∑
j>i

cje1 ∧ · · · ∧ ei−1 ∧ ej + terms without e1 ∧ · · · ∧ ei−1.

Since ∂(z) = 0 it follows that (−1)ifi +
∑

j>i(−1)jcjfj = 0, as it is the coefficient

of e1 ∧ · · · ∧ ei−1 in the expression of ∂(z), which is a contradiction with the fact
that f1, . . . , fr is a minimal set of generators for I. �

Corollary 4.2. Let S = k[x1, . . . , xn] be a polynomial ring and let I = (f1, . . . , fr)
be a homogeneous ideal of S. Let f1, . . . , fr be a minimal generating set of I and
deg(fi) = di where d1 ≥ d2 ≥ · · · ≥ dr. Then reg(Zi(I)) > d1 + · · ·+ di for i ≤ r.

Proof. Fix a basis element e1 ∧ · · · ∧ ei ∈ Ki. Since K•(I) is a complex,

∂(e1 ∧ · · · ∧ ei ∧ ei+1)

= (−1)i+1fi+1e1 ∧ · · · ∧ ei +
∑

0<j<i+1

(−1)jfje1 ∧ · · · ∧ êj ∧ · · · ∧ ei+1 ∈ Zi(I).

Therefore an element of the form ge1 ∧ · · · ∧ ei should appear as a summand in
a minimal generating element of Zi(I). By Proposition 4.1, g ∈ m. So there
exists a minimal generator of degree at least d1 + · · ·+ di + 1. Hence reg(Zi(I)) >
d1 + · · ·+ di. �

M. Chardin and P. Symonds in [4] presented a new approach to the study of the
regularity of cycles of a general complex by the regularity of previous homologies.
Here we determine a concrete relation between regularity of cycles and homologies
of a Koszul complex.

Theorem 4.3. Let S = k[x1, . . . , xn] be a polynomial ring and let I be a homo-
geneous ideal of S minimally generated by f1, . . . , fr. If dimS/I ≤ 1, then for
0 < i < r:

(4.1) reg(Zi(I)) = max
0<j≤min{n−1,i}

{reg(Hi−j(I)) + j + 1}.

Proof. Let I = (f1, . . . , fr) and deg(fi) = di where d1 ≥ d2 ≥ · · · ≥ dr. Let Ki
•(I)

be the i-th truncated Koszul complex of I as follows:

Ki
•(I) : 0 → Zi(I) −→

∂′
i Ki(I) −→

∂i
Ki−1(I) −→

∂i−1 · · · −→∂1 K0(I) → 0

and C• be the Čech complex. Consider double complex X = C• ⊗ Kr
•(I) where

Xp,q = C•−p ⊗ Kr
•(I)q, and its associated spectral sequence. We first compute
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homology vertically and we get

H0
m(Zi(I)) 0 0 · · · 0

H1
m(Zi(I)) 0 0 · · · 0

H2
m(Zi(I)) 0 0 · · · 0

...
...

...
...

...

Hn
m(Zi(I)) −→

Hn
m(∂′

i) Hn
m(Ki(I)) −→

Hn
m(∂i) Hn

m(Ki−1(I)) −→
Hn

m(∂i−1)

· · · −→H
n
m(∂1)

Hn
m(K0(I)).

By continuing the process we have:

E∞
p,q = E2

p,q

⎧⎪⎪⎨
⎪⎪⎩

Hp
m(Zq(I)) if q = i+ 1, p < n,

Hq(H
n
m(K

i
•(I))) if p = n, q ≤ i,

ker(Hn
m(∂

′
i)) if (p, q) = (n, i+ 1),

0 otherwise.

Notice that since anm(Kj(I)) = d1 + · · ·+ dj − n, it follows that for all 0 ≤ q ≤ i
we have end(E∞

n,q) ≤ end(E1
n,q) = d1 + · · ·+ dq − n.

On the other hand, if we start taking homology horizontally we have E′2
p,q =

Hp
m(Hq(I)) for all p and q < i and E′2

p,q = 0 for q = i, i+1. Notice that dimHi(I) ≤
dimS/I ≤ 1, therefore the spectral sequence collapses in the second page and we
have:

E′∞
p,q = E′2

p,q

{
Hp

m(Hq(I)) if p = 0, 1 and q < i,
0 otherwise.

The comparison of two spectral sequences gives

H0
m(Zi(I)) = H1

m(Zi(I)) = 0,

a2m(Zi(I)) = a0m(Hi−1(I)),

ajm(Zi(I)) = max{a1m(Hi−j+2(I)), a
0
m(Hi−j+1(I))} ∀ 2 < j < n.

In addition, for the last local cohomology we have

anm(Zi(I)) ≤ max{a1m(Hi−n+2(I)), a
0
m(Hi−n+1(I)), d1 + · · · di − n}.

Furthermore

anm(Zi(I)) = max{a1m(Hi−n+2(I)), a
0
m(Hi−n+1(I))}

if anm(Zi(I)) > d1 + · · · di − n. By Corollary 4.2, we can deduce that

anm(Zi(I)) = max{a1m(Hi−n+2(I)), a
0
m(Hi−n+1(I))} or anm(Zi(I)) + n < reg(Zi(I))

In addition, the comparison of the two spectral sequences and Corollary 4.2 gives

a1m(Hi−n+1(I)) ≤ end(E∞
n,i−1) ≤ d1 + · · ·+ di−1 − n < reg(Zi(I))− n.
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As a result we have:

reg(Zi(I)) = max
0≤j≤n

{ajm(Zi(I)) + j}

= max
3≤j≤max{n,i+2}

{a0m(Hi−1(I)) + 2, a1m(Hi−j+2(I))

+ j, a0m(Hi−j+1(I)) + j, d1 + · · · di}
= max

2≤j≤max{n,i+1}
{reg(Hi−j+1(I)) + j}.

�

Remark 4.4. From the proof of Theorem 4.3, the following equality also holds:

reg(Zi(I)) = max
j>0

{reg(Hi−j(I)) + j + 1}.

As a consequence of Theorems 4.3 and 3.4 we give a regularity bound for Koszul
homologies in dimension at most 1.

Theorem 4.5. Let S = k[x1, . . . , xn] be a polynomial ring and I be a homogeneous
ideal of S. If dimS/I ≤ 1, then for all i, j ≥ 1 we have the following regularity
bound for the Koszul homologies of I:

(4.2) reg(Hi+j−1(I)) ≤ max
0<α,β<n

{reg(Hi−α(I)) + reg(Hj−β(I)) + α+ β}.

Proof. By Theorem 3.4 we have the following inequality for all i, j:

reg(Zi+j(I)) ≤ reg(Zi(I)) + reg(Zj(I)).

By using Theorem 4.3 we have

reg(Hi+j−1(I)) + 2

≤ reg(Zi+j(I))

≤ reg(Zi(I)) + reg(Zj(I))

= max
0<α<n

{reg(Hi−α(I)) + α+ 1}+ max
0<β<n

{reg(Hj−β(I)) + β + 1}

= max
0<α,β<n

{reg(Hi−α(I)) + reg(Hj−β(I)) + α+ β + 2}.

�

The following example shows the deviation degree of our bound compared to the
bound provided by A. Conca and S. Murai in dimension 0.

Example 4.6. Let S = k[x, y, z] be a polynomial ring and I = (x, y, z)4. We
compare our bound for the regularity of H12(I) for different i, j by the bound
in [3]. By using MACAULAY2 [7] one can see that the reg(H12(I)) = 57. For
bounding regularity of H12(I) we should choose i, j such that i + j = 13. By
choosing (i, j) = (1, 12) (respectively (2, 11), (3, 10), (4, 9), (5, 8), (6, 7)) the right
hand side of (4.2) is 57 (respectively 58, 58, 59, 59, 58). On the other hand in the
bound proposed by A. Conca and S. Murai the best possible estimate is 61.

Corollary 4.7. Let S = k[x1, . . . , xn] be a polynomial ideal and let I be an ideal
of S. If dimS/I ≤ 1, then

reg(Hi(I)) ≤ (i+ 1) reg(H0(I)) + 2i.

In particular, reg(Hi(I)) ≤ (i+ 1)(reg(I)− 1) + 2i.
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Proof. We prove by induction. For i = 1 by Theorem 4.5 we have

reg(H1(I)) ≤ {reg(H0(I)) + 1 + reg(H0(I)) + 1} = 2 reg(H0(I)) + 2.

Let reg(Hi(I)) ≤ (i+1) reg(H0(I))+2i for all i ≤ r, by choosing i = 1 and j = r+1
in Corollary 4.2 we have

reg(Hr+1(I)) ≤ max
0<β<n

{reg(H0(I)) + reg(Hr+1−β(I)) + β + 1}.

For all 0 < β < n we have

reg(Hr+1−β(I)) + β + 1 ≤ (r − β + 2) reg(H0(I)) + 2(r + 1− β) + β + 1

≤ (r + 1) reg(H0(I)) + 2(r + 1).

Therefore, reg(Hr+1(I)) ≤ (r + 2) reg(H0(I)) + 2(r + 1). �
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