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NILPOTENT ELEMENTS OF OPERATOR IDEALS

AS SINGLE COMMUTATORS
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(Communicated by Stephan Ramon Garcia)

Abstract. For an arbitrary operator ideal I, every nilpotent element of I is
a single commutator of operators from I t for an exponent t that depends on
the degree of nilpotency.

1. Introduction

By operator ideal we mean a proper, nonzero, two-sided ideal of the algebra
B(H) of bounded operators on a separable, infinite Hilbert space H. These ideals
consist of compact operators. For a compact operator, A on H, let s(A) =
(s1(A), s2(A), . . .) be the sequence of singular numbers of A. This is the non-
increasing sequence of nonzero eigenvalues of |A| := (A∗A)1/2, listed in order of
multiplicity, with a tail of zeros in case A has finite rank. As Calkin showed [4],
an operator ideal I is characterized by s(I) = {s(A) | A ∈ I}. (See also, e.g., [7]
or [5] for expositions.) For a positive real number t and an operator ideal I, we let
I t denote the operator ideal generated by {|A|t | A ∈ I}.

Questions about additive commutators [B,C] := BC − CB involving elements
of operator ideals have been much studied. One of the questions asked in [8], by
Pearcy and Topping, is whether every compact operator A is a single commutator
A = [B,C] of compact operators B and C. This question is still open. Important
results about single commutators in operator ideals were obtained by Anderson [1].
Further results are found in Section 7 of [5]. More recently, Beltiţă, Patnaik, and
Weiss [3] have made progress on the above-mentioned question.

Our purpose in this note is to show that every nilpotent compact operator is a
single commutator of compact operators. In fact, we show (Theorem 3.2) that for
a general operator ideal I, every nilpotent element A ∈ I is a single commutator
A = [B,C] of B,C ∈ I t, where the value of t > 0 depends on the value of n for
which An = 0. Except in the case n ≤ 4, we don’t know if we have found the
optimal value of t.

2. Preliminaries

Let H be an infinite dimensional Hilbert space. Everything in this section is
known or is at least unsurprising, but we include proofs for convenience.
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Lemma 2.1. Suppose x, y ∈ B(H) and t ∈ R, t > 0.

(i) If t(x∗x) ≥ y∗y, then there exists r ∈ B(H) such that ‖r‖ ≤
√
t and y = rx.

(ii) If t(xx∗) ≥ yy∗, then there exists r ∈ B(H) such that ‖r‖ ≤
√
t and y = xr.

Proof. The assertion (ii) follows from (i) by taking adjoints. If we prove the asser-
tion (i) when t = 1, then the case of arbitrary t follows by replacing x with

√
tx.

So we will prove (i) in the case t = 1.
Suppose x∗x ≥ y∗y. Given ξ ∈ H, we have

‖yξ‖2 = 〈y∗yξ, ξ〉 ≤ 〈x∗xξ, ξ〉 = ‖xξ‖2.
Thus, we may define a contractive linear operator from ran(x) into H by

xξ 	→ yξ.

This extends uniquely to a contractive linear operator, which we call r0, from ran(x)
into H. We have r0x = y. Letting p be the orthogonal projection from H onto
ran(x), we set r = r0p. Thus, r ∈ B(H) is a contraction and rx = y. �

For n ≥ 1, we make the natural identifications

(1) B(H⊕n) = Mn(B(H)) = B(H)⊗Mn(C)

and we let (ei,j)1≤i,j≤n be the usual system of matrix units in Mn(C).
The fact that nilpotent operators have an upper triangular form is well known

(see, for instance, Section 2 of [2]). For our purposes, we require all the entries to
act on the same space, so we provide a modified proof. Recall that H is assumed
to be infinite dimensional (and here we do not need to assume it is separable).

Lemma 2.2. Let A ∈ B(H) satisfy An = 0. Then there exists a unitary U : H →
H⊕n such that UAU∗ is a strictly upper triangular element of Mn(B(H)).

Proof. We will first show that dimkerA = dimH, where dim is the cardinality of
an orthonormal basis. Consider B = A|kerA2 . Note that kerA = kerB and that B
leaves kerA2 invariant.

Assume that dimkerA2 = dimH. If dimkerB < dimH, then

dim(kerA2 � kerB) = dimH,

and B maps (kerA2 � kerB) injectively to ranB. Hence dim ranB = dimH. But
ranB ⊂ kerB, so dim ranB ≤ dimkerB. Hence dim kerA2 = dimH implies

dimkerA = dimH. Since A is nilpotent, we have dim kerA2k = dimH, for some k.
Arguing by induction on k, starting from k = 1, we must have dimkerA = dimH.

Let

V1 = kerA,

Vk = kerAk � kerAk−1 (2 ≤ k ≤ n).

We will construct closed subspaces

W1 ⊆ W2 ⊆ · · · ⊆ Wn = H

with
Wk ⊆ kerAk

such that, letting W0 = {0}, we have, for every 1 ≤ k ≤ n,

(2) dim(Wk �Wk−1) = dimH
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and for every 1 ≤ k ≤ n− 1,

dim((kerAk+1)�Wk) = dimH,(3)

A(Vk+1) ⊆ Wk.(4)

Fixing k = 1, if dimV2 = dimH, then let W1 = kerA. We know dimkerA =
dimH, so (2) holds. Moreover, kerA2 � W1 = V2, so (3) holds and A(V2) ⊆
A(kerA2) ⊆ kerA, so (4) holds. Otherwise, if dimV2 < dimH, then choose W1

closed so that

A(V2) ⊆ W1 ⊆ kerA

and

dimW1 = dimH = dim(kerA�W1).

This choice is possible because we know that dim kerA = dimH and by hypothesis
dimA(V2) ≤ dimV2 < dimH. Then (2) and (4) (for k = 1) hold by construction.
We have

dimH ≥ dim((kerA2)�W1) ≥ dim((kerA)�W1) = dimH,

so (3) holds.
Now suppose 2 ≤ k ≤ n− 1 and W1, . . . ,Wk−1 have been constructed with the

required properties. If dimVk+1 = dimH, then let Wk = kerAk. Then (2) for
k is just (3) for k − 1, while (3) for k is just the hypothesis dim(Vk+1) = dimH.
Moreover, A(Vk+1) ⊆ A(kerAk+1) ⊆ kerAk, so (4) holds for this k as well.

Otherwise, if dimVk+1 < dimH, then choose Wk closed so that

A(Vk+1) +Wk−1 ⊆ Wk ⊆ kerAk

and

dim(Wk �Wk−1) = dimH = dim((kerAk)�Wk).

This is possible because, by hypothesis (namely, (3) for k − 1),

dim(kerAk �Wk−1) = dimH

and dim(A(Vk+1)) ≤ dimVk+1 < dimH. Then (2) and (4) hold by construction,
while for (3), we use

dimH ≥ dim((kerAk+1)�Wk) ≥ dim((kerAk)�Wk) = dimH.

Finally, set Wn = H = kerAn. Then (2) for k = n follows from (3) for k = n−1.
Using (4), we get

A(Wk) ⊆ A(kerAk) = A(V1) + · · ·+A(Vk) ⊆ Wk−1.

Let H1 = W1 and Hk = Wk �Wk−1, 2 ≤ k ≤ n. Then dimHk = dimH for all
k and

A(H1) = {0},(5)

A(Hk) ⊆ A(Wk) ⊆ Wk−1 =

k−1⊕
j=1

Hj (2 ≤ k ≤ n).(6)

Choosing unitaries Uk : Hk → H yields a unitary U =
⊕n

k=1 Uj : H → H⊕n.
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Let ei, 1 ≤ i ≤ n be the standard basis in Cn. Identifying H⊕n with H ⊗ Cn,
consider x⊗ ek ∈ H⊕n. Then U∗(x⊗ ek) ∈ Hk. From (5) and (6), we have

UAU∗(x⊗ e1) = 0,

UAU∗(x⊗ ek) =
k−1∑
j=1

yjk ⊗ ej (2 ≤ k ≤ n),

for some yjk ∈ H. Hence UAU∗ ∈ Mn(B(H)) is strictly upper triangular. �

Remark 2.3. We work in B(H)⊗Mn(C) and suppose that

A =
∑

1≤i<j≤n

ai,j ⊗ ei,j ,

for ai,j ∈ B(H), is a strictly upper triangular matrix of operators. Here, ei,j are
matrix units in Mn(C). We consider upper triangular matrices of the particular
forms

B =

n−1∑
i=1

bi ⊗ ei,i+1, C =
∑

2≤i≤j≤n

ci,j ⊗ ei,j

with bi, ci,j ∈ B(H). Then the condition A = BC − CB is equivalent to

a1,j = b1 c2,j (2 ≤ j ≤ n),

ai,j = bi ci+1,j − ci,j−1bj−1 (2 ≤ i < j ≤ n)

or, equivalently,

b1 c2,j = a1,j (2 ≤ j ≤ n),(7)

bi ci+1,j = ai,j + ci,j−1bj−1 (2 ≤ i < j ≤ n).(8)

3. Nilpotents in operator ideals

Let I ⊆ B(H), with H separable, be an operator ideal. It is well known and
easy to see that under any identification of B(H) with Mn(B(H)) as in (1), the
ideal I is identified with Mn(I).

We first prove the following easy result, whose proof is similar to that of Proposi-
tion 3.2 of [6]. It serves as a precursor to and easier version of Theorem 3.2, though
we won’t need it in the proof of that theorem.

Proposition 3.1. Let I be an operator ideal and suppose A ∈ I is nilpotent. Then
there exist B ∈ B(H) and C ∈ I such that A = BC − CB.

Proof. Let n ≥ 2 be such that An = 0. By Lemma 2.2, we may work in B(H) ⊗
Mn(C) and suppose that

A =
∑

1≤i<j≤n

ai,j ⊗ ei,j ,

for ai,j ∈ I. We need only find elements bi ∈ B(H) and ci,j ∈ I, as in Remark 2.3,
so that (7) and (8) hold. This is easily done by setting bi = 1 for all i ∈ {1, . . . , n}
and recursively assigning

c2,j = a1,j (2 ≤ j ≤ n),

ci+1,j = ai,j + ci,j−1 (2 ≤ i < j ≤ n).

�
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Theorem 3.2. Let I be an operator ideal and suppose A ∈ I satisfies An = 0, for

some integer n ≥ 4. Then there exist B,C ∈ I1/2n−3

such that A = BC − CB.

Proof. By Lemma 2.2, we may work in B(H)⊗Mn(C) and suppose that

A =
∑

1≤i<j≤n

ai,j ⊗ ei,j ,

for ai,j ∈ I. We will find elements bi and ci,j of I1/2n−3

, as in Remark 2.3, so
that (7) and (8) hold.

Step 1 (Assign values to b1, . . . , bn−2). Let

b1 =

⎛
⎝

n∑
j=2

|a∗1,j |2
⎞
⎠

1/4

∈ I1/2,

bi =

⎛
⎝b2i−1 +

n∑
j=i+1

|a∗i,j |2
⎞
⎠

1/4

∈ I1/2i (2 ≤ i ≤ n− 3),

bn−2 =

⎛
⎝b4n−3 +

n∑
j=i+1

|a∗i,j |2
⎞
⎠

1/4

∈ I1/2n−3

.

Since for every 1 ≤ i ≤ n − 2 and every i < j ≤ n, we have b4i ≥ |a∗i,j |2, by
Lemma 2.1 there exists ri,j ∈ B(H) such that

b2i ri,j = ai,j (1 ≤ i ≤ n− 2, i < j ≤ n).

Moreover, for every 2 ≤ i ≤ n− 3, since b4i ≥ b2i−1, by the same lemma there exists
xi ∈ B(H) such that

b2ixi = bi−1 (2 ≤ i ≤ n− 3).

Furthermore, since b4n−2 ≥ b4n−3 and the square root function is operator monotone,
we have b2n−2 ≥ b2n−3. Thus, by Lemma 2.1 there exists z ∈ B(H) so that

bn−2 z = bn−3.

Step 2 (Assign values to c2,j and auxiliary variables y2,j for 2 ≤ j ≤ n and ver-
ify (7)). Let

y2,j = r1,j , c2,j = b1y2,j (2 ≤ j ≤ n).

Thus, c2,j ∈ I1/2. Then we have

b1c2,j = b21r1,j = a1,j (2 ≤ j ≤ n);

namely, (7) holds.

Step 3 (Assign values to cp,j and auxiliary variables yp,j for 3 ≤ p ≤ n − 2 and
p ≤ j ≤ n− 1 and verify the equality in (8) for 2 ≤ i ≤ n− 3 and i < j ≤ n− 1).
We let p increase from 3 to n − 2 and for each such p we define (recursively in p)
for every j ∈ {p, p+ 1, . . . , n− 1},

yp,j = rp−1,j + xp−1yp−1,j−1bj−1, cp,j = bp−1yp,j .
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Thus, cp,j ∈ I1/2p−1

, and we have

bici+1,j = b2i ri,j + b2ixiyi,j−1bj−1

= ai,j + bi−1yi,j−1bj−1

= ai,j + ci,j−1bj−1 (2 ≤ i ≤ n− 3, i < j ≤ n− 1),

and the equality in (8) holds for these values of i and j.

Step 4 (Assign a value to cn−1,n−1 and verify the equality in (8) for i = n− 2 and
j = n− 1). Let

cn−1,n−1 = bn−2rn−2,n−1 + zyn−2,n−2bn−2.

Then cn−1,n−1 ∈ I1/2n−3

and

bn−2cn−1,n−1 = b2n−2rn−2,n−1 + bn−2zyn−2,n−2bn−2

= an−2,n−1 + bn−3yn−2,n−2bn−2

= an−2,n−1 + cn−2,n−2bn−2.

Thus, the equality in (8) holds for i = n− 2 and j = n− 1.

Step 5 (Assign a value to bn−1). Let

bn−1 =
(
|a∗n−1,n|2 + |c∗n−1,n−1|4

)1/4
.

Then bn−1 ∈ I1/2n−3

. Since b4n−1 ≥ |a∗n−1,n|2, by Lemma 2.1 there is rn−1,n ∈ B(H)
so that

b2n−1rn−1,n = an−1,n.

Since b4n−1 ≥ |c∗n−1,n−1|4 and the square root function is operator monotone, we

have b2n−1 ≥ |c∗n−1,n−1|2 and, from Lemma 2.1, we have s ∈ B(H) so that

bn−1s = cn−1,n−1.

Step 6 (Assign values to cp,n for all 3 ≤ p ≤ n− 2 and verify the equality in (8) for
all 2 ≤ i ≤ n− 3 and j = n). Let

cp,n = bp−1rp−1,n + bp−1xp−1yp−1,n−1bn−1.

Then cp,n ∈ I1/2p−1

and

bici+1,n = b2i ri,n + b2ixiyi,n−1bn−1

= ai,n + bi−1yi,n−1bn−1

= ai,n + ci,n−1bn−1 (2 ≤ i ≤ n− 3);

namely, the equality in (8) holds for these values of i and for j = n.

Step 7 (Assign a value to cn−1,n and verify the equality in (8) for i = n − 2 and
j = n). Let

cn−1,n = bn−2rn−2,n + zyn−2,n−1bn−1.

Then cn−1,n ∈ I1/2n−3

and

bn−2cn−1,n = b2n−2rn−2,n + bn−2zyn−2,n−1bn−1

= an−2,n + bn−3yn−2,n−1bn−1

= an−2,n + cn−2,n−1bn−1;

namely, the equality in (8) holds for i = n− 2 and for j = n.
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Step 8 (Assign a value to cn,n and verify the equality in (8) for i = n−1 and j = n).
Let

cn,n = bn−1rn−1,n + sbn−1.

Then cn,n ∈ I1/2n−3

and

bn−1cn,n = b2n−1rn−1,n + bn−1sbn−1 = an−1,n + cn−1,n−1bn−1,

as required. �
Corollary 3.3. Let I by any operator ideal such that I t ⊆ I for every t > 0. Then
for every nilpotent element A of I, there exist B,C ∈ I such that A = BC − CB.

Examples of operator ideals I satisfying the conditions of Corollary 3.3 include:

(a) the ideal K of all compact operators;
(b) the ideal of all operators A whose singular numbers have polynomial decay:

sn(A) = O(n−t) for some t > 0; note that this ideal is equal to the union
of all Schatten p-class ideals, p ≥ 1;

(c) the ideal of all operators A whose singular numbers have exponential decay:
sn(A) = O(rn) for some 0 < r < 1;

(d) the ideal of all finite rank operators.

Question 3.4. Is 1/2n−3 the optimal (i.e., largest possible) exponent of I in The-
orem 3.2? Clearly, the answer is yes when n = 4. But as far as we know, it is
possible that the best exponent is 1/2 for arbitrary n.
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