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RANDOM POLYTOPES: CENTRAL LIMIT THEOREMS

FOR INTRINSIC VOLUMES

CHRISTOPH THÄLE, NICOLA TURCHI, AND FLORIAN WESPI

(Communicated by David Levin)

Abstract. Short and transparent proofs of central limit theorems for in-
trinsic volumes of random polytopes in smooth convex bodies are presented.
They combine different tools such as estimates for floating bodies with Stein’s
method from probability theory.

1. Introduction and main result

Fix a space dimension n ≥ 2, let N ≥ n + 1, and suppose that X1, . . . , XN are
independent random points that are uniformly distributed in a prescribed convex
body K, which we assume to have a boundary which is twice differentiable and
has positive Gaussian curvature everywhere. The convex hull of X1, . . . , XN is
denoted by KN . In this note we are interested in the intrinsic volumes Vj(KN ) of
KN , j ∈ {1, . . . , n}. These functionals are of particular importance in convex and
integral geometry since they (together with the Euler-characteristic) form a basis
of the vector space of all motion invariant and continuous valuations on convex
bodies according to Hadwiger’s celebrated theorem; cf. [14]. The purpose of this
text is to prove central limit theorems for Vj(KN ), j ∈ {1, . . . , n}, as N → ∞.
Let us point out that such a result is not totally new. Central limit theorems for
general j ∈ {1, . . . , n} were known for a long time only for the Poisson setting in the
the special case that K is the n-dimensional Euclidean unit ball; see the paper of
Calka, Schreiber, and Yukich [6]. We also refer to the paper of Schreiber [15] for the
case j = 1. Only very recently (in parallel and independently of us) Lachièze-Rey,
Schulte, and Yukich [9] gave a proof for the general case by embedding the problem
into the theory of so-called stabilizing functionals.

Using estimates for floating bodies, in combination with a general normal ap-
proximation bound obtained by Chatterjee [7] and Lachièze-Rey and Peccati [8]
originating in Stein’s method, our contribution is a quick, transparent, and direct
proof of the central limit theorems for the intrinsic volumes Vj(KN ), j ∈ {1, . . . , n},
as N → ∞. More precisely, while the traditional methods (see [10,12,18]) first use
a conditioning argument to compare KN with the floating body and to prove the
central limit theorem for a Poissonized version of the random polytopes, before
pushing this result to the original model by de-Poissonization, we give a direct
proof without making the detour just described. We also avoid this way the more
technical theory of stabilizing functionals developed in [9].
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To present our result formally, we shall use the notation aN � bN whenever for
two sequences (aN ) and (bN ), aN ≤ c bN for sufficiently large N ≥ n+ 1 and some
constant c ∈ (0,∞) not depending on N (but possibly on the space dimension n
and the convex body K).

We define the Wasserstein distance between two random variables X and Y as

(1.1) d(X,Y ) := sup
h∈Lip1

∣∣Eh(X)− Eh(Y )
∣∣ ,

where the supremum is running over all Lipschitz functions h : R → R with Lip-
schitz constant less than or equal to 1. It is well known that if G is a standard
Gaussian random variable and if (WN )N∈N is a sequence of centred random variables
with finite second moment such that d(WN/

√
VarWN , G) → 0, as N → ∞, then

WN converges in distribution to G.
We take into consideration the intrinsic volumes of KN

Vj(KN ) , j ∈ {1, . . . , n} , N ≥ n+ 1 ,

for which we prove the following central limit theorems. As discussed earlier, this
extends the results in [15, 18] to more general convex bodies and to arbitrary in-
trinsic volumes.

Theorem 1.1. Let K ⊂ R
n be a convex body with twice differentiable boundary

and strictly positive Gaussian curvature everywhere. Then, for all j ∈ {1, . . . , n},
one has that (Vj(KN ) − EVj(KN ))/

√
VarVj(KN ) converges in distribution to a

standard Gaussian random variable G, as N → ∞. More precisely,

d

(
Vj(KN )− EVj(KN )√

VarVj(KN )
, G

)
� N− 1

2+
1

n+1 (logN)3+
2

n+1 .

The rest of this note is structured as follows. In Section 2 we collect some
background material in order to keep our presentation reasonably self-contained.
The proof of the central limit theorems is the content of the final Section 3.

2. Background material

Convex bodies. By a convex body we understand a compact convex subset of
Rn that has non-empty interior. We use the symbol Bn to denote the centred
Euclidean unit ball in Rn. For points X1, . . . , XN ∈ Rn, we write [X1, . . . , XN ] to
indicate their convex hull.

Intrinsic volumes. Let K ⊂ Rn be a convex body and fix j ∈ {0, . . . , n}. We
denote by G(n, j) the Grassmannian of j-dimensional linear subspaces of Rn, which
is supplied with the unique Haar probability measure νj ; see [14]. For L ∈ G(n, j),
we write volj(K|L) for the j-dimensional Lebesgue measure of the orthogonal pro-

jection of K onto L. Finally, we let for integers � ∈ N, κ� = π�/2Γ(1 + �
2 )

−1 be the
volume of the �-dimensional unit ball. Then the jth intrinsic volume of K can be
defined as

(2.1) Vj(K) :=

(
n

j

)
κn

κjκn−j

∫
G(n,j)

volj(K|L) νj(dL) .

For example, Vn(K) is the ordinary volume (Lebesgue measure), Vn−1(K) is half of
the surface area, V1(K) is a constant multiple of the mean width, and V0(K) ≡ 1
is the Euler-characteristic of K.
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An estimate for subspaces. Fix j ∈ {1, . . . , n− 1}, L ∈ G(n, j), and z ∈ Sn−1.
The angle �(z, L) between z and L is defined as the minimum angle
min{�(z, x) : x ∈ L}. We now recall the following fact from [2, Lemma 1]; see
also [5, Lemma 10].

Lemma 2.1. We have that

νj({L ∈ G(n, j) : �(z, L) ≤ a}) � an−j

for all sufficiently small a > 0.

Floating bodies. We recall the concept of the floating body, that was introduced
independently in [4] and [16]. Let K ⊂ Rn be a convex body and t > 0 (we shall
implicitly assume that t is sufficiently small). If H is a half space of R

n with
Vn(K ∩H) = t, the set K ∩H is called a t-cap of K. The union of all these t-caps
is the so-called wet part of K and its complement is the t-floating body of K. In
what follows, we shall denote the t-floating body by K(t). We rephrase a result
of Bárány and Dalla [3], which has been proved by Vu [17] as well, using different
techniques; see also Lemma 2.2 in [13]. Recall that KN is the random polytope
generated by N independent random points that are uniformly distributed in a
convex body K ⊂ Rn having sufficiently smooth boundary (in fact, smoothness of
the boundary is not needed in the next lemma).

Lemma 2.2. For any β ∈ (0,∞), there exists a constant c = c(β, n) ∈ (0,∞) only
depending on β and on n such that the probability of the event that KN does not
contain the c logN

N -floating body is at most N−β, whenever N is sufficiently large.

A general bound for normal approximation. Let S be a Polish space and

f :
⋃N

k=1 S
k → R be a measurable and symmetric function acting on point con-

figurations of at most N ∈ N points in S. For x = (x1, . . . , xN ) ∈ SN , we write
xi for the vector x with the ith coordinate removed and xi1i2 for the vector that
arises from x by removing coordinates i1 and i2. Next, we define the first- and
second-order difference operator applied to f(x) = f(x1, . . . , xN ) by

Dif(x) := f(x)− f(xi) and Di1,i2f(x) := f(x)− f(xi1)− f(xi2) + f(xi1i2),

respectively.

We denote by X = (X1, . . . , XN ) a random vector of elements of S. Let X ′, X̃
be independent copies of X and say that a random vector Z = (Z1, . . . , ZN ) is a

recombination of {X,X ′, X̃} provided that Zi ∈ {Xi, X
′
i, X̃i} for all i ∈ {1, . . . , N}.

To rephrase the normal approximation bound from [7] in the form that can be
deduced from [8] we define

γ1 := sup
(Y,Y ′,Z,Z′)

E
[
1{D1,2f(Y ) �= 0}1{D1,3f(Y

′) �= 0} (D2f(Z))2 (D3f(Z
′))2

]
,

γ2 := sup
(Y,Z,Z′)

E
[
1{D1,2f(Y ) �= 0} (D1f(Z))2 (D2f(Z

′))2
]
,

γ3 := E|D1f(X)
∣∣4 ,

γ4 := E|D1f(X)|3 ,
where the suprema in the definitions of γ1 and γ2 run over all quadruples or triples

of vectors (Y, Y ′, Z, Z ′) or (Y, Z, Z ′) that are recombinations of {X,X ′, X̃}, re-
spectively. Next, we define W := f(X1, . . . , XN ) and assume that EW = 0 and
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0 < EW 2 < ∞. Recall that d( · , · ) denotes the Wasserstein distance defined in
(1.1).

Lemma 2.3. Under the assumptions stated above, if G denotes a standard Gauss-
ian random variable, then

d

(
W√
VarW

,G

)
�

√
N

Var W

(√
N2γ1 +

√
Nγ2 +

√
γ3

)
+

N

(Var W )
3
2

γ4 .

3. Proof of Theorem 1.1

In the proof of our result we will make use of the following lower and upper
variance bounds, proven by Bárány, Fodor and Vı́gh [2], namely,

(3.1) N−n+3
n+1 � VarVj(KN ) � N−n+3

n+1

for all j ∈ {1, . . . , n}.
According to Lemma 2.2, we see that for any β ∈ (0,∞) there exists a constant

c = c(β, n) ∈ (0,∞) such that the random polytope [X2, . . . , XN ] contains the
floating body K(c logN/N) with high probability. More precisely, denoting the latter
event by B1, it holds that for sufficiently large N ,

(3.2) P(Bc
1) ≤ (N − 1)−β ≤ c1N

−β ,

where c1 ∈ (0,∞) is a constant independent of N . Note that we choose β large
enough (β = 5 will be sufficient for all our purposes).

Next, we let Y, Y ′, Z, Z ′ be recombinations of our random vector X = (X1, . . . ,
XN ) and denote by B2 the event that

⋂
W∈{Y,Y ′,Z,Z′}[W4, . . . ,WN ] contains

K(c logN/N). By the union bound it follows that the probability of Bc
2 is also small:

(3.3) P(Bc
2) ≤ c2N

−β ,

where c2 ∈ (0,∞) is again a constant independent of N .

Proof of Theorem 1.1. Assume without loss of generality that K has volume one.
The idea of the proof is to apply the normal approximation bound in Lemma 2.3
to the random variables

W = f(X1, . . . , XN ) := Vj([X1, . . . , XN ])− EVj(KN ) ,

which clearly satisfy the assumptions made in Lemma 2.3. To this end, we need
to control, in particular, the first- and second-order difference operators DiW =
DiVj(KN ) and Di1,i2W = Di1,i2Vj(KN ) for i, i1, i2 ∈ {1, . . . , N}.

Conditioned on the event B1, we use (2.1) to estimate the first-order difference
operator applied to the intrinsic volume functional Vj(KN ) as follows:

D1Vj(KN ) =

(
n

j

)
κn

κjκn−j

∫
G(n,j)

volj((KN |L) \ ([X2, . . . , XN ]|L)) νj(dL)

× 1{X1 ∈ K \K(c logN/N)}.
(3.4)

For the sake of brevity we will indicate [X2, . . . , XN ] by KN−1. On the event B1

we first notice that volj((KN |L) \ (KN−1|L)) is zero if X1 ∈ KN−1. So, we can
restrict to the situation that X1 ∈ K \KN−1, which conditioned on B1 occurs with

probability Vn(K \KN−1) � Vn(K \K(c logN/N)) � (logN/N)
2

n+1 ; cf. [1, Theorem
6.3].
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Suppose now that the convex body K is the normalized Euclidean unit ball
in Rn. It is our aim to define a full-dimensional cap C such that KN \ KN−1 is
contained in C. For this reason, we define z to be the closest point to X1 on ∂K
(we notice that z is uniquely determined if K(c logN/N) is non-empty). The visible
region of z is defined as

Visz(N) := {x ∈ K \K(c logN/N) : [x, z] ∩K(c logN/N) = ∅} .

By definition of the floating body K(c logN/N), the diameter of Visz(N) is equal to

c3(logN/N)
1

n+1 , where c3 ∈ (0,∞) is a constant not depending on N . Let us denote

by D(z, c3(logN/N)
1

n+1 ) the set of all points on the boundary of K which are of

distance at most c3(logN/N)
1

n+1 to z. Then, it follows from [17, Lemma 6.2] that

C := conv{D(z, c3(logN/N)
1

n+1 )} has volume of order at most logN/N . Moreover,
C is in fact a spherical cap and the central angle of it is denoted by α. For a subspace
L ∈ G(n, j), one has that (KN |L) \ (KN−1|L) ⊆ C|L. The volume volj(C|L) of

the projected cap C|L is volj(C|L) � (logN/N)
j+1
n+1 . Indeed, the height of C|L

keeps the order of the height of C, namely (logN/N)
2

n+1 , while the order of its

base changes from ((logN/N)
1

n+1 )n−1 to ((logN/N)
1

n+1 )j−1, since L is a subspace
of dimension j. Note that, by construction of C, if �(z, L), the angle between z
and L, is too wide compared to α, then C|L ⊆ KN−1|L, for sufficiently large N .
In particular, (KN \KN−1)|L ⊆ KN−1|L, which implies KN |L = KN−1|L. In fact,
it is easily checked that the integrand in (3.4) can only be non-zero if �(z, L) � α
(the constant can be taken to be 2 in the case of the ball). Therefore, we can
restrict the integration in (3.4) to the set {L ∈ G(n, j) : �(z, L) � α}. It is not

difficult to verify that α � Vn(C)
1

n+1 ; see also Equation (27) in [2].
Taken all together, this yields

D1Vj(KN ) �
(
logN

N

) j+1
n+1

νj

({
L ∈ G(n, j) : �(z, L) � Vn(C)

1
n+1

})
× 1{X1 ∈ K \K(c logN/N)} .

According to Lemma 2.1 and the fact that Vn(C) � logN/N , it holds that

νj

({
L ∈ G(n, j) : �(z, L) � Vn(C)

1
n+1

})
�

(
logN

N

)n−j
n+1

,

which in turn implies

D1Vj(KN ) �
(
logN

N

) j+1
n+1

(
logN

N

)n−j
n+1

1{X1 ∈ K \K(c logN/N)}

=
logN

N
1{X1 ∈ K \K(c logN/N)} .

(3.5)

To extend the argument to the general case, we argue as in [2, Section 6]. Namely,
since K is compact, we can choose γ ∈ (0,∞) and Γ ∈ (0,∞) to be, respectively,
the global lower and the global upper bound on the principal curvatures of ∂K.
Remark 5 on page 126 of [14] ensures that under our assumptions on the smoothness
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of the convex body K all projected images of K also have a boundary with the same
features as ∂K, and we choose γ and Γ such that they also bound from below and
above the principal curvatures of each j-dimensional projection of K. Since we can
approximate ∂K locally with affine images of balls, the construction of the cap C
above and the relations regarding its volume, its central angle and the subspaces L
which ensure C|L ⊆ KN−1|L are not affected. Due to this, the relations

volj(C|L) � (logN/N)
j+1
n+1 , α � Vn(C)

1
n+1 � (logN/N)

1
n+1

and

�(z, L) � α

from the above argument still hold, but this time the implicit constants depend on
γ and Γ. From here, the bound (3.5) can be obtained in the same way as for the
ball.

Moreover, on the complement Bc
1 of B1, we use the trivial estimate D1Vj(KN )

≤ Vj(K) and thus conclude that

E[(D1Vj(KN ))p] = E[(D1Vj(KN ))p 1B1
] + E[(D1Vj(KN ))p 1Bc

1
]

�
(
logN

N

)p

Vn(K \K(c logN/N)) �
(
logN

N

)p+ 2
n+1

for all p ∈ {1, 2, 3, 4}, where we applied the probability estimate (3.2) in the second
step, which ensures that the second term can be made very small for large N (the
choice for p is motived by our applications below). As a consequence, we can already
bound the terms appearing in the normal approximation bound in Lemma 2.3 that
involve γ3 and γ4. Namely, using the lower variance bounds (3.1) we see that

√
N

VarVj(KN )

√
γ3 �

√
N

N−n+3
n+1

(
logN

N

)2+ 1
n+1

= N− 1
2+

1
n+1 (logN)2+

1
n+1 ,

N

(VarVj(KN ))
3
2

γ4 � N

N− 3
2

n+3
n+1

(
logN

N

)3+ 2
n+1

= N− 1
2+

1
n+1 (logN)3+

2
n+1 .

Next, we consider the second-order difference operator. For z ∈ K \ K(c logN/N),
recall that

Visz(N) := {x ∈ K \K(c logN/N) : [x, z] ∩K(c logN/N) = ∅} .

On the event B2 it may be concluded from (3.5) that Dif(V )2 � (logN/N)2 for
all i ∈ {1, 2, 3} and V ∈ {Z,Z ′}. We note that on B2 the following inclusion holds:

{D1,2f(Y ) �= 0} ⊆ {Y1 ∈ K \K(c logN/N)} ∩ {Y2 ∈ K \K(c logN/N)}
∩ {VisY1

(N) ∩ VisY2
(N) �= ∅}

⊆ {Y1 ∈ K \K(c logN/N)} ∩
{
Y2 ∈

⋃
x∈VisY1

(N)

Visx(N)

}
.
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The same applies to D1,3f(Y
′) as well. We thus infer that

E
[
1{D1,2f(Y ) �= 0}1B2

]
≤ P

(
Y1 ∈ K \K(c logN/N)

)
P

(
Y2 ∈

⋃
x∈VisY1

(N)

Visx(N)

∣∣∣∣ Y1 ∈ K \K(c logN/N)

)

≤ P
(
Y1 ∈ K \K(c logN/N)

)
sup

z∈K\K(c log N/N)

P

(
Y2 ∈

⋃
x∈Visz(N)

Visx(N)

)
= Vn

(
K \K(c logN/N)

)
sup

z∈K\K(c log N/N)

Vn

( ⋃
x∈Visz(N)

Visx(N)
)
.

Since the diameter of the previous union is of order (logN/N)
1

n+1 , it follows from
[17, Lemma 6.2] that

Δ(N) := sup
z∈K\K(c log N/N)

Vn

( ⋃
x∈Visz(N)

Visx(N)
)
� logN

N
.

Moreover, on the complement Bc
2 of B2 we estimate all the indicator functions by

one and the value of all difference operators by the constant Vj(K). Since P(Bc
2) is

small in N (recall (3.3)), this readily implies

γ2 �
(
logN

N

)4

Vn(K \K(c logN/N))Δ(N) �
(
logN

N

)5+ 2
n+1

.

Analogously, we can bound γ1. First, suppose that Y1 = Y ′
1 . Then, conditioned on

B2,

{D1,2f(Y ) �= 0} ∩ {D1,3f(Y
′) �= 0}

⊆ {{Y1, Y2, Y
′
3} ⊆ K \K(c logN/N)} ∩ {VisY2

(N) ∩ VisY1
(N) �= ∅}

∩ {VisY ′
3
(N) ∩ VisY1

(N) �= ∅}

⊆ {Y1 ∈ K \K(c logN/N)} ∩
{
{Y2, Y

′
3} ⊆

⋃
x∈VisY1

(N)

Visx(N)

}
,

and arguing as before leads to

E
[
1{D1,2f(Y ) �= 0}1{D1,3f(Y

′) �= 0}1B2

]
≤ P

(
Y1 ∈ K \K(c logN/N)

)
sup

z∈K\K(c log N/N)

P

(
{Y2, Y

′
3} ⊆

⋃
x∈Visz(N)

Visx(N)

)
≤ Vn(K \K(c logN/N))Δ(N)2 .

Note that the case Y1 �= Y ′
1 gives a smaller order since, by independence, it leads

to an extra factor Vn(K \K(c logN/N)). Thus, by conditioning on B2 and its com-
plement, we obtain

γ1 �
(
logN

N

)4

Vn(K \K(c logN/N))Δ(N)2 �
(
logN

N

)6+ 2
n+1

.
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Now, the other terms appearing in the normal approximation bound in Lemma 2.3
can be estimated using the lower variance bounds (3.1) as follows:

√
N

VarVj(KN )

√
N2γ1 �

√
N

N−n+3
n+1

√
N2 ·

(
logN

N

)6+ 2
n+1

= N− 1
2+

1
n+1 (logN)3+

1
n+1 ,

√
N

VarVj(KN )

√
Nγ2 �

√
N

N−n+3
n+1

√
N ·

(
logN

N

)5+ 2
n+1

= N− 1
2+

1
n+1 (logN)

5
2+

1
n+1 .

Putting together all estimates, we arrive at

d

(
Vj(KN )− EVj(KN )√

VarVj(KN )
, G

)
� N− 1

2+
1

n+1

(
(logN)3+

1
n+1 + (logN)

5
2+

1
n+1

+ (logN)2+
1

n+1 + (logN)3+
2

n+1

)
� N− 1

2+
1

n+1 (logN)3+
2

n+1

(3.6)

in view of the normal approximation bound in Lemma 2.3. In particular, asN → ∞,
this converges to zero and so the random variables

Wj(KN ) =
Vj(KN )− EVj(KN )√

VarVj(KN )

converge in distribution to the standard Gaussian random variable G. The proof
of Theorem 1.1 is thus complete. �
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[9] R. Lachièze-Rey, M. Schulte and J.E. Yukich : Normal approximation for stabilizing func-

tionals. (2017), arXiv: 1702.00726.
[10] John Pardon, Central limit theorems for uniform model random polygons, J. Theoret. Probab.

25 (2012), no. 3, 823–833. MR2956214
[11] Matthias Reitzner, Random polytopes and the Efron-Stein jackknife inequality, Ann. Probab.

31 (2003), no. 4, 2136–2166. MR2016615
[12] Matthias Reitzner, Central limit theorems for random polytopes, Probab. Theory Related

Fields 133 (2005), no. 4, 483–507. MR2197111

http://www.ams.org/mathscinet-getitem?mr=2402946
http://www.ams.org/mathscinet-getitem?mr=2779551
http://www.ams.org/mathscinet-getitem?mr=1600549
http://www.ams.org/mathscinet-getitem?mr=986636
http://www.ams.org/mathscinet-getitem?mr=3722561
http://www.ams.org/mathscinet-getitem?mr=3059193
http://www.ams.org/mathscinet-getitem?mr=2435859
http://www.ams.org/mathscinet-getitem?mr=3693518
http://www.ams.org/mathscinet-getitem?mr=2956214
http://www.ams.org/mathscinet-getitem?mr=2016615
http://www.ams.org/mathscinet-getitem?mr=2197111


RANDOM POLYTOPES 3071

[13] Matthias Reitzner, Random polytopes, New perspectives in stochastic geometry, Oxford Univ.
Press, Oxford, 2010, pp. 45–76. MR2654675

[14] Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, En-
cyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cam-
bridge, 2014. MR3155183

[15] Tomasz Schreiber, Variance asymptotics and central limit theorems for volumes of unions of
random closed sets, Adv. in Appl. Probab. 34 (2002), no. 3, 520–539. MR1929596
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