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ON ALGEBRAIC MULTIPLICITY OF (ANTI)PERIODIC

EIGENVALUES OF HILL’S EQUATIONS

ZHIJIE CHEN AND CHANG-SHOU LIN

(Communicated by Lei Ni)

Abstract. We construct two explicit examples of Hill’s equations with
complex-valued potentials such that the algebraic multiplicity of some
(anti)periodic eigenvalue E equals 1 + 2pi with pi ≥ 1, where pi denotes
the immovable part of E as a Dirichlet eigenvalue. These examples confirm a
phenomena about Hill’s equations in (Gesztesy and Weikard, Acta Math. 176
(1996), 73–107).

1. Introduction

Let q(x) be a complex-valued continuous nonconstant periodic function of period
Ω on R. Consider the Hill’s equation

(1.1) y′′(x) + q(x)y(x) = Ey(x), x ∈ R.

This equation has received an enormous amount of consideration due to its ubiquity
in applications as well as its structural richness. A typical example is its connection
with the KdV hierarchy and hence with integrable systems. We refer the readers to
Gesztesy and Weikard’s remarkable work [6] for an overview on this subject, where
the intimate connection between Picard potentials and elliptic finite-gap solutions
of the stationary KdV hierarchy was established for the first time.

Let y1(x) and y2(x) be any two linearly independent solutions of equation (1.1).
Then so are y1(x+Ω) and y2(x+Ω), and hence there exists a monodromy matrix
M(E) ∈ SL(2,C) such that

(y1(x+Ω), y2(x+Ω)) = (y1(x), y2(x))M(E).

Let
Δ(E) := trM(E)

be the trace of the monodromy matrix, which is indeed an invariant of equa-
tion (1.1), i.e., it does not depend on the choice of linearly independent solutions
y1(x), y2(x). This Δ(E) plays a fundamental role in Floquet theory since it en-
codes all the spectrum information of the associated operator; see, e.g., [6] and the
references therein. In particular, we define

d(E) := ordE(Δ(·)2 − 4).

Then d(E) is known to coincide with the algebraic multiplicity of (anti)periodic
eigenvalues. A basic problem is to determine d(E) for all (anti)periodic eigenvalues.
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If q(x) is real-valued, then a classical result (cf. [8]) shows that the algebraic and
geometric multiplicities of (anti)periodic eigenvalues coincide and hence d(E) ≤
2 for all E’s. However, when q(x) is either complex-valued or has singularities,
this classical result might not hold. If the algebraic multiplicities are larger than
geometric ones, the analysis of Hill’s equation becomes much more difficult. In
this note, we will give explicit examples that d(E) ≥ 3 for some (anti)periodic
eigenvalues.

Let c(E, x, x0) and s(E, x, x0) be the special fundamental system of solutions of
(1.1) defined by

c(E, x0, x0) = s′(E, x0, x0) = 1, c′(E, x0, x0) = s(E, x0, x0) = 0.

Then we have

Δ(E) = c(E, x0 +Ω, x0) + s′(E, x0 +Ω, x0).

Define

p(E, x0) := ordEs(·, x0 +Ω, x0),

pi(E) := min{p(E, x0) : x0 ∈ R}.
It is known (cf. [6]) that p(E, x0) and pi(E) are the algebraic multiplicity of a
Dirichlet eigenvalue and its immovable part, respectively. It was proved in [6,
Theorem 3.2] that d(E)− 2pi(E) ≥ 0. Define

B1 := {E | 0 = pi(E); 0 < d(E)},

B2 := {E | 0 < pi(E); 2pi(E) < d(E)}.
As mentioned before, B2 = ∅ if q(x) is real-valued. In the literature, there are
references studying Hill’s equation with complex-valued q(x) under the restriction
that the algebraic multiplicities of all (anti)periodic eigenvalues still coincide with
the geometric multiplicities and hence are at most 2, i.e., B2 = ∅; see, e.g., [1, 2].
On the other hand, Gesztesy and Weikard pointed out that (see [6, p. 94]): “For
B2 to be nonempty, it is necessary that d(λ) ≥ 3 for some (anti)periodic eigenvalue
λ. While it seems difficult to construct an explicit example where B2 �= ∅, the
very existence of this phenomenon has not been considered in previous work on the
subject.”

As far as we know, there still seem to be no explicit examples with B2 �= ∅.
The purpose of this note is to construct two explicit examples of Hill’s equations
such that B2 �= ∅, i.e. d(E) ≥ 3 for some (anti)periodic eigenvalue E, and hence
confirms the aforementioned phenomena pointed out by Gesztesy and Weikard for
complex-valued potentials. In particular, the algebraic and geometric multiplic-
ities of (anti)periodic eigenvalues do not necessarily coincide for complex-valued
potentials or real-valued potentials with singularities (see, e.g., Remark 2.3).

2. Two explicit examples

For τ ∈ C with Im τ > 0, we let ℘(z) = ℘(z; τ ) be the Weierstrass ℘-function
with periods ω1 = 1 and ω2 = τ , defined by

℘(z; τ ) :=
1

z2
+

∑
ω∈(Z+Zτ)\{0}

(
1

(z − ω)2
− 1

ω2

)
,
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and let ek = ek(τ ) := ℘(ωk

2 ; τ ) for k ∈ {1, 2, 3}, where ω3 = 1 + τ . It is well known
that

℘′(z)2 = 4

3∏
k=1

(℘(z)− ek) = 4℘(z)3 − g2℘(z)− g3.

Let ζ(z) = ζ(z; τ ) := −
∫ z

℘(ξ; τ )dξ be the Weierstrass zeta function and let ηk =
ηk(τ ) := 2ζ(ωk

2 ; τ ). Clearly η3 = η1 + η2 and

ζ(z + ωk) = ζ(z) + ηk, k = 1, 2, 3.

To give the first example, we recall [9, Theorem 1.7 and Lemma 6.1] that e1(·)+
η1(·) is increasing along the line 1

2 + iR>0 and hence has a unique zero τ = 1
2 + ib0

with b0 ∈ (0, 1
2 ). Fix this τ = 1

2 + ib0 such that

(2.1) e1 + η1 = e1(τ ) + η1(τ ) = 0.

Consider the following Hill’s equation with Lamé potential q(x) = −2℘(x+ τ/2)=
−2℘(x+ τ/2; τ ) and period Ω = 1:

(2.2) y′′(x)− 2℘(x+ τ/2)y(x) = Ey(x), x ∈ R.

It is known (see, e.g., [7, Example 2.1] or [3, Example 7.4.1]) that the associated
elliptic curve of (2.2) is

(2.3) F 2 = R3(E) =

3∏
k=1

(E − ek).

It follows from [6, Theorem 4.1] and (2.3) that

B1 ∪B2 = {e1, e2, e3}.
Furthermore, by defining

(2.4) D(E) := Epi(0)
∏

λ∈C\{0}

(
1− E

λ

)pi(λ)

,

we have

R3(E) =

3∏
k=1

(E − ek) = C
Δ(E)2 − 4

D(E)2
,

where C is some nonzero constant. See also [6, Theorem 4.1]. Therefore,

(2.5) d(ek) = 1 + 2pi(ek), k = 1, 2, 3.

Note that e1 < 0; see Remark 2.3 below. The following result gives our first explicit
example that B2 �= ∅.

Theorem 2.1. For equation (2.2) with τ = 1
2 + ib0, there holds B2 = {e1}. Fur-

thermore,
d(e1) = orde1(Δ(·)2 − 4) = 3.

Proof. Let k ∈ {1, 2, 3}. Consider the Lamé equation

(2.6) y′′(z)− 2℘(z)y(z) = eky(z), z ∈ C.

Let σ(z) = σ(z; τ ) be the Weierstrass sigma function associated with the lattice
Z+ Zτ . Recall σ′(z)/σ(z) = ζ(z). A direct computation shows that

y1(z) := e
1
2ηkz

σ(z − ωk

2 )

σ(z)
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is a solution of (2.6) and

(2.7) y1(−z) = −y1(z), y1(z + 1) = ε1y1(z), y1(z + τ ) = ε2y1(z),

with

(2.8) (ε1, ε2) =

⎧⎨
⎩

(1,−1) if k = 1,
(−1, 1) if k = 2,
(−1,−1) if k = 3.

Here we used the Legendre relation τη1 − η2 = 2πi and the transformation law of
σ(z) to obtain (2.7)–(2.8):

(2.9) σ(z + ωl) = −eηl(z+
ωl
2 )σ(z), l = 1, 2, 3.

Thus, y1(z)
2 is even elliptic and

1

y1(z)2
= e−ηkz

σ(z)2

σ(z − ωk

2 )2
=

℘(z − ωk/2)− ek
C1

,

where C1 is a nonzero constant. Define

χ(z) := −ζ(z − ωk/2)− ekz;

then

(2.10) χ(z + 1) = χ(z)− η1 − ek.

Clearly

χ′(z) = ℘(z − ωk/2)− ek =
C1

y1(z)2
,

so a direct computation gives that

y2(z) := y1(z)χ(z)

is another solution of (2.6) and is linearly independent with y1(z). Let

ỹj(x) := yj(x+ τ/2), x ∈ R, j = 1, 2.

Then ỹ1(x) and ỹ2(x) are linearly independent solutions of equation (2.2) with
E = ek, i.e.,

(2.11) y′′(x)− 2℘(x+ τ/2)y(x) = eky(x), x ∈ R.

Furthermore, (2.7) and (2.10) give

(2.12) ỹ1(x+ 1) = ε1ỹ1(x), ỹ2(x+ 1) = ε1ỹ2(x)− ε1(η1 + ek)ỹ1(x).

Case 1. k = 1.
Then (2.1), (2.8), and (2.12) give

ỹ1(x+ 1) = ỹ1(x), ỹ2(x+ 1) = ỹ2(x),

which implies that all solutions of equation (2.11) with k = 1 are periodic, and so
does s(e1, x, x0) for any x0 ∈ R. In particular, s(e1, x0 + 1, x0) = 0 for all x0 ∈ R,
and so pi(e1) ≥ 1. Then (2.5) gives d(e1) ≥ 3 and e1 ∈ B2.

Case 2. k ∈ {2, 3}.
Then ek+η1 �= 0, and so (2.12) shows that the dimension of antiperiodic solutions

of equation (2.11) is only 1. Together with [6, Proposition 3.1], we immediately
obtain pi(ek) = 0, i.e., d(e2) = d(e3) = 1. Therefore,

e2, e3 ∈ B1, and so B2 = {e1}.
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Finally, we need to prove d(e1) = 3. It is known (cf. [6, Theorem 4.1]) that the

spectrum of the operator H associated with d2

dx2 − 2℘(x+ τ/2) in L2(R,C) is given
by

σ(H) = {E ∈ C : −2 ≤ Δ(E) ≤ 2} = σ1 ∪ σ∞,

where σ1 is a bounded spectral arc, the two endpoints of which are in {e1, e2, e3},
and σ∞ is a semi-infinite spectral arc which extends to ∞ and the finite endpoint is
also in {e1, e2, e3}. Since d(ek)’s are all odd, it is easy to prove (see e.g. [6, Theorem
4.1]) that there are d(ek) semiarcs meeting at ek. Since d(e2) = d(e3) = 1 and
d(e1) ≥ 3, we conclude that d(e1) = 3, the two endpoints of σ1 are e2, e3, the finite
endpoint of σ∞ is e1, and the two spectral arcs σ∞ and σ1 intersect at e1. The
proof is complete. �
Remark 2.2. We emphasize that the above proof gives a clear picture of the spec-
trum: σ(H) = σ2 ∪ σ3 ∪ σ∞, where these three spectral curves have the same
endpoint e1, with other different endpoints e2, e3, and ∞, respectively.

Remark 2.3. For Hill’s equation (1.1), we mentioned in Section 1 that if the noncon-
stant periodic function q(x) is real-valued and continuous (in particular, no poles
on R), then

(2.13) d(E) = ordE(Δ(·)2 − 4) ≤ 2 ∀ E.

Theorem 2.1 indicates that (2.13) does not necessarily hold for complex-valued
potentials. On the other hand, since τ = 1

2 + ib0 = 1− τ̄ gives

℘(z; τ ) = ℘(z̄; 1− τ̄) = ℘(z̄; τ ),

we see that ℘(x) = ℘(x; τ ) is real-valued for x ∈ R, and hence e1 ∈ R. In fact, e1 < 0
because of τ = 1

2 + ib0 with b0 ∈ (0, 12 ) and e1(
1+i
2 ) = 0. Consider Hill’s equation

(1.1) with potential q(x) = −2℘(x) which is real-valued but has singularities at
x ∈ Z:

(2.14) y′′(x)− 2℘(x)y(x) = Ey(x), x ∈ R.

Then the proof of Theorem 2.1 also implies that d(e1) = orde1(Δ(·)2 − 4) = 3
for equation (2.14). Therefore, (2.13) does not necessarily hold for real-valued
potentials with singularities. We refer the reader to [10] for Hill’s equation with
singular potentials.

Remark 2.4. Fix k ∈ {2, 3}. As in [5, Theorem 6.6], we can also prove the existence
of τ (but not on the line 1

2 + iR>0) such that

ek + η1 = ek(τ ) + η1(τ ) = 0.

Fix any such τ . Then the same proof as Theorem 2.1 shows that, for equation (2.2)
with this new τ , there holds B2 = {ek} and d(ek) = 3.

Now we introduce our second example. It was proved in [4] that

e′1(τ ) =
i

π

[
1
6g2(τ ) + η1(τ )e1(τ )− e1(τ )

2
]

has infinitey many zeros on H = {τ ∈ C | Im(τ ) > 0}. Fix any such τ such that

(2.15) 1
6g2(τ ) + η1(τ )e1(τ )− e1(τ )

2 = 0.

It is easy to derive from (2.15) and

(2.16) e1 + e2 + e3 = 0, g2 = 2(e21 + e22 + e23)
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that

(2.17) 1
6g2(τ ) + η1(τ )ej(τ )− ej(τ )

2 �= 0, j ∈ {2, 3},

12η1(τ )
2 − g2(τ ) �= 0.

Consider the following Hill’s equation with Lamé potential q(x) = −6℘(x+ τ/2) =
−6℘(x+ τ/2; τ ) and period Ω = 1:

(2.18) y′′(x)− 6℘(x+ τ/2)y(x) = Ey(x), x ∈ R.

It is known (see, e.g., [7, Example 2.1] or [3, Example 7.4.1]) that the associated
hyperelliptic curve of (2.18) is

F 2 = R5(E) = (E2 − 3g2)
3∏

j=1

(E + 3ej).

Again it follows from [6, Theorem 4.1] that

B1 ∪B2 = {−3e1,−3e2,−3e3, (3g2)
1/2,−(3g2)

1/2}.
It is easy to see from (2.16) that

{−3e1,−3e2,−3e3} ∩ {(3g2)1/2,−(3g2)
1/2} = ∅.

Define D(E) as in (2.4); then

R5(E) = (E2 − 3g2)
3∏

j=1

(E + 3ej) = C
Δ(E)2 − 4

D(E)2
,

where C is some nonzero constant. Therefore,

(2.19) d(−3ej) = 1 + 2pi(−3ej), j = 1, 2, 3.

Remark 2.5. It is well known that g2(τ̃) = 0 if and only if τ̃ = aeπi/3+b
ceπi/3+d

for
(
a b
c d

)
∈

SL(2,Z). From here, we can actually prove that if e′1(τ ) = 0 (i.e., (2.15) holds),
then e1(τ )− η1(τ ) �= 0, and so g2(τ ) �= 0, which implies (3g2)

1/2 �= −(3g2)
1/2, i.e.,

(2.19) also hold for ±(3g2)
1/2. Since we do not need this fact in this paper, we refer

to [4] for the proof of g2(τ ) �= 0, which is not trivial at all.

Theorem 2.6. For equation (2.18) with τ satisfying (2.15), there holds B2 =
{−3e1}, i.e.,

d(−3e1) = ord−3e1(Δ(·)2 − 4) ≥ 3.

Proof.

Step 1. We prove that (3g2)
1/2,−(3g2)

1/2 ∈ B1.
Denote E± = ±(3g2)

1/2 and consider the the Lamé equation

(2.20) y′′(z)− 6℘(z)y(z) = E±y(z), z ∈ C.

Let (a±,−a±) be a pair of complex numbers such that

(2.21) ℘(a±) = ℘(−a±) = E±/6 = ±(g2/12)
1/2.

Since ℘′′ = 6℘2 − g2/2, we obtain ℘′′(a±) = ℘′′(−a±) = 0. Furthermore, a direct
computation shows that

y1(z) := ℘(z)− ℘(a±) = ℘(z)− E±
6
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is a solution of equation (2.20). Note that y1(z) is even elliptic, so

(2.22) y1(z + 1) = y1(z), y1(z + τ ) = y1(z).

Since ℘′′(a±) = 0 implies that the residue of 1
y1(z)2

at a± and −a± are both 0, we

easily obtain
℘′(a±)

2

y1(z)2
= ℘(z − a±) + ℘(z + a±)− 2℘(a±).

Define

χ(z) := −(ζ(z − a±) + ζ(z + a±) + 2℘(a±)z);

then

(2.23) χ(z + 1) = χ(z)− 2(η1 + ℘(a±)).

Define y2(z) := y1(z)χ(z). Since χ
′(z) = ℘′(a±)2

y1(z)2
, as before, y2(z) is another solution

of (2.20) and is linearly independent with y1(z). Let

ỹj(x) := yj(x+ τ/2), x ∈ R, j = 1, 2.

Then ỹ1(x) and ỹ2(x) are linearly independent solutions of equation (2.18) with
E = E±, i.e.,

y′′(x)− 6℘(x+ τ/2)y(x) = E±y(x), x ∈ R.

Furthermore, (2.22) and (2.23) give

ỹ1(x+ 1) = ỹ1(x), ỹ2(x+ 1) = ỹ2(x)− 2(η1 + ℘(a±))ỹ1(x).

Recall from (2.17) and (2.21) that η1+℘(a±) �= 0. Then as in the proof of Theorem
2.1, we conclude that pi(E±) = 0, i.e., E± ∈ B1.

Step 2. We prove that −3e2,−3e3 ∈ B1 and −3e1 ∈ B2.
Let {i, j, k} = {1, 2, 3}. Consider the Lamé equation

(2.24) y′′(z)− 6℘(z)y(z) = −3eky(z), z ∈ C.

Then a direct computation shows that

(2.25) y1(z) = e
1
2 (ηi+ηj)z

σ(z − ωi

2 )σ(z − ωj

2 )

σ(z)2

is a solution of equation (2.24). By the Legendre relation τη1 − η2 = 2πi and the
transformation law (2.9) of σ(z), we easily obtain y1(−z) = y1(z) and

(2.26) y1(z + 1) = ε1y1(z), y1(z + τ ) = ε2y1(z),

where (ε1, ε2) is given by (2.8). Thus, y1(z)
−2 is even elliptic and there exists a

constant C3 �= 0 such that

C3

y1(z)2
=

1

(℘(z)− ℘(ωi

2 ))(℘(z)− ℘(
ωj

2 ))

= c1
(
℘(z − ωi

2 )− ei
)
+ c2

(
℘(z − ωj

2 )− ej
)
,

where

c1 =
2

(ei − ej)℘′′(ωi

2 )
, c2 =

2

(ej − ei)℘′′(
ωj

2 )
.

By ℘′′(ωi

2 ) = 6e2i − g2/2 and g2 = 4(e2k − eiej), a direct computation gives

c1 + c2 =
−12(ei + ej)

℘′′(ωi

2 )℘′′(
ωj

2 )
=

12ek
℘′′(ωi

2 )℘′′(
ωj

2 )
,
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c1ei + c2ej =
2g2 − 12e2k

℘′′(ωi

2 )℘′′(
ωj

2 )
.

Define

χ(z) := −c1
(
ζ(z − ωi

2 ) + eiz
)
− c2

(
ζ(z − ωj

2 ) + ejz
)
;

then

χ′(z) =
C3

y1(z)2

and

χ(z + 1)− χ(z) = −η1(c1 + c2)− (c1ei + c2ej)(2.27)

= −12
ekη1 +

g2
6 − e2k

℘′′(ωi

2 )℘′′(
ωj

2 )
=: Ak.

Since (2.15) and (2.17) give A1 = 0 and Aj �= 0 for j = 2, 3, the same proof as
Theorem 2.1 shows that pi(−3e2) = pi(−3e3) = 0, i.e., −3e2,−3e3 ∈ B1, and
pi(−3e1) ≥ 1, i.e., d(−3e1) ≥ 3 and −3e1 ∈ B2.

In conclusion, B2 = {−3e1} and B1 = {−3e2,−3e3, (3g2)
1/2,−(3g2)

1/2}. This
completes the proof. �

Remark 2.7. If we apply the similar argument as in Theorem 2.1 by using the spec-
trum of the associated operator for equation (2.18), we can only obtain d(−3e1) ∈
{3, 5}. It seems difficult to determine d(−3e1) explicitly. We tend to believe that
d(−3e1) = 3.

Remark 2.8. Fix k ∈ {2, 3}. It was also proved in [4] the existence of infinitely
many τ ’s such that

e′k(τ ) =
i

π

[
1
6g2(τ ) + η1(τ )ek(τ )− ek(τ )

2
]
= 0.

Fix any such τ . Then the same proof as Theorem 2.6 shows that, for equation
(2.18) with this new τ , there holds B2 = {−3ek}, i.e., d(−3ek) ≥ 3. Moreover, it
was also proved in [4] the existence of infinitely many τ ’s such that

η′1(τ ) =
i

2π

(
η1(τ )

2 − 1
12g2(τ )

)
= 0.

Fix any such τ . Then either η1 + ℘(a+) = 0 or η1 + ℘(a−) = 0, and hence for
equation (2.18) with this new τ , either (3g2)

1/2 ∈ B2 or −(3g2)
1/2 ∈ B2.

Our examples suggest that for any n ∈ N≥3, there should be τ such that for the
Lamé equation

y′′(x)− n(n+ 1)℘(z + τ/2; τ )y(x) = Ey(x), x ∈ R,

there exists some (anti)periodic eigenvalue E with d(E) ≥ 3. We should return to
this problem in the future.
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