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FUNDAMENTAL SOLUTIONS FOR SECOND-ORDER

PARABOLIC SYSTEMS WITH DRIFT TERMS

HONGJIE DONG AND SEICK KIM

(Communicated by Svitlana Mayboroda)

Abstract. We construct fundamental solutions of second-order parabolic sys-
tems of divergence form with bounded and measurable leading coefficients and
divergence free first-order coefficients in the class of BMO−1

x , under the as-
sumption that weak solutions of the system satisfy a certain local bounded-
ness estimate. We also establish Gaussian upper bounds for such fundamental
solutions under the same conditions.

1. Introduction

In this paper, we study fundamental solutions (or fundamental matrices) of
second-order parabolic systems of divergence form

m∑
j=1

Liju
j := ui

t −
m∑
j=1

n∑
α,β=1

Dα(A
αβ
ij Dβu

j) +

m∑
j=1

n∑
α=1

Bα
ijDαu

j +

m∑
i,j=1

Ciju
j ,

i = 1, . . . ,m.

By using matrix notation and adopting the usual summation convention over re-
peated indices, we write the above system as

(1.1) Lu := ut −Dα(A
αβ Dβu) +BαDαu+Cu,

where Aαβ = Aαβ(t, x), Bα = Bα(t, x), and C = C(t, x) are m×m matrix valued
functions defined on R × R

n = R
n+1 and u = (u1, . . . , um)T is a column vector

valued function on R
n+1.

We assume that the principal coefficients Aαβ satisfy the following parabolicity
and boundedness condition: there are constants 0 < λ,Λ < ∞ such that

(1.2) λ

m∑
i=1

n∑
α=1

|ξiα|2 ≤ Aαβ
ij ξiαξ

j
β,

(1.3)

m∑
i,j=1

n∑
α,β=1

|Aαβ
ij |2 ≤ Λ2.
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Note that we do not impose any symmetry condition on Aαβ. We also assume that
Bα is symmetric and divergence free and that C is nonnegative definite; that is,

(1.4) Bα
ij = Bα

ji, DαB
α
ij = 0,

(1.5) Cijξ
iξj ≥ 0, ∀(ξ1, . . . , ξm) ∈ R

m.

Finally, we assume that Bα ∈ L∞
t (BMO−1

x ); that is, there are an m × m matrix

valued function Φαβ in R
n+1 and a constant 0 < Θ < ∞ such that

(1.6) Bα
ij = DβΦ

αβ
ij ,

m∑
i,j=1

n∑
α,β=1

sup
t∈R

‖Φαβ
ij (t, ·)‖2BMO(Rn) ≤ Θ2.

The system of the form (1.1) is relevant for applications to incompressible flows.
See, for instance, [15, 16].

By a fundamental solution for the system (1.1), we mean anm×m matrix valued
function Γ(t, x, s, y) (x, y ∈ R

n and t, s ∈ R) which satisfies the following:

Lt,x Γ(t, x, s, y) = 0 in (s,∞)× R
n,

Γ(t, x, s, y) = δy(x)I on {t = s} × R
n,

where δy(·) is a Dirac delta function and I is the m × m identity matrix; see
Theorem 2.5 for a more precise definition. Since Bα is divergence free, the adjoint
operator L ∗ is given as follows:

L ∗u := −ut −Dα(
∗AαβDβu)−BαDαu+Cu,

where ∗Aαβ = (Aβα)T (i.e., ∗Aαβ
ij = Aβα

ji ). Note that the coefficients ∗Aαβ satisfy

the same parabolicity and boundedness conditions (1.2) and (1.3).
The goal of this article is to show that if L and L ∗ both satisfy the local bound-

edness property with constant N0 (see Section 2.3 below), then there exists a funda-
mental solution Γ(t, x, s, y) of the system (1.1) which satisfies the following Gaussian
bound: there exist constants C = C(n,m, λ,Λ,Θ, N0) and κ = κ(n,m, λ,Λ,Θ) > 0
such that for all t, s ∈ R satisfying s < t and x, y ∈ R

n, we have

|Γ(t, x, s, y)| ≤ C

(t− s)n/2
exp

{
−κ|x− y|2

t− s

}
.

A few historical remarks are in order. Fundamental solutions of parabolic equa-
tions of divergence form with bounded measurable coefficients have been studied by
many authors. The first significant step in this direction was made in 1957 by Nash
[11], who established certain estimates of the fundamental solutions in proving local
Hölder continuity of weak solutions. In 1967, Aronson [1] proved Gaussian upper
and lower bounds for the fundamental solutions by using the parabolic Harnack in-
equality of Moser [10]. In 1986, Fabes and Stroock [5] showed that the idea of Nash
could be used to establish Aronson’s Gaussian bounds, which consequently gave a
new proof of Moser’s parabolic Harnack inequality. In 2008, the authors and Cho
[2] considered parabolic systems (1.1) without lower-order terms (i.e., Bα = C = 0)
and constructed the fundamental solutions and obtained Gaussian upper bounds
under the assumption that weak solutions to the system and its adjoint system are
locally Hölder continuous. For the fundamental solutions of parabolic equations
with measurable coefficients in nondivergence form, a paper by Escauriaza [4] is
notable.
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In writing this article, we are very much motivated by very recent papers by Qian
and Xi [12,13]. They considered parabolic equations with divergence free drift terms
and established upper and lower Gaussian bounds. Earlier in 2012, Seregin et al.
[15] studied scalar parabolic equations ∂tu−div(A∇u) = 0 and established Moser’s
Harnack inequality under the assumption that A = a+ d, where a is symmetric, d
is skew symmetric, and that it satisfies

λI ≤ a ≤ ΛI, d ∈ L∞
t (BMOx).

It is more or less straightforward to check that the above scalar equations are cov-
ered by the parabolic system introduced at the beginning. In the spirit of Fabes
and Stroock [5], Moser’s Harnack inequality should be equivalent to having the
two-sided Gaussian bounds for the fundamental solution. As a matter of fact, it
is proved in [6] that the local boundedness property (which is implied by Moser’s
Harnack inequality) implies Gaussian bounds for the fundamental solution for par-
abolic systems. However, it was not clear that the fundamental solutions for the
aforementioned scalar equation considered in [15] enjoy Gaussian bounds. In [12],
Qian and Xi resolved this question by using a clever inequality involving the Hardy
norm; see Proposition 3.2 in [12]. By adopting the inequality of Qian and Xi to the
systems setting, we are able to extend the main result in [2] to parabolic systems
with drift terms satisfying the aforementioned conditions, which are the natural
extension of the conditions imposed in [12, 15]. Because of the well-known embed-
ding Ln ↪→ BMO−1 (see, for instance, [8]), our result also extends Theorem 2 of
[13]. We refer the reader to [12–14,16] and the references therein for other previous
results in this direction.

The organization of the paper is as follows. In Section 2, we introduce some
notation and preliminary lemmas and then state our main result, Theorem 2.5.
Section 3 is devoted to the proof of the main theorem.

2. Preliminaries and main results

We use the same notation as used in [2]. For the reader’s convenience, we
reproduce the most frequently used notation here. We refer the reader to [2] for
more details.

2.1. Basic notation. We use X = (t, x) to denote a point in R
n+1 = R×R

n. We
define the parabolic distance between the points X = (t, x) and Y = (s, y) in R

n+1

as

|X − Y |p := max(
√
|t− s|, |x− y|).

We use the following notation for basic cylinders in R
n+1:

Q−
r (X) = (t− r2, t)×Br(x),

Q+
r (X) = (t, t+ r2)×Br(x),

Qr(X) = (t− r2, t+ r2)×Br(x).

In the rest of this subsection, we shall denote by Q the cylinder (t0, t1) × Ω. We

denote by W 1,0
2 (Q) the Hilbert space with the inner product

〈u, v〉W 1,0
2 (Q) :=

ˆ
Q

uv +

n∑
α=1

ˆ
Q

DαuDαv
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and by W 1,1
2 (Q) the Hilbert space with the inner product

〈u, v〉W 1,1
2 (Q) :=

ˆ
Q

uv +

n∑
α=1

ˆ
Q

DαuDαv +

ˆ
Q

utvt.

We denote by W̊ 1,0
2 (Q) and W̊ 1,1

2 (Q) the closure of C∞
c ([t0, t1]× Ω) in the Hilbert

spaces W 1,0
2 (Q) and W 1,1

2 (Q), respectively. We define V2(Q) as the Banach space

consisting of all elements of W 1,0
2 (Q) having a finite norm

‖u‖V2(Q) = |||u|||Q :=

(
‖Du‖2L2(Q) + ess sup

t0≤t≤t1

‖u(t, ·)‖2L2(Ω)

)1/2

.

The space V 1,0
2 (Q) is obtained by completing the set W 1,1

2 (Q) in the norm of V2(Q).

We define V̊2(Q) := V2(Q)∩ W̊ 1,0
2 (Q) and V̊ 1,0

2 (Q) = V 1,0
2 (Q)∩ W̊ 1,0

2 (Q). We recall
the following well-known embedding theorem (see e.g. [9, §II.3]):

(2.1) ‖u‖
L2+ 4

n (Q)
≤ C(n)|||u|||Q ∀u ∈ V̊2(Q).

2.2. Energy inequality. Due to the assumptions (1.4) and (1.5), the following
energy inequality is available for the operator L and its adjoint L ∗.

Lemma 2.2. Let Q = (t0, t1)× Ω and u ∈ V̊ 1,0
2 (Q) be a weak solution of

Lu = f in Q, u(x, t0) = ψ(x) on Ω,

where ψ ∈ L2(Ω) and f ∈ L(2n+4)/(n+4)(Q). Then u satisfies the energy inequality

(2.3) |||u|||Q ≤ C
(
‖ψ‖L2(Ω) + ‖f‖L(2n+4)/(n+4)(Q)

)
,

where C = C(n, λ,Λ). A similar statement is true for a corresponding adjoint
problem.

Proof. Note that assumption (1.4) implies thatˆ
Ω

Bα
ijDαu

jui dx =

ˆ
Ω

1

2
Bα

ijDα(u
iuj) dx = 0,

and assumption (1.5) implies thatˆ
Ω

Ciju
jui dx ≥ 0.

Then, testing the equation with u itself and using (2.1), we obtain (2.3) as usual. �

2.3. Local boundedness property. We shall say that the operator L (resp.
L ∗) satisfies the local boundedness property for weak solutions if there exists a
constant N0 such that

(2.4) ‖u‖L∞( 1
2Q) ≤ N0

{( 
Q

|u|2 dxdt
) 1

2

+ r2‖f‖L∞(Q)

}

whenever u ∈ V2(Q) is a weak solution of Lu = f (resp. L ∗u = f) in Q =
Q−

r (X0) (resp. Q = Q+
r (X0)) and

1
2Q = Q−

r/2(X0) (resp.
1
2Q = Q+

r/2(X0)).
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2.4. Main result. We now state our main theorems.

Theorem 2.5. Let the coefficients of the operator L satisfy the conditions (1.2) –
(1.6). Assume that operators L and L ∗ both satisfy the local boundedness property
(2.4). Then, there exists a unique Green’s matrix Γ(X,Y ) = Γ(t, x, s, y) on R

n+1×
R

n+1 which satisfies Γ(t, x, s, y) ≡ 0 for t < s and has the property that Γ(X, ·) is
locally integrable in R

n+1 for all X ∈ R
n+1 and that for all f ∈ C∞

c (Rn+1)m, the
function u given by

u(X) :=

ˆ
Rn+1

Γ(X,Y )f(Y ) dY

is a weak solution in V̊ 1,0
2 (Rn+1)m of Lu = f . Also, for all g ∈ L2(Rn)m, the

function u(t, x) given by

u(t, x) :=

ˆ
Rn

Γ(t, x, s, y)g(y) dy

is the unique weak solution in V̊ 1,0
2 ((s,∞)× R

n)m of the Cauchy problem{
Lu = 0,
u(s, ·) = g.

Moreover, we have for all t > s and x, y ∈ R
n,

(2.6) |Γ(t, x, s, y)| ≤ C

(t− s)
n
2
exp

{
−κ|x− y|2

t− s

}
,

where C = C(n,m, λ,Λ,Θ, N0) and κ = κ(n,m, λ,Λ,Θ) > 0 are constants.

3. Proof of Theorem 2.5

3.1. Averaged fundamental solution. We closely follow the steps used in [2]
with appropriate modification. Let Y = (s, y) ∈ R

n+1 and let 1 ≤ k ≤ m be fixed.
For each ε > 0, fix s0 ∈ (−∞, s− ε2) and consider the problem{

Lu = 1
|Q−

ε |1Q−
ε (Y )ek,

u(s0, ·) = 0,

where ek is the k-th unit vector. By using the energy inequality (2.3) and following
[9, Chapter III], we find that the above problem has a unique weak solution vε =

vε;Y,k in V̊ 1,0
2 ((s0,∞)×R

n). Moreover, by the uniqueness, we find that vε does not
depend on the particular choice of s0 and we may extend vε to the entire R

n+1 by
setting

vε ≡ 0 on (−∞, s− ε2)× R
n.

Then, by (2.3) we have

(3.1) |||vε|||Rn+1 ≤ C|Q−
ε (Y )|− n

2n+4 ≤ Cε−
n
2 .

Next, for each f ∈ C∞
c (Rn+1)m, let us fix t0 such that f ≡ 0 on [t0,∞)× R

n. We
consider the backward problem {

L ∗u = f ,
u(t0, ·) = 0.
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Again, we obtain a unique weak solution u in V̊ 1,0
2 ((−∞, t0) × R

n) and we may
extend u to the entire Rn+1 by setting u ≡ 0 on (t0,∞)×R

n. Then, by the energy
inequality (2.3), we have

(3.2) |||u|||Rn+1 ≤ C‖f‖L2(n+2)/(n+4)(Rn+1),

and similar to [2, Lemma 3.1], we have

(3.3)

ˆ
Rn+1

vε · f =

 
Q−

ε (Y )

uk.

Now, we assume that f is supported in Q+
R(X0). By the local boundedness

property (2.4) combined with (3.2) and (2.1), we have

(3.4) ‖u‖L∞(Q+
R/2

(X0))
≤ CR2‖f‖L∞(Q+

R(X0))
.

If Q−
ε (Y ) ⊂ Q+

R/2(X0), then (3.3) together with (3.4) yields∣∣∣∣∣
ˆ
Q+

R(X0)

vε · f
∣∣∣∣∣ ≤

 
Q−

ε (Y )

|u| ≤ CR2‖f‖L∞(Q+
R(X0))

.

By duality, it follows that if Q−
ε (Y ) ⊂ Q+

R/2(X0), then

(3.5) ‖vε‖L1(Q+
R(X0))

≤ CR2.

Finally, we define the averaged fundamental solution Γε(·, Y ) for L by setting

Γε
jk(·, Y ) = vjε = vjε;Y,k.

Lemma 3.6. Let X = (t, x), Y = (s, y), and assume X �= Y . Then

(3.7) |Γε(X,Y )| ≤ C|X − Y |−n
p , ∀ε ≤ 1

3 |X − Y |p,

where C = C(n,m, λ,Λ,Θ0, N0).

Proof. Denote d = |X − Y |p and let X0 = (s− 4d2, y), r = d/3, and R = 20r. It is
easy to see that

Q−
ε (Y ) ⊂ Q+

R/2(X0), Q−
r (X) ⊂ Q+

R(X0), Q−
ε (Y ) ∩Q−

r (X) = ∅.

Since vε = vε;Y,k is a weak solution of Lu = 0 in Q−
r (X), by the local boundedness

property (2.4) and the standard argument (see [7, pp. 80–82]), we have

|vε(X)| ≤ CN0r
−(n+2)‖vε‖L1(Q−

r (X)).

Therefore, by (3.5), we have |vε(X)| ≤ Cr−n, which implies (3.7). �

3.2. Construction of the fundamental matrix. Recall that vε ∈ V̊ 1,0
2 (Rn+1)

satisfies

(3.8) L vε =
1

|Q−
ε |

1Q−
ε (Y )ek.

For ε < ρ < R < ∞, let η : Rn+1 → R be a smooth nonnegative function such that

(3.9) η ≡ 0 on Qρ(Y ), η ≡ 1 on QR(Y )c, |Dη|2 + |D2η|+ |ηt| ≤ 12
(R−ρ)2 .
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By testing (3.8) with η2vρ and using assumption (1.4), we have

0 =

ˆ
Rn

1

2
(η2|vε|2)t −

ˆ
Rn

ηηt|vε|2 +
ˆ
Rn

η2Aαβ
ij Dβv

j
εDαv

i
ε

+

ˆ
Rn

2ηAαβ
ij Dβv

j
εDαηv

i
ε −

ˆ
Rn

ηDαηB
α
ijv

i
εv

j
ε +

ˆ
Rn

η2Cijv
i
εv

j
ε .

Then by using (1.2), (1.3), and (1.5), we get
ˆ
Rn

1

2
(η2|vε|2)t + λ

ˆ
Rn

η2|Dvε|2

≤
ˆ
Rn

η|ηt| |vε|2 + 2Λ

ˆ
Rn

η|Dvε| |Dη| |vε|+
ˆ
Rn

Bα
ijηDαηv

i
εv

j
ε .

By using the assumption (1.6), we control the last term,ˆ
Rn

Bα
ijηDαηv

i
εv

j
ε = −

ˆ
Rn

Φαβ
ij Dβ(ηDαηv

i
εv

j
ε )

≤ ‖Φαβ
ij ‖BMO(Rn)‖Dβ(ηv

i
εDαηv

j
ε )‖H1(Rn),(3.10)

where H1(Rn) denotes the Hardy space. We note that the same proof of [12,
Proposition 3.2] yields the following interesting estimate:

(3.11) ‖Dα(fg)‖H1(Rn) ≤ C(n)
{
‖Df‖L2(Rn)‖g‖L2(Rn) + ‖f‖L2(Rn)‖Dg‖L2(Rn)

}
.

Fix a smooth function η̃ : Rn+1 → R+ such that

0 ≤ η̃ ≤ 1, η̃ ≡ 1 on QR(Y ), η̃ ≡ 0 on Q2R(Y )c, |Dη̃| ≤ 2
R .

Since ηviεDαηv
j
ε = η̃ηviεDαηv

j
ε , by using (3.11), we estimate

‖Dβ(ηv
i
εDαηv

j
ε )‖H1(Rn)

≤ C(n)
{(

‖D(η̃η)viε‖L2(Rn) + ‖η̃ηDviε‖L2(Rn)

)
‖Dαηv

j
ε‖L2(Rn)

+‖η̃ηviε‖L2(Rn)

(
‖DDαηv

j
ε‖L2(Rn) + ‖DαηDvjε‖L2(Rn)

)}
.

Note that |D(η̃η)| ≤ 4
R−ρ . Therefore, we haveˆ

Rn

Bα
ijηDαηv

i
εv

j
ε

≤ C(n)Θ

⎧⎨
⎩ 1

(R− ρ)2

ˆ
Q2R\Qρ

|vε|2+
1

R− ρ

(ˆ
Rn

η2|Dvε|2
) 1

2

(ˆ
QR\Qρ

|vε|2
) 1

2

+
1

R − ρ

(ˆ
Q2R\Qρ

|vε|2
) 1

2
(ˆ

QR\Qρ

|Dvε|2
) 1

2

⎫⎬
⎭ .

Combining and using Young’s inequality, we get

1

2

ˆ
Rn

(η2|vε|2)t +
λ

2

ˆ
Rn

η2|Dvε|2 ≤ C

(R− ρ)2

ˆ
Q2R\Qρ

|vε|2 +
λ

4

ˆ
QR\Qρ

|Dvε|2,

where C = C(n,m, λ,Λ,Θ). Then, by integrating with respect to t, we obtain
(3.12)

sup
t∈R

ˆ
Rn

η2|vε|2 + λ

ˆ
Rn+1

η2|Dvε|2 ≤ C

(R− ρ)2

ˆ
Q2R\Qρ

|vε|2 +
λ

2

ˆ
QR\Qρ

|Dvε|2.
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In particular, (3.12) implies thatˆ
QR(Y )c

|Dvε|2 ≤ C

(R− ρ)2

ˆ
Q2R\Qρ(Y )

|vε|2 +
1

2

ˆ
Qρ(Y )c

|Dvε|2.

Since the above inequality is true for all ρ and R satisfying ε < ρ < R, a well-known
iteration argument yields (see [7, Lemma 5.1]) that for any r > ε we haveˆ

Q2r(Y )c
|Dvε|2 ≤ Cr−2

ˆ
Q4r(Y )\Qr(Y )

|vε|2.

Then, by setting ρ = 2r and R = 4r in (3.9), we get from (3.12) that

|||vε|||2Rn+1\Q4r(Y ) ≤ Cr−2

ˆ
Q8r(Y )\Q2r(Y )

|vε|2 + C

ˆ
Q2r(Y )c

|Dvε|2

≤ Cr−2

ˆ
Q8r(Y )\Qr(Y )

|vε|2.

Therefore, by Lemma 3.6, we see that if r ≥ 3ε, then

|||vε|||2Rn+1\Q4r(Y ) ≤ Cr−2

ˆ
{r<|X−Y |p<8r}

|X − Y |−2n
p dX ≤ Cr−n.

We have thus shown that if R ≥ 12ε, then we have

|||vε|||Rn+1\QR(Y ) ≤ CR−n
2 .

On the other hand, if R < 12ε, then by (3.1), we have

|||vε|||Rn+1\QR(Y ) ≤ |||vε|||Rn+1 ≤ Cε−
n
2 ≤ CR−n

2 .

Therefore, we have

(3.13) |||Γε(·, Y )|||Rn+1\QR(Y ) ≤ CR−n
2 , ∀ε > 0.

In fact, by the same reasoning, we also get

(3.14) |||ηΓε(·, Y )|||Rn+1 ≤ CR−n
2 , ∀ε > 0,

where η satisfies (3.9) with ρ = 1
2R.

With the above two estimates (3.13) and (3.14) at hand, we repeat the same
arguments in [2] and construct the fundamental solution Γ(X,Y ). By following the
same proof of [2, Theorem 2.7], it is routine to verify that Γ(X,Y ) satisfies all the
properties stated in the theorem except the Gaussian bound (2.6).

3.3. Proof of the Gaussian bound (2.6). We again modify the argument in [2],
which is an adaptation of a method by E. B. Davies [3]. Let ψ : Rn → R be a
bounded C2 function satisfying

(3.15) |Dψ| ≤ γ, |D2ψ| ≤ δ,

where γ > 0 and δ ≥ 0 are constants to be chosen later. For t > s, we define an

operator Pψ
s→t on L2(Rn)m as follows. For a given f ∈ L2(Rn)m, let u be the weak

solution in V̊ 1,0
2 ((s,∞)× R

n)N of the problem{
Lu = 0,
u(s, ·) = e−ψf .

Then, we define Pψ
s→tf(x) := eψ(x)u(t, x) so that we have

(3.16) Pψ
s→tf(x) = eψ(x)

ˆ
Rn

Γ(t, x, s, y)e−ψ(y)f(y) dy.
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We denote

I(t) :=

ˆ
Rn

e2ψ|u(t, x)|2 dx, t ≥ s.

Then, by (1.4) and (1.5), we have

I ′(t) = 2

ˆ
Rn

e2ψu · ut

= −2

ˆ
Rn

{
Aαβ

ij Dβu
jDα(e

2ψui) + e2ψBα
ijDαu

jui + e2ψCiju
jui

}

≤ −2

ˆ
Rn

e2ψAαβ
ij Dβu

jDαu
i − 4

ˆ
Rn

e2ψAαβ
ij Dβu

jDαψu
i +

ˆ
Rn

Dα(e
2ψBα

ij)u
iuj

≤ −2λ

ˆ
Rn

e2ψ|Du|2 + 4Λγ

ˆ
Rn

e2ψ|Du| |u|+ 2

ˆ
Rn

Bα
ije

2ψDαψu
iuj .

Similar to (3.10), the assumption (1.6) yields
ˆ
Rn

Bα
ije

2ψDαψu
iuj ≤ ‖Φαβ

ij ‖BMO(Rn)‖Dβ(e
2ψDαψu

iuj)‖H1(Rn).

Then by using (3.11), we estimate (setting f = eψui and g = eψDαψu
j)

‖Dβ(e
2ψDαψu

iuj)‖H1(Rn)

≤ C(n)
{(

‖eψDψui‖L2(Rn) + ‖eψDui‖L2(Rn)

)
‖eψDαψu

j‖L2(Rn)

+ ‖eψui‖L2(Rn)

(
‖eψDψDαψu

j‖L2(Rn) + ‖eψDDαψu
j‖L2(Rn)

+ ‖eψDαψDuj‖L2(Rn)

)}
.

Therefore, by (3.15) and (1.6), we obtain

2

ˆ
Rn

Bα
ije

2ψDαψu
iuj

≤ C0Θ

{
(2γ2 + δ)

ˆ
Rn

e2ψ|u|2 + 2γ

(ˆ
Rn

e2ψ|Du|2
) 1

2
(ˆ

Rn

e2ψ|u|2
) 1

2

}
.

By combining and using Hölder’s and Young’s inequalities, we get

(3.17) I ′(t) ≤
{(

4Λ2/λ+ C2
0Θ

2/λ+ 2C0Θ
)
γ2 + C0Θδ

} ˆ
Rn

e2ψ|u|2.

The differential inequality (3.17) and the initial condition I(s) = ‖f‖2L2(Rn) yield

I(t) ≤ e(2νγ
2+2μδ)(t−s)‖f‖2L2(Rn),

where we set

2ν := 4Λ2/λ+ C2
0Θ

2/λ+ 2C0Θ and 2μ := C0Θ.

Since I(t) = ‖Pψ
s→tf‖2L2(Rn) for t > s, we have derived

(3.18) ‖Pψ
s→tf‖L2(Rn) ≤ e(νγ

2+μδ)(t−s)‖f‖L2(Rn).
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By (2.4), we estimate

e−2ψ(x)|Pψ
s→tf(x)|2 = |u(t, x)|2 ≤ CN2

0

(t− s)
n+2
2

ˆ t

s

ˆ
B√

t−s(x)

|u(τ, y)|2dydτ

≤ CN2
0

(t− s)
n+2
2

ˆ t

s

ˆ
B√

t−s(x)

e−2ψ(y)|Pψ
s→τf(y)|2dydτ.

Hence, by using (3.18) we find

|Pψ
s→tf(x)|2 ≤ C

(t− s)
n+2
2

ˆ t

s

ˆ
B√

t−s(x)

e2ψ(x)−2ψ(y)|Pψ
s→τf(y)|2dydτ

≤ C

(t− s)
n+2
2

ˆ t

s

ˆ
B√

t−s(x)

e2γ
√
t−s|Pψ

s→τf(y)|2dydτ

≤ C

(t− s)
n+2
2

e2γ
√
t−s

ˆ t

s

e2(νγ
2+μδ)(τ−s)‖f‖2L2(Rn)dτ

≤ C

(t− s)
n
2
e2γ

√
t−s+2(νγ2+μδ)(t−s)‖f‖2L2(Rn).

We have thus derived the L2 → L∞ estimate

‖Pψ
s→tf‖L∞(Rn) ≤ C(t− s)−

n
4 eγ

√
t−s+(νγ2+μδ)(t−s)‖f‖L2(Rn).

Then, by replicating the same argument as in [2, §5.1], we have

‖Pψ
s→tf‖L∞(Rn) ≤ C(t−s)−

n
2 eγ

√
2(t−s)+(νγ2+μδ)(t−s)‖f‖L1(Rn), ∀f ∈ C∞

c (Rn)m.

For fixed x, y ∈ R
n with x �= y, the above estimate and (3.16) imply, by duality,

that

(3.19) eψ(x)−ψ(y)|Γ(t, x, s, y)| ≤ C(t− s)−
n
2 eγ

√
2(t−s)+(νγ2+μδ)(t−s).

Fix a smooth function ψ0 : R → R satisfying

ψ0(r) = 0 for r ≤ 0, ψ0(r) = |x− y| for r ≥ |x− y|, |ψ′
0| ≤ 2, |ψ′′

0 | ≤ 4|x− y|−1.

We define

ψ(z) :=
γ

2
ψ0(n · (z − y)), where n =

x− y

|x− y| .

It is clear that ψ is a bounded function satisfying (3.15) with δ = 4γ
|x−y| . Also, we

have ψ(x) = 1
2γ|x− y| and ψ(y) = 0. Therefore (3.19) yields

|Γ(t, x, s, y)|

≤ C(t− s)−
n
2 exp

{
γ
√
2(t− s) + νγ2(t− s) +

4μγ(t− s)

|x− y| − γ

2
|x− y|

}
.

Now, we choose γ = |x− y|/4ν(t− s). Then

|Γ(t, x, s, y)| ≤ Ce
μ
ν (t− s)−

n
2 exp

{
1√
8ν

|x− y|√
t− s

− 1

16ν

|x− y|2
t− s

}
.

Since there exists a number N such that

e
1√
8ν

r− 1
16ν r2 ≤ Ne−

1
32ν r2 , ∀r ≥ 0,

we obtain the Gaussian bound (2.6) by taking κ = 1
32ν. �
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