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RELATIVE ENERGY GAP FOR HARMONIC MAPS

OF RIEMANN SURFACES INTO REAL ANALYTIC

RIEMANNIAN MANIFOLDS

PAUL M. N. FEEHAN

(Communicated by Lei Ni)

Abstract. We extend the well-known Sacks–Uhlenbeck energy gap result for
harmonic maps from closed Riemann surfaces into closed Riemannian mani-
folds from the case of maps with small energy (thus near a constant map), to
the case of harmonic maps with high absolute energy but small energy relative
to a reference harmonic map.

1. Introduction

Let (M, g) and (N, h) be a pair of smooth Riemannian manifolds, with M ori-
entable. One defines the harmonic map energy function by

(1.1) Eg,h(f) :=
1

2

∫
M

|df |2g,h d volg,

for smooth maps, f : M → N , where df : TM → TN is the differential map.
A map f ∈ C∞(M ;N) is (weakly) harmonic if it is a critical point of Eg,h, so
E ′
g,h(f)(u) = 0 for all u ∈ C∞(M ; f∗TN), where

E ′
g,h(f)(u) =

∫
M

〈df, u〉g,h d volg .

The purpose of this article is to prove

Theorem 1 (Relative energy gap for harmonic maps of Riemann surfaces into real
analytic Riemannian manifolds). Let (M, g) be a closed Riemann surface and let
(N, h) be a closed, real analytic Riemannian manifold equipped with a real analytic
isometric embedding into a Euclidean space, Rn. If f∞ ∈ C∞(M ;N) is a harmonic
map, then there is a constant ε = ε(f∞, g, h) ∈ (0, 1] with the following significance.
If f ∈ C∞(M ;N) is a harmonic map obeying

(1.2) ‖d(f − f∞)‖L2(M ;Rn) + ‖f − f∞‖L2(M ;Rn) < ε,

then Eg,h(f) = Eg,h(f∞).
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Remark 1.1 (Generalizations to the case of harmonic maps with potentials). In
physics, harmonic maps arise in the context of non-linear sigma models and with
such applications in mind, Theorem 1 should admit generalizations to allow, for
example, the addition to Eg,h of a real analytic potential function, V : C∞(M ;N) →
R, in the definition (1.1) of the energy, as explored by Branding [6].

Naturally, Theorem 1 continues to hold if the condition (1.2) is replaced by the
stronger (and conformally invariant) hypothesis,

‖d(f − f∞)‖L2(M ;Rn) + ‖f − f∞‖L∞(M ;Rn) < ε.

Thus, if ℘ is any conformal diffeomorphism of (M, g), then the preceding condition
on f, f∞ holds if and only if the harmonic maps f ◦ ℘, f∞ ◦ ℘ obey

‖d(f ◦ ℘− f∞ ◦ ℘)‖L2(M ;Rn) + ‖f ◦ ℘− f∞ ◦ ℘‖L∞(M ;Rn) < ε.

Hence, the constants, Z, σ, θ in Theorem 1 are in this sense independent of the
action of the conformal group of (M, g) on harmonic maps from M to N .

Theorem 1 may be viewed, in part, as a generalization of the following energy
gap result due to Sacks and Uhlenbeck and who do not require that the target
manifold be real analytic.

Theorem 1.2 (Energy gap near the constant map). [34, Theorem 3.3] Let (M, g)
be a closed Riemann surface and (N, h) be a closed, smooth Riemannian manifold.
Then there is a constant, ε > 0, such that if f ∈ C∞(M ;N) is harmonic and
Eg,h(f) < ε, then f is a constant map and Eg,h(f) = 0.

The Sacks–Uhlenbeck Energy Gap Theorem 1.2 has been generalized by Brand-
ing [5, Lemma 4.9] and by Jost and his collaborators [9, Proposition 4.2], [25, Propo-
sition 5.2] to the case of Dirac-harmonic pairs. Theorem 1.2 ensures positivity of
the constant � in the

Definition 1.3 (Dirac–Planck constant). Let (N, h) be a closed, smooth Riemann-
ian manifold. Then � denotes the least energy of a non-constant C∞ map from
(S2, ground) into (N, h), where ground is the standard round metric of radius one on
S2.

The energy gap near the ‘ground state’ characterized by the constant maps from
(S2, ground) to (N, h) appears to be unusual in light of the following counter-example
due to Li and Wang [27] when (N, h) is only C∞ rather than real analytic.

Example 1.4 (Non-discreteness of the energy spectrum for harmonic maps from S2

into a smooth Riemannian manifold with boundary). (See [27, Section 4].) There
exists a smooth Riemannian metric h on N = S2 × (−1, 1) such that the energies
of harmonic maps from (S2, ground) to (N, h) have an accumulation point at the
energy level 4π, where, ground denotes the standard round metric of radius one.

Thus we would not expect Theorem 1 to hold when the hypothesis that (N, h)
is real analytic is omitted, except for the case where f∞ is a constant map. On the
other hand, when (N, h) is real analytic, one has the following conjecture due to
Lin [28].

Conjecture 1.5 (Discreteness for energies of harmonic maps from closed Riemann
surfaces into analytic closed Riemannian manifolds). (Lin [28, Conjecture 5.7].)
Assume the hypotheses of Theorem 1 and that (M, g) is the two-sphere, S2, with its
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standard, round metric. Then the subset of critical values of the energy function,
Eg,h : C∞(S2;N) → [0,∞), is closed and discrete.

One may therefore view Theorem 1 as supporting evidence of the validity of
Conjecture 1.5. In the special case that N is the Lie group U(n) with n ≥ 2 and
its standard Riemannian metric, Valli [48, Corollary 8] has shown (using ideas of
Uhlenbeck [46]) that the energies of harmonic maps from (S2, ground) into U(n) are
integral multiples of 8π. If (N, h) has non-positive curvature sectional curvature,
then Adachi and Sunada [1, Theorem 1] have shown that Conjecture 1.5 holds when
(M, g) is any closed Riemann surface.

1.1. Outline of the article. In Section 2, we review the �Lojasiewicz–Simon gra-
dient inequality for the harmonic map energy function based on results of the
author and Maridakis [12] and Simon [38, 39]. In Section 3, we prove certain a
priori estimates for the difference of two harmonic maps and, with the aid of the
�Lojasiewicz–Simon gradient inequality, complete the proof of Theorem 1.

2. �Lojasiewicz–Simon gradient inequality for the harmonic map

energy function

In this section, we closely follow our treatment of the �Lojasiewicz–Simon gradient
inequality for abstract and harmonic map energy functions provided by the author
and Maridakis in [12, Sections 1.1, 1.2, and 1.4]. Useful references for harmonic
maps include Eells and Lemaire [10, 11], Hamilton [16], Hélein [17], Hélein and
Wood [18], Jost [20–24], Moser [30], Parker [33], Sacks and Uhlenbeck [34, 35],
Schoen [36], Simon [40], Struwe [42], Urakawa [47], and Xin [49], and the citations
contained therein.

When clear from the context, we omit explicit mention of the Riemannian metrics
g on M and h on N and write E = Eg,h. Although initially defined for smooth
maps, the energy function E in (1.1), extends to the case of Sobolev maps of class
W 1,2. To define the gradient, M = Mg,h, of the energy function E in (1.1) with
respect to the L2 metric on C∞(M ;N), we first choose an isometric embedding,
(N, h) ⊂ R

n for a sufficiently large n (courtesy of the isometric embedding theorem
due to Nash [31]), and recall that1 by [40, Equations (2.2)(i) and (ii)]

(u,M (f))L2(M,g) := E ′(f)(u) =
d

dt
E (π(f + tu))

∣∣∣∣
t=0

= (u,Δgf)L2(M,g)

= (u, dπh(f)Δgf)L2(M,g)

for all u ∈ C∞(M ; f∗TN), where πh is the nearest point projection onto N from a
normal tubular neighborhood and dπh(y) : R

n → TyN is an orthogonal projection
for all y ∈ N . By [17, Lemma 1.2.4], we have

(2.1) M (f) = dπh(f)Δgf = Δgf −Ah(f)(df, df),

as in [40, Equations (2.2)(iii) and (iv)]. Here, Ah denotes the second fundamental
form of the isometric embedding, (N, h) ⊂ R

n, and

(2.2) Δg := − divg gradg = d∗,gd = − 1√
det g

∂

∂xβ

(√
det g

∂f

∂xα

)

1Compare [24, Equations (8.1.10) and (8.1.13)], where Jost uses variations of f of the form
expf (tu).
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denotes the Laplace–Beltrami operator for (M, g) (with the opposite sign convention
to that of [8, Equations (1.14) and (1.33)]) acting on the scalar components f i of
f = (f1, . . . , fn) and the {xα} denote local coordinates on M . As usual, the
gradient vector field, gradg f

i ∈ C∞(TM), is defined by 〈gradg f i, ξ〉g := df i(ξ) for
all ξ ∈ C∞(TM) and 1 ≤ i ≤ n and the divergence function, divg ξ ∈ C∞(M ;R),
by the pointwise trace, divg ξ := tr(η 
→ ∇g

ξη), for all η ∈ C∞(TM).

Given a smooth map, f : M → N , an isometric embedding, (N, h) ⊂ R
n, a

non-negative integer k, and constant p ∈ [1,∞), we define the Sobolev norms,

‖f‖Wk,p(M ;Rn) :=

(
n∑

i=1

‖f i‖p
Wk,p(M ;Rn)

)1/p

,

with

‖f i‖Wk,p(M ;Rn) :=

⎛
⎝ k∑

j=0

∫
M

|(∇g)jf i|p d volg

⎞
⎠

1/p

,

where ∇g denotes the Levi–Civita connection on TM and all associated bundles
(that is, T ∗M and their tensor products), and if p = ∞, we define

‖f‖Wk,∞(M ;Rn) :=
n∑

i=1

k∑
j=0

ess supM |(∇g)jf i|.

If k = 0, then we denote ‖f‖W 0,p(M ;Rn) = ‖f‖Lp(M ;Rn). For p ∈ [1,∞) and non-

negative integers k, we use [2, Theorem 3.12] (applied to W k,p(M ;Rn) and noting
that M is a closed manifold) and Banach space duality to define

W−k,p′
(M ;Rn) :=

(
W k,p(M ;Rn)

)∗
,

where p′ ∈ (1,∞] is the dual exponent defined by 1/p + 1/p′ = 1. Elements
of the continuous Banach dual space, (W k,p(M ;Rn))∗, may be characterized via
[2, Section 3.10] as distributions in the Schwartz space, D ′(M ;Rn) [2, Section 1.57].

Spaces of Hölder continuous maps, Ck,λ(M ;N) for λ ∈ (0, 1) and integers k ≥ 0,
and norms,

‖f‖Ck,λ(M ;Rn),

may be defined as in [2, Section 1.29].
We note that if (N, h) is real analytic, then the isometric embedding, (N, h) ⊂

R
n, may also be chosen to be analytic by the analytic isometric embedding theorem

due to Nash [32], with a simplified proof due to Greene and Jacobowitz [15]).

Definition 2.1 (Harmonic map). (See [17, Definition 1.4.9].) A map f ∈
W 1,2(M ;N) is called weakly harmonic if it is a critical point of the L2-energy
functional (1.1), that is,

E ′(f)(u) = 0 ∀u ∈ C∞(M ; f∗TN),

and a map f ∈ W 2,p(M ;N), for p ∈ [1,∞], is called harmonic if

(2.3) Δgf −Ah(df, df) = 0 a.e. on M.

A well-known result due to Hélein [17, Theorem 4.1.1] tells us that if M has
dimension d = 2, then f ∈ C∞(M ;N); for d ≥ 3, regularity results are far more
limited — see, for example, [17, Theorem 4.3.1] due to Bethuel. From [12], we recall
the following theorem.
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Theorem 2.2 (�Lojasiewicz–Simon gradient inequality for the energy function for
maps between pairs of Riemannian manifolds). (See [12, Theorem 5].) Let d ≥ 2
and k ≥ 1 be integers and p ∈ (1,∞) be such that kp > d. Let (M, g) and (N, h)
be closed, smooth Riemannian manifolds, with M of dimension d. If (N, h) is real
analytic (respectively, C∞) and f ∈ W k,p(M ;N), then the gradient map M in
(2.1) for the energy function, E : W k,p(M ;N) → R, in (1.1),

W k,p(M ;N) � f 
→ M (f) ∈ W k−2,p(M ; f∗TN) ⊂ W k−2,p(M ;Rn),

is a real analytic (respectively, C∞) map of Banach spaces. If (N, h) is real analytic
and f∞ ∈ W k,p(M ;N) is a weakly harmonic map, then there are positive constants
Z ∈ (0,∞), and σ ∈ (0, 1], and θ ∈ [1/2, 1), depending on f∞, g, h, k, p, with the
following significance. If f ∈ W k,p(M ;N) obeys

(2.4) ‖f − f∞‖Wk,p(M ;Rn) < σ,

then the gradient M in (2.1) of the harmonic map energy function E in (1.1) obeys

(2.5) ‖M (f)‖Wk−2,p(M ;f∗TN) ≥ Z|E (f)− E (f∞)|θ.

Remark 2.3 (On the hypotheses of Theorem 2.2). When k = d and p = 1, then
W d,1(M ;R) ⊂ C(M ;R) is a continuous embedding by [2, Theorem 4.12] and
W d,1(M ;R) is a Banach algebra by [2, Theorem 4.39]. In particular, W d,1(M ;N)
is a real analytic Banach manifold by [12, Proposition 3.2] and the harmonic map
energy function, E : W d,1(M ;N) → R, is real analytic by [12, Proposition 3.5].
However, the operator M ′(f∞) : W d,1(M ; f∗

∞TN) → W d−2,1(M ; f∗
∞TN) may not

be Fredholm.

Theorem 2.2 extends a version of the �Lojasiewicz–Simon gradient inequality that
is stated by Simon in [39, Equation (4.27)] and can be derived from his more general
[38, Theorem 3].

Theorem 2.4 (�Lojasiewicz–Simon gradient inequality for the energy function for
maps between pairs of Riemannian manifolds). (See [12, Corollary 6], [38, Theorem
3], [39, Equation (4.27)].) Let d ≥ 2 and λ ∈ (0, 1) be constants, let (M, g) be a
closed, smooth Riemannian manifold of dimension d, and (N, h) is a closed, real
analytic Riemannian manifold. If f∞ ∈ C2,λ(M ;N) is a harmonic map, then there
are positive constants Z ∈ (0,∞), and σ ∈ (0, 1], and θ ∈ [1/2, 1), depending on
f∞, g, h, λ, with the following significance. If f ∈ C2,λ(M ;N) obeys

(2.6) ‖f − f∞‖C2,λ(M ;Rn) < σ,

then the gradient M in (2.1) of the harmonic map energy function E in (1.1) obeys

(2.7) ‖M (f)‖L2(M ;f∗TN) ≥ Z|E (f)− E (f∞)|θ.

Remark 2.5 (Other versions of the �Lojasiewicz–Simon gradient inequality for the
harmonic map energy function). Topping [45, Lemma 1] proved a �Lojasiewicz-type
gradient inequality for maps, f : S2 → S2, with small energy, with the latter
criterion replacing the usual small C2,λ(M ;Rn) norm criterion of Simon for the
difference between a map and a critical point. Topping’s result is generalized by
Liu and Yang in [29, Lemma 3.3]. Kwon [26, Theorem 4.2] obtains a �Lojasiewicz-
type gradient inequality for maps, f : S2 → N , that are W 2,p(S2;Rn)-close to a
harmonic map, with 1 < p ≤ 2.
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When d = 2 in the hypotheses of Theorem 2.2, the reader will note that the two
cases that are most directly applicable to a proof of Theorem 1 are omitted, namely
the cases k = 2 and p = 1 or k = 1 and p = 2, which are both critical since kp = d.
We shall briefly comment on each of these two cases.

When d = 2, k = 1, and p = 2, it appears very difficult to verify the hypotheses of
[12, Theorem 2]. The analytical difficulties are very much akin to those confronted
by Hélein [17] in his celebrated proof of smoothness of weakly harmonic maps from
Riemann surfaces. However, it is unclear that Hélein’s methods could be used to
extend Theorem 2.2 to the case d = 2, k = 1, and p = 2.

Similarly, when d = 2, k = 2, and p = 1, it is very difficult to verify the hypothe-
ses of [12, Theorem 2]. One might speculate that a version of Theorem 2.2 could
hold if the role of the pair of Sobolev spaces, W 2,1(M ; f∗

∞TN) and L1(M ; f∗
∞TN),

were replaced by suitably defined local Hardy spaces. We refer the reader to Semmes
[37], Stein [41], and Taylor [44] for introductions to Hardy spaces of functions on
Euclidean space and to Hélein [17] for their application to the problem of regularity
for weakly harmonic maps from Riemann surfaces. Auscher, McIntosh, and Morris
[3], Carbonaro, McIntosh, and Morris [7], and Taylor [43] provide definitions of
local Hardy spaces on Riemannian manifolds. However, the analytical difficulties
appear formidable in any such approach.

Fortunately, in our proof of Theorem 1, we can apply Theorem 2.2 with non-
critical Sobolev exponents, namely d = 2, k = 2, and p ∈ (1,∞) by exploiting
certain a priori estimates for harmonic maps similar to those used by Sacks and
Uhlenbeck [34].

Theorem 2.2 is proved by the author and Maridakis in [12] as a consequence
of a more general abstract �Lojasiewicz–Simon gradient inequality for an analytic
function on a Banach space, namely [12, Theorem 2], while Theorem 2.4 may be
deduced as a consequence of [12, Theorem 2].

To state the abstract [12, Theorem 2], we let X be a Banach space and let
X ∗ denote its continuous dual space. We call a bilinear form, b : X × X → R,
definite if b(x, x) �= 0 for all x ∈ X < {0}. We say that a continuous embedding
of a Banach space into its continuous dual space, j : X → X ∗, is definite if the
pullback of the canonical pairing, X × X � (x, y) 
→ 〈x, j(y)〉X ×X ∗ → R, is a
definite bilinear form. (This hypothesis on the continuous embedding, X ⊂ X ∗,
is easily achieved given a continuous embedding of X into a Hilbert space H but
the increased generality is often convenient.)

Definition 2.6 (Gradient map). (See [4, Section 2.5], [19, Definition 2.1.1].) Let

U ⊂ X be an open subset of a Banach space, X , and let X̃ be a Banach space
with continuous embedding, X̃ � X ∗. A continuous map, M : U → X̃ , is called
a gradient map if there exists a C1 function, E : U → R, such that

(2.8) E ′(x)v = 〈v,M (x)〉X ×X ∗ ∀x ∈ U , v ∈ X ,

where 〈·, ·〉X ×X ∗ is the canonical bilinear form on X × X ∗. The real-valued
function, E , is called a potential for the gradient map, M .

Theorem 2.7 (�Lojasiewicz–Simon gradient inequality for analytic functions on

Banach spaces). (See [12, Corollary 3].) Let X and X̃ be Banach spaces with

continuous embeddings, X ⊂ X̃ ⊂ X ∗, and such that the embedding, X ⊂ X ∗,
is definite. Let U ⊂ X be an open subset, let E : U → R be a C2 function with
real analytic gradient map, M : U → X̃ , and let x∞ ∈ U be a critical point of
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E , that is, M (x∞) = 0. If M ′(x∞) : X → X̃ is a Fredholm operator with index
zero, then there are constants, Z ∈ (0,∞), and σ ∈ (0, 1], and θ ∈ [1/2, 1), with the
following significance. If x ∈ U obeys

(2.9) ‖x− x∞‖X < σ,

then

(2.10) ‖M (x)‖X̃ ≥ Z|E (x)− E (x∞)|θ.

Theorem 2.2 follows from Theorem 2.7 by choosing

X = W k,p(M ; f∗
∞TN) and X̃ = W k−2,p(M ; f∗

∞TN).

Theorem 2.4 follows from Theorem 2.2 when one can choose k ≥ 1 and p ∈ (1,∞)
with kp > d so that there are continuous Sobolev embeddings, C2,λ(M ; f∗

∞TN) ⊂
W k,p(M ; f∗

∞TN), and L2(M ; f∗
∞TN) ⊂ W k−2,p(M ; f∗

∞TN). For example, if d =
2, then k = p = 2 will do. For d ≥ 2, we may choose k = 1 and d < p < ∞
provided L2(M ;R) ⊂ W−1,p(M ;R) is a continuous embedding or, equivalently,

W 1,p′
(M ;R) ⊂ L2(M ;R) is a continuous embedding, where p′ = p/(p − 1). Ac-

cording to [2, Theorem 4.12] when 1 ≤ p′ < d, the latter embedding is continuous if
(p′)∗ = dp′/(d−p′) = dp/(d(p−1)−p) ≥ 2. But we must choose p > d when k = 1 in
Theorem 2.2 and if p = d, then dp/(d(p−1)−p) = d2/(d(d−1)−d) = d/(d−2) ≥ 2
implies d ≥ 2d−4 or d ≤ 4. Hence, Theorem 2.2 implies Theorem 2.4 when d = 2, 3
(the case d = 4 is excluded since p > d leads to d < 4 in the preceding inequali-
ties). For arbitrary d ≥ 2, another abstract �Lojasiewicz–Simon gradient inequality
[19, Theorem 2.4.2 (i)] due to Huang implies Theorem 2.4 with the choices

X = C2,λ(M ; f∗
∞TN), X̃ = Cλ(M ; f∗

∞TN), H = L2(M ; f∗
∞TN),

and HA = W 2,2(M ; f∗
∞TN) with A = Δg+1 in [19, Hypotheses (H1)–(H3), pages

34–35]. We refer the reader to [13] for an exposition of Huang’s [19, Theorem 2.4.2
(i)].

Alternatively, our [12, Theorem 3] implies Theorem 2.4, as we show in the proof
of [12, Corollary 6].

3. A priori estimate for the difference of two harmonic maps

In this section, we give two proofs of Theorem 1, based on Theorems 2.2 and
2.4, respectively. We begin with the

Lemma 3.1 (A priori W 2,p estimate for the difference of two harmonic maps).
Let (M, g) be a closed Riemann surface, let (N, h) be a closed, smooth Riemannian
manifold, and let p ∈ (1, 2] be a constant. Then there is a constant C = C(g, h, p) ∈
[1,∞) with the following significance. If f, f∞ ∈ C∞(M ;N) are harmonic maps
and q = 2p/(2− p) ∈ (2,∞], then

(3.1) ‖f − f∞‖W 2,p(M ;Rn)

≤ C
(
‖df‖Lq(M ;Rn) + ‖df∞‖Lq(M ;Rn) + 1

)
‖f − f∞‖W 1,2(M ;Rn).

Proof. Because f and f∞ are harmonic, equation (2.3) implies that

Δgf −Ah(df, df) = 0,

Δgf∞ −Ah(df∞, df∞) = 0,
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and, therefore,

(3.2) Δg(f − f∞)−Ah(df, d(f − f∞))−Ah(d(f − f∞), df∞) = 0.

Because 1/p = 1/2+ 1/q by hypothesis, the preceding equality yields the estimate,

‖Δg(f − f∞)‖Lp(M ;Rn) ≤ C
(
‖df‖Lq(M ;Rn) + ‖df∞‖Lq(M ;Rn)

)
‖d(f − f∞)‖L2(M ;Rn),

with C = C(h) ∈ [1,∞). The standard a priori W 2,p estimate for an elliptic,
linear, scalar, second-order partial differential operator over a bounded domain in
Euclidean space [14, Theorem 9.13] yields the bound,

‖f − f∞‖W 2,p(M ;Rn) ≤ C
(
‖Δg(f − f∞)‖Lp(M ;Rn) + ‖f − f∞‖Lp(M ;Rn)

)
,

for a constant C = C(g, p) ∈ [1,∞). Combining the preceding two inequalities
gives

‖f − f∞‖W 2,p(M ;Rn) ≤ C
(
‖df‖Lq(M ;Rn) + ‖df∞‖Lq(M ;Rn)

)
‖d(f − f∞)‖L2(M ;Rn)

+ C‖f − f∞‖Lp(M ;Rn),

for C = C(g, h, p) ∈ [1,∞). Since p ≤ 2, this yields the desired estimate. �

Lemma 3.2 (A priori W 1,q estimate for a harmonic map). Let (M, g) be a closed
Riemann surface, let (N, h) be a closed, smooth Riemannian manifold, and let
q ∈ (2,∞) be a constant. Then there is a constant ε = ε(g, h, q) ∈ (0, 1] with the
following significance. If f, f∞ ∈ C∞(M ;N) are harmonic maps obeying (1.2),
then

(3.3) ‖f‖W 1,q(M ;Rn) ≤ 1 + 3‖f∞‖W 1,q(M ;Rn).

Proof. For p ∈ (1, 2) defined by p∗ := 2p/(2−p) = q, we observe that W 1,p(M ;R) ⊂
Lq(M ;R) is a continuous Sobolev embedding by [2, Theorem 4.12]. Hence, the
estimate (3.1) yields

‖f − f∞‖W 1,q(M ;Rn) ≤ C‖f − f∞‖W 2,p(M ;Rn)

≤ C
(
‖df‖Lq(M ;Rn) + ‖df∞‖Lq(M ;Rn) + 1

)
‖f − f∞‖W 1,2(M ;Rn).

Therefore,

‖f‖W 1,q(M ;Rn) ≤ ‖f − f∞‖W 1,q(M ;Rn) + ‖f∞‖W 1,q(M ;Rn)

≤ C‖df‖Lq(M ;Rn)‖f − f∞‖W 1,2(M ;Rn)

+ C
(
‖df∞‖Lq(M ;Rn) + 1

)
‖f − f∞‖W 1,2(M ;Rn) + ‖f∞‖W 1,q(M ;Rn).

Choosing ε = ε(g, h, q) ≤ 1/(2C) in (1.2) and applying rearrangement in the pre-
ceding inequality yields

‖f‖W 1,q(M ;Rn) ≤ ‖df∞‖Lq(M ;Rn) + 1 + 2‖f∞‖W 1,q(M ;Rn),

as desired. �

It remains to complete the

Proof of Theorem 1 using Theorem 2.2. Combining the inequalities (3.1) and (3.3)
yields

‖f − f∞‖W 2,p(M ;Rn) ≤ C
(
1 + ‖f∞‖W 1,q(M ;Rn)

)
‖f − f∞‖W 1,2(M ;Rn).
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We now fix p ∈ (1, 2) and q = 2p/(2 − p) (say with p = 3/2) and choose ε =
ε(f∞, g, h) ∈ (0, 1] in (1.2) small enough that

εC
(
1 + ‖f∞‖W 1,q(M ;Rn)

)
≤ σ,

where the constant σ ∈ (0, 1] is as in Theorem 2.2. Consequently,

‖f − f∞‖W 2,p(M ;Rn) < σ,

and the hypothesis (2.4) is satisfied. The �Lojasiewicz–Simon gradient inequality
(2.5) (with d = k = 2) in Theorem 2.2 therefore yields

‖M (f)‖Lp(M ;f∗TN) ≥ Z|E (f)− E (f∞)|θ.

But M (f) = 0 since f is harmonic and thus E (f) = E (f∞). �

It is possible to give an alternative proof of Theorem 1 using Theorem 2.4 with
the aid of an elliptic bootstrapping argument to fulfill the stronger hypothesis (2.6).
We first observe that Lemma 3.1 can be strengthened to give

Lemma 3.3 (A priori W k,p estimate for the difference of two harmonic maps).
Let (M, g) be a closed Riemann surface, let (N, h) be a closed, smooth Riemannian
manifold, let p ∈ (1,∞) be a constant, let k ≥ 2 be an integer, and let f∞ ∈
C∞(M ;N) be a harmonic map. Then there are constants ε = ε(f∞, g, h, k, p) ∈
(0, 1] and C = C(f∞, g, h, k, p) ∈ [1,∞) with the following significance. If f ∈
C∞(M ;N) is a harmonic map that obeys (1.2), then

(3.4) ‖f − f∞‖Wk,p(M ;Rn) ≤ C‖f − f∞‖W 1,2(M ;Rn).

Proof. For k = 2 and p ∈ (1, 2], the conclusion follows by combining (3.1) and (3.3).
For k ≥ 3 and p ∈ (1,∞), the conclusion follows by taking derivatives of (3.2) and
applying a standard elliptic bootstrapping argument. �

We can now give the

Proof of Theorem 1 using Theorem 2.4. For p ∈ (1,∞) and λ ∈ (0, 1) and large
enough k = k(g, p, λ) ≥ 2, there is a continuous Sobolev embedding, W k,p(M ;Rn) ⊂
C2,λ(M ;Rn), and thus a constant C = C(g, k, p, λ) ∈ [1,∞) such that

‖f − f∞‖C2,λ(M ;Rn) ≤ C‖f − f∞‖Wk,p(M ;Rn).

Combining the preceding inequality with (3.4) yields the bound

‖f − f∞‖C2,λ(M ;Rn) ≤ C‖f − f∞‖W 1,2(M ;Rn),

for a constant C = C(f∞, g, h, k, p, λ) ∈ [1,∞) .
We now fix k, p, λ and choose ε = ε(f∞, g, h) ∈ (0, 1] in (1.2) small enough that

Cε ≤ σ, where the constant σ ∈ (0, 1] is as in Theorem 2.4. Consequently,

‖f − f∞‖C2,λ(M ;Rn) < σ,

and the hypothesis (2.6) is satisfied. The �Lojasiewicz–Simon gradient inequality
(2.7) in Theorem 2.4 therefore yields

‖M (f)‖L2(M ;f∗TN) ≥ Z|E (f)− E (f∞)|θ.

Again, M (f) = 0 since f is harmonic and thus E (f) = E (f∞). �
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