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A NOTE ON CONSTRUCTING FAMILIES OF SHARP

EXAMPLES FOR Lp GROWTH OF EIGENFUNCTIONS

AND QUASIMODES

MELISSA TACY

(Communicated by Michael Hitrik)

Abstract. In this note we analyse Lp estimates for Laplacian eigenfunctions
and quasimodes and their associated sharp examples. In particular, we use
previously determined estimates to produce a new set of estimates for restric-

tion to thickened neighbourhoods of submanifolds. In addition, we produce
a family of flat model quasimode examples that can be used to determine
sharpness of estimates on Laplacian eigenfunctions restricted to subsets. For
each quasimode in the family we show that there is a corresponding spherical
harmonic that displays the same growth properties. Therefore it is enough to
check Lp growth estimates against the simple flat model examples. Finally,
we present a heuristic that for any subset determines which quasimode in the
family is expected to produce sharp examples.

Let (M, g) be a Riemannian manifold and let Δ = Δg be the (positive) Laplace–
Beltrami operator defined by the metric. There has been much recent interest
(for example [1], [3], [5], [7], [8], [9], [10]) in understanding how the Lp norms of
Laplacian eigenfunctions

Δu = λ2u

grow for large λ. In particular in comparing the Lp estimates over the full manifold
with that on subsets. The results in this area produce estimates of the form

||u||Lp(X) � λδ(n,p,X) ||u||L2(M) ,

where X is a subset of M (not necessarily of full dimension). Is is often instructive
to translate this to a semiclassical problem where λ−1 = h and u is a solution to
the semiclassical equation (h2Δ − 1)u. In fact, for a number of technical reasons,
it is more customary to consider approximate solutions, that is, u, such that∣∣∣∣(h2Δ− 1)u

∣∣∣∣
L2(M)

� h ||u||L2(M) .

The purpose of this note is twofold:

(1) To examine the known estimates and associated sharp examples and ob-
tain new sharp estimates by “cheap” techniques (such as the application of
Hölder’s inequality or interpolation).

(2) To describe how to construct families of examples to examine questions of
sharpness both for the flat model cases and for spherical harmonics.
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In particular, we will obtain Lp estimates where X is a thickened region of a sub-
manifold. The examples we construct will show that these estimates are sharp (up
to a possible log loss). The spherical harmonic examples have the advantage of
being exact eigenfunctions, however, they are not so easy to write down explicitly.
The flat model examples are in contrast very easy to explicitly produce. The flat
model also has the advantage that for any given p (with knowledge of the semiclas-
sical version of the Lp estimate proof) it is easy to determine which functions in the
family will give rise to sharp examples. We will show that every flat model example
has a matching spherical harmonic which shares all relevant features. Therefore
any result that is sharp under the flat model is sharp under spherical harmonics.
Finally we discuss how, given any particular p, one predicts which example will give
rise to sharp estimates.

The whole and submanifold estimates are as follows:

||u||Lp(X) � h−δ(n,k,p) ||u||L2(M)

for X a k-dimensional smooth submanifold if k < n and for X = M if k = n. The
function δ(n, k, p) is given by

δ(n, n, p) =

{
n−1
2 − n

p
2(n+1)
n−1 ≤ p ≤ ∞,

n−1
4 − n−1

2p 2 ≤ p ≤ 2(n+1)
n−1 ,

δ(n, n− 1, p) =

{
n−1
2 − n−1

p
2n
n−1 ≤ p ≤ ∞,

n−1
4 − n−2

2p 2 ≤ p ≤ 2n
n−1 ,

and for k ≤ n− 2,

δ(n, k, p) =
n− 1

2
+

k

p
2 < p < ∞.

In the case k ≤ n − 3 or n = 3, k = 2 the p = 2 estimate is included; otherwise,
there is a logarithmic loss

||u||L2(X) � h−n−1+k
2 log |h| ||u||L2 .

These estimates are due to

• Sogge [9] for Lp estimates over the full manifold and Koch-Tataru-Zworski
[7] for the semiclassical problem.

• Burq-Gérard-Tzevtkov [1] for Lp estimates of eigenfunctions on submani-
folds and Tacy [10] for the semiclassical problem.

• Chen-Sogge [3] for the endpoint estimate (n, k, p) = (3, 2, 2).

It is well known that these estimates are saturated for high p by the zonal harmonics
and for low p by the highest weight harmonics. The key features that saturate the
estimates are a point concentration and a tube concentration (see Figures 1 and 2).
Zonal harmonics have a point concentration at their north pole while highest weight
harmonics are highly concentrated in an h

1
2 width tube around a great circle.

These two examples alone are sometimes enough to analyse sharp Lp behaviour.
We demonstrate this for restriction of eigenfunctions to sets near submanifolds. For
Σ a smooth k-dimensional submanifold of M , let Σβ be the set

Σβ = {x ∈ M | d(x,Σ) ≤ hβ},
where d is the usual distance associated with the metric g. We want an estimate of
the form

||u||Lp(Σβ)
� h−σ(n,k,p,β) ||u||L2(M)
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Figure 1. Concentration at a point

Figure 2. Concentration in a tube

for u a Laplacian eigenfunction or of a quasimode of h2Δg − 1. We first make some
observations using prior results and the point/tube examples. These observations
will enable us to determine σ(n, k, p, β) in many cases.

Observation 1. Clearly the Lp norm of u on Σβ must be bounded by the Lp norm
of u on M . Therefore for all p we have

(1) ||u||Lp(Σβ)
� h−δ(n,n,p) ||u||L2(M) .

The question is then whether this can be improved. We must therefore first ask
whether the known point and tube features fit inside Σβ. If they do we can expect
no better estimates that (1).

Observation 2. Since both the tube and point features can be placed inside Σβ

where β ≤ 1
2 , we know immediately that there can be no better estimates in this

case.

Observation 3. Writing x ∈ M as x = (y, z), where Σ = {(y, z) ∈ M | z = 0}, we
see that ∫

Σβ

|u|pdx ≤ sup
|z|≤chβ

∫
|u|pdy ×

∫
|z|≤chβ

dz

� h−pδ(n,k,p)hβ(n−k).

So we may also say that

(2) ||u||Lp(Σβ)
� h−δ(n,k,p)+

β(n−k)
p ||u||L2(M) .

If for all |z| ≤ hβ the submanifold estimate is sharp, we cannot expect to do better
than (2).
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Observation 4. Eigenfunctions and quasimodes have the property that they os-
cillate with frequency on the order h−1; therefore, they cannot change much in a
region of size h. This means that the estimate of (2) is the best we may expect for
β ≥ 1 and in fact we see that this is indeed the case for both the point and tube
sharp examples.

From these four observations (along with interpolation from known results) we,
in Section 1, generate a full set of Lp(Σβ). In Section 2 we construct a family of
sharp quasimode examples in the flat model case that prove these Lp estimates
to be sharp. In Section 3 we show that on the sphere we can construct exact
eigenfunctions with the same properties as the sharp quasimode examples which
means that, in any situation, we may check estimates against the flat model. In
Section 4 we discuss how, given knowledge of the semiclassical techniques employed
to prove the whole and submanifold estimates, one chooses the correct example to
get a sharp quasimode.

1. Lp
estimates on Σβ

In this section we use our four observations along with known results to prove a
full range of Lp estimates for Σβ. Taken together, Observations 2 and 4 tell us that
there are no nontrivial estimates outside 1

2 ≤ β ≤ 1, so we focus on this region. In
the case that Σ is a hypersurface we obtain the following bounds.

Theorem 1.1. Suppose u is an OL2(h) quasimode of h2Δ − 1 on a Riemannian
manifold (M, g). Further, for Σ a smooth embedded hypersurface in M and 1

2 ≤
β ≤ 1, let Σβ = {x ∈ M | d(x,Σ) ≤ hβ}. Then

||u||Lp(Σβ)
� h−σ(n,n−1,p) ||u||L2(M) ,

where

σ(n, n− 1, p, β) =

⎧⎪⎨
⎪⎩
δ(n, n, p) p ≥ 2(n+1)

n−1 ,
β(n−1)

2 − β(n+1)
p + 1

p
2n
n−1 ≤ p ≤ 2(n+1)

n−1 ,

δ(n, n− 1, p)− β
p 2 ≤ p ≤ 2n

n−1 .

Proof. From Observation 1 we know that u must obey the full manifold estimates.
Since β ≥ 1 we may always fit the point type example into Σβ , so we cannot
expect better estimates than those arising from a point concentration. So we know

that if p ≥ 2(n+1)
n−1 we cannot expect better estimates than those from over the full

manifold. That is,

σ(n, n− 1, p, β) = δ(n, n, p), p ≥ 2(n+ 1)

n− 1
.

The sharp example for the low p (that is, 2 ≤ p ≤ 2n
n−1) hypersurface estimates is

the tube oriented with its long direction along the hypersurface. Since this example

has relatively constant size in a 1×h
n−1
2 region, the estimates of Observation 3 are

the best we could expect in this range of p. That is,

σ(n, n− 1, p, β) = δ(n, n− 1, p)− β

p
2 ≤ p ≤ 2n

n− 1
.
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Therefore the only unknown estimates are those between 2n
n−1 and 2(n+1)

n−1 . We

interpolate between the estimate for p 2(n+1)
n−1 and p = 2n

n−1 to obtain

σ(n, n− 1, p, β) =

⎧⎪⎨
⎪⎩
δ(n, n, p) p ≥ 2(n+1)

n−1 ,
β(n−1)

2 − β(n+1)
p + 1

p
2n
n−1 ≤ p ≤ 2(n+1)

n−1 ,

δ(n, n− 1, p)− β
p 2 ≤ p ≤ 2n

n−1 .

Since Observations 1 and 3 (along with the known sharp examples for manifolds

and hypersurfaces) tell us that we have sharp examples for p ≥ 2(n+1)
n−1 and p ≤ 2n

n−1 ,
the only question remaining is whether the intermediate bounds obtained through
interpolation are sharp. In Section 2 we will construct model quasimodes that
demonstrate sharpness. The results of Section 3 guarantee that there are exact
eigenfunctions on the sphere that are also sharp. �

Where Σ is a lower-dimensional submanifold we obtain the following.

Theorem 1.2. Suppose u is an OL2(h) quasimode of h2Δ − 1 on a Riemannian
manifold (M, g). Further, for Σ a smooth embedded submanifold of dimension k ≤
n− 3 in M and 1

2 ≤ β ≤ 1, let Σβ = {x ∈ M | d(x,Σ) ≤ hβ}. Then

||u||Lp(Σβ)
� h−σ(n,k,p) ||u||L2(M) ,

where

σ(n, k, p, β) =

{
δ(n, n, p) p ≥ 2(n+1)

n−1 ,
β(n−1)

2 − β(n−1)
p + 1

p 2 ≤ p ≤ 2(n+1)
n−1 .

If k = n− 2 the same result holds for p ≥ 2(n+1)
n−1 , and it holds with a log loss when

p < 2(n+1)
n−1 .

Proof. Again Observation 1 along with the point sharp example tells us that if

p ≥ 2(n+1)
n−1 we cannot expect better estimates than those from the full manifold.

Therefore

σ(n, k, p, β) = δ(n, n, p), p ≥ 2(n+ 1)

n− 1
.

The sharp submanifold restriction examples, however, are the point type eigen-
functions. This feature only persists for an O(h) region, so when β � 1 we cannot
expect to get sharp examples for low p from Observation 3. However Burq and
Zuily [2] have, in the case k ≤ n− 3, obtained

||u||L2(Σβ)
� hβ− 1

2 ||u||L2(M)

and that when k = n−2 the same result holds with a log loss. so we may interpolate
from this point to obtain

σ(n, k, p, β) =

{
δ(n, n, p) p ≥ 2(n+1)

n−1 ,
β(n−1)

2 − β(n−1)
p + 1

p 2 ≤ p ≤ 2(n+1)
n−1 .

We know that the high p estimates are sharp. In Sections 2 and 3 we show that
the low p estimates (modulo the log loss) are also sharp. �
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2. Flat model examples

We study the flat model, that is, localised quasimodes of the Laplacian in R
n,

to gain insight into sharp examples. Such quasimodes can be easily produced
on the Fourier side. In keeping with the semiclassical theme we use the rescaled
semiclassical Fourier transform,

Fh[u](ξ) =
1

(2πh)n/2

∫
Rn

e−
i
h 〈x,ξ〉u(x) dx.

This operator has the property that

Fh [hDxi
] = ξiFh[u]

and

||Fh[u]||L2 = ||u||L2 .

The development of flat model examples was discussed in [4]. We include it here
for the reader’s convenience.

Suppose that u is an L2 normalised OL2(h) quasimode of ΔRn . We must have∣∣∣∣(|ξ|2 − 1)Fh[u]
∣∣∣∣
L2(Rn)

� h,

thus Fh[u] must be located near the sphere of radius 1 in the ξ-variables. We create
a family of quaismodes indexed by α which controls the degree of angular dispersion
of ξ. Write ξ = (r, ω), where ω ∈ Sn−1 and set the coordinate system so that ω0

corresponds with the unit vector in the ξ1 direction. Let

χh
α(r, ω) =

{
1 if |r − 1| < h, |ω − ω0| < hα,

0 otherwise.

Then set

fh
α(ξ) = fh

α(r, ω) = h−1/2−α(n−1)/2χ(r, ω).

Note that fh
α is L2 normalised. Now set

Th
α (x) = F−1

h [fh
α ](x) =

1

(2πh)n/2

∫
Rn

e
i
h 〈x,ξ〉fα(ξ) dξ.

Th
α is an L2 normalised O(h) quasimode of ΔRn . We may write

Th
α (x) =

h−1/2−α(n−1)/2−n/2e
i
hx1

(2π)n/2

∫
Rn

e
i
h (x1(ξ1−1)+〈x′,ξ′〉)χα(ξ) dξ.

Note that if |x1| < εh1−2α and |x′| < εh1−α for sufficiently small ε > 0, the factor

e
i
h (x1(ξ1−1)+〈x′,ξ′〉)

does not oscillate, so in this region (shown in Figure 3)

|Th
α (x)| > ch−(n−1)/2+α(n−1)/2.

We claim that when α = 1− β the function Tα saturates the Lp estimates for Σβ

in the case where Σ is a hypersurface and 2n
n−1 ≤ p ≤ 2(n+1)

n−1 , as well as the case

where Σ is a lower-dimensional submanifold and p ≤ 2(n+1)
n−1 .
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Figure 3. Th
α is localised so that it is large in an h1−2α ×

(h1−α)n−1 tube.

Example 2.1. We choose coordinates such that when we write x ∈ M as x = (y, z),
Σ = {(y, z) ∈ M | z = 0}. By setting α = 1− β we produce a function that has a
h2β−1 × hβ tube where

|T1−β| ≥ ch−β(n−1)
2 .

Rotations and translations of Tα are still quasimodes, so we may align it so that
the long direction lies in the submanifold. Therefore we have

||Tα||Lp(Σβ)
> ch−β(n−1)

2 h
β(n−1)

p + 2β−1
p

= ch−β(n−1)
2 + β(n+1)

p − 1
p ,

as required.

One could obtain this example by calculating lower bounds for the Lp norm
for every α and then maximising. However, by understanding the heuristics of
the semiclassical proof one can immediately select the correct scale to find sharp
examples in any situation. We discuss this heuristic in Section 4.

3. From quasimodes to exact eigenfunction

While they are easy to work with, the quasimodes Tα only show us that estimates
are sharp for quasimodes of the flat Laplacian. However, we can construct exact L2

normalised eigenfunctions φα on the sphere that have all the relevant properties of

Tα. That is, they have an h1−2α × h(1−α)(n−1) region where |φα| ≥ ch−n−1
2 +α(n−1)

2 .
Since this is the only property of Tα used to prove sharp examples, this construc-
tion shows that any sharp examples from Tα give rise to sharp examples of exact
eigenfunctions on the sphere. So any quasimode estimates that are sharp for the
family of flat quasimode examples Tα are also sharp (with exact eigenfunctions) on
the sphere.

To understand which spherical harmonics to pick we first re-express Tα as a
sum of quasimodes, each of which has a Fourier transform localised in the angular
variables on the scale of h1/2. This is the localisation scale of T1/2. Note that

T1/2 is localised about the point (1, 0, . . . , 0). We can produce a function T j
1/2 with

Fourier support in an h × h
n−1
2 region of any ξj ∈ Sn−1 by a rotation applied to

Fh(T1/2). The quasimode produced by this rotation is simply the standard T1/2

quasimode rotated so that the long axis lies along ξj . Now fh
α(ξ) is supported in an
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hα(n−1) angular region so we can cover this support with h(α−
1
2 )(n−1) rotations of

Fh[T1/2]. Therefore Tα can be thought of as a sum of h(α−
1
2 )(n−1) functions each

of which is a rotation of T1/2.
The flat Laplacian quasimodes T1/2 resemble the tubular concentrations we see

in highest weight spherical harmonics. This leads us to the idea that we can create
a suitable φα by considering a sum of rotated highest weight spherical harmonics.
We write Sn as the subset of Rn+1 where |x| = 1. It is well known that the function

u(x) = j
n−1
4 (x1 + ix2)

j

is a solution to the spherical Laplacian eigenfunction equation with j(j + n− 1) =
λ2 = h−2. Further, if x = (x1, x2, x̄), then

|u(x)|2 = j
n−1
2 (1− |x̄|2)j = j

n−1
2 ej log(1−|x̄|2),

so u(x) is highly concentrated on the equation x̄ = 0 with exponential decay when

|x̄| � h1/2. The prefactor of j
n−1
4 ≈ h−n−1

4 ensures that ||u||L2 ≈ 1. We produce
an example by summing rotations of u(x).

Proposition 3.1. For any ε > 0 and 0 ≤ α ≤ 1/2, there exists a φα such that
ΔSnφα = j(j + n− 1)φα and φα is given by

(3) φα(x) = h−α(n−1)
2

Nα∑
k=1

(x1 + iPk(x2, . . . , xn))
j , h−2 = j(j + n− 1),

where Nα = ε̃h(α−1/2)(n−1) for some small but fixed ε̃ dependent on ε and Pk is a
linear polynomial whose coefficients αm

k obey

(1) |1− α2
k| ≤ εh2α,

(2) |αm
k | ≤ εhα, m 	= 2.

Further, there are constants c1 and c2 so that

(4) c1 ≤ ||φα||L2 ≤ c2.

Proof. We construct φα by taking rotations of the standard highest weight harmonic

u(x) = (ix1 + x2)
j .

For j = 3, . . . , n + 1 we allow the rotation numbers sj to take values in the set

{h1/2l | l = 1, 2, . . . , 
ε̃hα−1/2�} (where ε̃ is some small but fixed number). For each
sj we define the associated rotation Rsj by

(Rsj (x))2 =
√
1− s2jx2 + sjxj ,

(Rsj (x))j = −sjx2 +
√
1− s2jxj ,

(Rsj (x))m = xm, m 	= 2, j.

Let
φα = h−α(n−1)

2

∑
[s3,...,sn+1]

u ◦Rsn+1
(x) ◦Rsn ◦ · · · ◦Rs3 .

We claim that φα has the necessary properties. Each individual term in the sum-
mand is an eigenfunction, so clearly φα is also an eigenfunction. Under the action
of each rotation Rsj (x), x1 is fixed, so it remains fixed under composition. Writing
the (n− 1)-tuple S = (s3, . . . , sn+1) and denoting

RS = Rsn+1
(x) ◦Rsn ◦ · · · ◦Rs3 ,
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we see that

(5) (RS)2 = x2

⎛
⎝n+1∏

j=3

√
1− s2j

⎞
⎠+

n+1∑
k=3

xksk

⎛
⎝ n+1∏

j=k+1

√
1− s2j

⎞
⎠ .

Since each sj obeys |sj | ≤ ε̃hα by making ε̃ suitably small, we obtain the coefficient
bounds

|1− α2
k| ≤ εh2α,

|αm
k | ≤ εhα, m 	= 2.

Therefore it remains only to prove the L2 estimate. Note that there are h(α−1/2)(n−1)

terms in the summand each with L2 norm of h
n−1
4 , so (4) holds if for S 	= S′, u◦RS

and u ◦RS′ are suitably orthogonal. We define

|S − S′| = sup
j

|sj − s′j |

and claim that for any N > 0

〈u ◦RS , u ◦RS′〉 ≤ h−n−1
2

(
1 +

|S − S′|
h1/2

)−N

.

Under a change of variables

x → R−1
S′ = R−1

s′3,3
◦ · · · ◦R−1

s′n+1,n+1,

this reduces to showing that

(6)

∣∣∣∣
∫ (

u ◦RS ◦R−1
S′ (x)

)
u(x)dμ(x)

∣∣∣∣ ≤ h−n−1
2

(
1− |S − S′|

h1/2

)−N

.

From the arguments leading to (5) we can say that

u ◦RS ◦R−1
S = (x1 + iPS,S′(x2, . . . , xn+1))

j ,

where PS,S is a linear polynomial in x2, . . . , xn+1. Let k be such that |sk − s′k| =
|S − S′| and suppose that we have a lower bound on the xk coefficient, αk(S, S′),
of

(7) |αk(S, S′)| > c|S − S′| for some c > 0,

We will first assume (7) and use this to integrate by parts to show that (7) ⇒ (6);
we then prove (7). Let θ = (θ1, . . . , θn) be a spherical coordinate system so that
θn ∈ [0, π] and the other θi ∈ [0, 2π] and

xk = cos(θn),

xk+1 = sin(θn)

...

x2 = sin(θn) · · · sin(θ2) sin(θ1),
x1 = sin(θn) · · · sin(θ2) cos(θ1).

Then

∂(u ◦RS ◦R−1
S′ )

∂θn

= j(x1 + iPS,S′(x2, . . . , xn)
j−1

(
F (θ1, θn−1) cos(θn) + iαk(S, S′) sin(θn)

)
.
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If we are suitably close to the region θn = π/2 and (7) holds, we have the lower
bound ∣∣F (θ1, θn−1) cos(θn) + iαk(S, S′) sin(θn)

∣∣ ≥ c

2
|S − S′|

and can use this factor to integrate by parts. On the other hand, away from the
region θn = π/2 we know that u(θ) decays exponentially, so this contribution to
the integral must be small. We complete the argument then by cutting the integral
over Sn into two pieces, one where we may integrate by parts and the other where
exponential decay dominates. Let χ be a smooth cut off function supported in
|τ | ≤ 2 and equal to one in |τ | ≤ 1. Consider first∫

Sn

(
u ◦RS ◦R−1

S′ (θ)
)
u(θ)χ

(
cos(θn)

h1/4|S − S′|1/2

)
dμ(θ).

On the support of χ we can write

(sin(θn · · · sin(θ2) cos(θ1) + iPS,S′(θ))j

=
1

j|S − S′|
∂

∂θn
(sin(θn · · · sin(θ2) cos(θ1) + iPS,S′(θ))j+1G(θ),

where |G(θ)| ≤ 1. Therefore we can integrate by parts. Any time a derivative hits
the cut off function or u(θ), we lose at worst a factor of max(h−1/2, h−1/4|S−S′|1/2),
so by repeating the argument 2N times we get∣∣∣∣

∫
Sn

(
u ◦RS ◦R−1

S′ (θ)
)
u(θ)χ

(
| cos(θn)|

h1/2|S − S′|1/2

)
dμ(θ)

∣∣∣∣
≤

(
1 +

|S − S′|
h1/2

)−N ∫
Sn

|u(x)|dμ(x)

= h−n−1
2

(
1 +

|S − S|
h1/2

)−N

.

Now consider∫
Sn

(
u ◦RS ◦R−1

S′ (θ)
)
u(θ)

(
1− χ

(
| cos(θn)|

h1/2|S − S′|1/2

))
dμ(θ).

On the support of 1 − χ we have cos(θn) > h1/4|S − S′|1/2, so x2
n > h1/2|S − S′|

and

|u(x)| = ej log(1−|x̄|2) ≤ e−h−1/2|S−S′|.

So ∣∣∣∣
∫
Sn

(
u ◦RS ◦R−1

S′ (θ)
)
u(θ)(1− χ

(
| cos(θn)|

h1/2|S − S′|1/2

)
)dμ(θ)

∣∣∣∣
≤ e−h−1/2|S−S′|

∫
Sn

|u ◦RS ◦R−1
S′ |dμ(x) = h−n−1

2 e−h−1/2|S−S′|,

which is a much better estimate than we need.
Now it only remains to ascertain (7). Since u◦RS◦R−1

S = (x+ix2)
j , αk(S, S) = 0.

Therefore if we expand it as a series in S′ about S,

αk(S, S′) =
n+1∑
i=3

∂2PS,S′

∂s′i∂xk

∣∣∣
S=S′

(si − s′i) +O(|S − S′|2).
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If we write each rotation as a matrix Msj , then
∂PS,S′
∂xk

is given by the first element
of

V (S, S′) = Msn+1
× · · · ×Ms3 ×M−1

s′3
× · · · ×M−1

s′n+1
ek,

where ek is the standard unit vector with 1 in the entry corresponding to xk. Now
if ∂s′iV (S, S′) is the vector with elements given by the partial derivative of the

elements of V (S, S′) with respect to s′i,

∂s′iV (S, S′) = Msn+1
× · · · ×Ms3 ×M−1

s′3
× · · · × ∂s′iM

−1
s′i

× · · · ×M−1
s′n+1

ek,

where ∂s′iM
−1
s′i

is the matrix with elements given by the partial derivative of the

elements of M−1
s′i

with respect to s′i. So if we evaluate at S = S′,

∂s′iV (S, S′)
∣∣∣
S=S′

= Msn+1
× · · · ×Msi+1

×Wsi ×M−1
si+1

× · · · ×M−1
sn+1

ek,

where Wsi = Msi × ∂siMsi . First consider the case i = k. If j 	= k, M−1
sj

ek = ek,
so

∂siV (S, S′)
∣∣∣
S=S′

= Msn+1
◦Msk+1

Wskek.

Since for any α, s2i < ε̃2 we can say that√
1− s2i = 1 +O(ε̃),

then

Wsi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O(ε̃) 0 · · · 0 1 +O(ε̃) 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
0 0 · · · 0 0 0 · · · 0

−1 + O(ε̃) 0 · · · 0 O(ε̃) 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
0 0 · · · 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

So Wskek = (1 + O(ε̃), 0, . . . , 0, O(ε̃), . . . , 0). From (5) we have seen that multi-
plication of the matrices Msj produces a matrix with upper left entry β, obeying

|1−β| ≤ εhα. So the first component of ∂s′iV (S, S′)
∣∣∣
S=S′

has a lower bound of c > 0.

Now consider the case when i 	= k. We have Mskek = (sk, 0, . . . , 0,
√
1− s2k, . . . ).

Now the vector (sk, 0, . . . , 0) has norm bounded by ε̃, and if i 	= k, Wsiek = 0.
Since each of the matrices Msj and Wsi represent a bounded operator on R

n−1, we
can say that ∣∣∣∣∂2PS,S′

∂si∂xk

∣∣∣
S′=S

∣∣∣∣ ≤ ε̃.

So by choosing ε̃ small enough we have∣∣∣∣∣
n+1∑
i=3

∂2PS,S′

∂s′i∂xk

∣∣∣
S=S′

(si − s′i)

∣∣∣∣∣ ≥ c|sk − s′k| = c|S − S′|.

Thus

|αk(S, S′)| > c|S − S′|.
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Therefore u ◦ RS and u ◦ RS′ are suitably orthogonal and the L2 estimates (4)
hold. �

Having obtained our combination, φα of highest weight harmonics, it only re-
mains to prove that there is indeed an h1−2α×h(1−α)(n−1) region where φα is large
enough.

Proposition 3.2. Suppose φα is given by (3) . Then there is an h1−2α×h(1−α)(n−1)

region in which |φα| > ch−n−1
2 +α(n−1)

2 .

Proof. We prove this by expanding φα about the point (θ1, . . . , θn) =
(0, π/2, . . . , π/2). This corresponds to the point (1, 0, . . . , 0) ∈ R

n+1 which is fixed
by all the rotations, so all terms in the sum are equal to 1 at this point. This point
lies on the equator where the original harmonic is equal to (x1 + ix2)

j = eijθ1 , and

at (0, π/2, . . . , π/2), |e−ijθ1φα| = h−n−1
2 +α(n−1)

2 . When |θm − π/2| ≤ εh1/2,m 	= 1,
the conditions on the coefficients of Proposition 3.1 tell us that for each term in the
sum defining φα,∣∣∣∣ ∂

∂θ1
e−ijθ1(sin(θn) · · · sin(θ2) cos(θ1) + iPk(θ))

j

∣∣∣∣ ≤ jh2α ≤ h2α−1,

and for m 	= 1,∣∣∣∣ ∂

∂θm
e−ijθ1(sin(θn) · · · sin(θ2) cos(θ1) + iPk(θ))

j

∣∣∣∣ ≤ jhα ≤ hα−1.

So ∣∣∣∣ ∂

∂θ1
(e−ijθ1φα)

∣∣∣∣ ≤ h2α−1 · h−n−1
2 +

α(n−1)
2 ,

and when m 	= 1, ∣∣∣∣ ∂

∂θm
(e−ijθφα)

∣∣∣∣ ≤ hα−1 · h−n−1
2 +α(n−1

2 .

So if we take a h1−2α in θ1 by h1−α in the other θm region about (0, π/2, . . . , π/2)
we will still have

|φα| = |e−ijθ1φα| > h−n−1
2 +α(n−1)

2 .

�

4. Predicting the correct scale

In this section we discuss the heuristics of the semiclassical proof. The details of
the proof can be found in [7] and [10] and thus we will not address them here. The
semiclassical approach to eigenfunction estimates is to study quasimodes, that is,
functions such that ∣∣∣∣(h2Δ− 1)u

∣∣∣∣
L2(M)

� h ||u||L2(M) ,

or more generally,
||p(x, hD)u||L2(M) � h ||u||L2(M) ,

where p(x, hD) is a semiclassical pseudodifferential operator,

p(x, hD)u =
1

(2πh)n

∫
e

i
h 〈x−y,ξ〉p(x, ξ)u(y)dξdy,

whose symbol, p(x, ξ) satisfies the admissibility criteria:

1) If p(x0, ξ0) = 0, then ∇ξp(x0, ξ0) 	= 0.



SHARP FAMILIES OF EIGENFUNCTIONS AND QUASIMODES 2921

2) The characteristic set {ξ | p(x0, ξ) = 0} has positive definite second funda-
mental form.

For Laplacian eigenfunctions the semiclassical symbol p(x, ξ) = |ξ||2g − 1, so clearly
this is admissible. In fact, in the flat case the characteristic set is the n− 1 sphere
(the canonical example of a hypersurface with positive definite second fundamental
form). Quasimodes, as distinct from eigenfunctions, have the nice property that
they remain quasimodes under localisation so we may work locally. It is relatively
easy to show that contributions localised away from the characteristic set are small.
Therefore we may work locally around some point (x0, ξ0) such that p(x0, ξ0) = 0.
To prove Lp estimates we perform the following steps.

Step 1. Factorise the symbol. Since the characteristic set is nondegenerate (by
admissibility condition 1) we can always find some ξi such that

|∂ξ1p(x0, ξ0)| > c > 0,

so by the implicit function theorem, locally

p(x, ξ) = e(x, ξ)(ξi − a(x, ξ′)),

where |e(x, ξ)| > c > 0. The semiclassical calculus then tells us we may invert
e(x, hD) to obtain

(hDxi
− a(x, hDx′))u = hf,

where ||f ||L2(M) � ||u||L2(M).

Step 2. By setting xi = t we find that u is an approximate solution to the semi-
classical evolution equation

(hDt − a(t, x′, hDx′))v(t, x) = 0.

Therefore by Duhammel’s principle we may write

u = U(t, 0)u(0, x′) +

∫ t

0

U(t− τ, τ )f(τ )dτ,

where U(t, τ ) satisfies{
(hDt − a1(τ + t, x′, hDx′))Uh(t, τ ) = 0,

Uh(0, τ ) = Id .

The problem then reduces to finding (uniform in τ ) L2 → Lp mapping norms of
U(t, τ ) or the restriction of U(t, τ ) to a submanifold.

Step 3. We estimate the L2(M) → Lp(X) norms through a TT 	 method. The key
point is to obtain estimates of the form

||U(t, τ )U(s, τ )	||L1(X)→L∞(X) � h−κ∞(h+ |t− s|)−γ∞

and

||U(t, τ )U(s, τ )	||L2(X)→L2(X) � h−κ2(h+ |t− s|)−γ2 .

All other estimates follow by interpolation with these and by resolving the t − s
integral with either Young’s inequality or Hardy-Littlewood-Sobolev. It is here we
see the connection with Keel-Tao [6] abstract Strichartz estimates which can be
proved in the same fashion.



2922 MELISSA TACY

For submanifold estimates there is an additional question of whether or not this
special direction, xi = t, lies along the submanifold. It turns out that we may
assume it does, as this case gives all sharp estimates. That is, if Σ = {(y, z) ∈ M |
z = 0}, we may assume that ξi is dual to y1.

The interpolation argument of Step 3 gives an estimate of the form

||U(t)U(s)	||Lp′→Lp � h−κp(h+ |t− s|)−γp .

We can think of this as a decay estimate for propagation time |t − s|. To gener-
ate sharp examples we then need to find what scale of |t − s| makes the largest
contribution to the estimate. The sharp example will then be the Tα whose long
direction is equal to this critical scale |t− s|c. That is, |t− s|c = h1−2α.

Therefore the regime changes in the Lp estimates depend only on the power γp,
the numerology of which depends only on the L1(X) → L∞(X) estimates and the
L2(X) → L2(X) estimates. To resolve the t− s integral we estimate∫

(h+ |τ |)−
γpp

2 dτ.

• If
γpp
2 > 1 the major contribution comes from the smallest possible τ =

τmin.
• If

γpp
2 < 1 the major contribution comes from the largest possible τmax.

In both cases we expect the sharp examples to be given by Tαmin
and Tαmax

, where

τmin = h1−αmin , τmax = h1−αmax .

Independent of X we can obtain an L1(X) → L∞(X) estimate of

(8) ||U(t, τ )U(s, τ )	||L1(X)→L∞(X) � h−n−1
2 (h+ |t− s|)−

n−1
2 ,

so the key point is to obtain the L2(X) → L2(X) estimates. In [10] we see that
these are given by the L2(X) → L2(X) mapping norms of an operator

W (t− s)u =

∫
W (x, y, t− s)u(y)dy,

W (x, y, t− s) = h−n−1
2 (h+ |t− s|)−

n−1
2 e

i
hφ(x,y,t−s)b(t, s, x, y),

where the factor

e
i
hφ(x,y,t−s)

oscillates with frequency h−1|t− s|−1. From considerations of almost orthogonality
we expect that the L2(X) → L2(X) mapping norm of such an operator should
be determined by the mapping norm on h1/2|t − s|1/2 boxes. This suggests a
general heuristic for finding those p at which the behaviour of the L2(M) → Lp(X)
estimates change.

(1) Calculate the L2(X) → L2(X) mapping norm of U(t, τ )U(s, τ )	 on the
intersection of an h1/2|t− s|1/2 box with X.

(2) Interpolate that result with the L1(X) → L∞(X) estimate given by (8).
This will give γp for all p.

(3) Find the values of p for which
γpp
2 = 1. We expect regime changes at these

p.
(4) Determine τmin and τmax for each critical p. The functions Tαmin

and
Tαmax

are expected to give sharp examples.
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4.1. Whole and submanifold estimates. We apply the heuristic and consider
the L2(X) → L2(X) norm on the intersection between X and an h1/2|t−s|1/2 box.
We obtain, for X a k-dimensional submanifold,

||W (t− s)||L2(X)→L2(X) � h−n−1
2 (h+ |t− s|)−

n−1
2 (h

1
2 |t− s|1/2)k−1

= h−n−k
2 (h+ |t− s|)−

n−k
2 .

From the interpolation numerology we obtain that for whole manifolds and hyper-

surfaces there is only one p so that
γpp
2 = 1 (p = 2(n+1)

n−1 and p = 2n
n−1 , respectively).

For a lower-dimensional submanifold
γpp
2 ≥ 1 for all p ≥ 2. Since we truncate at

|t − s| ≤ h the smallest effective scale is τmin = h, and since we are dealing with
compact sets, τmax = 1. Therefore our sharp examples will come from T0 and
T1/2 for the whole manifold and hypersurface case, and from T0 alone for the lower
submanifolds.

4.2. Σβ estimates. By considering Σβ we introduce a new scale (namely hβ) into

the problem. If hβ ≥ h1/2|t − s|1/2 an h1/2|t − s|1/2 box can lie fully in Σβ, and
therefore we get the L2 → L2 estimate

||W (t− s)||L2(Σβ)→L2(Σβ)
� 1, |t− s| ≤ h2β−1,

which is the same as over the whole manifold. If on the other hand hβ ≤
h1/2|t− s|1/2, the h1/2|t− s|1/2 box does not lie fully in Σβ, so we obtain

||W (t− s)||L2(Σβ)→L2(Σβ)
� h−n−k

2 + β(n−k)
2 (h+ |t− s|)−

n−k
2 , |t− s| ≥ h2β−1.

Therefore we potentially have two points at which
γpp
2 = 1. Where Σ is a hy-

persurface there are two critical points. The first arises from the |t − s| ≤ h2β−1

estimates and is at p = 2(n+1)
n−1 . Therefore for this critical point τmin = h and

τmax = h2β−1. The second point arises from the |t − s| ≥ h2β−1 estimate and is
at p = 2n

n−1 . For this critical point τmin = h2β−1 and τmax = 1. Therefore sharp
behaviour should be determined by T0, T1−β , and T1/2. For lower-dimensional sub-

manifolds we obtain a critical p coming from the |t−s| ≤ h2β−1 estimate again with
τmin = h, τmax = h2β−1. However, from the long-time estimates we always have
γpp
2 ≥ 1; therefore we only need to examine τmin, in this case h2β−1. Therefore

sharp examples should come from T0 and T1−β alone.
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