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Dedicated to the memory of James E. Baumgartner,
my mentor and friend. I miss you, Jim.

Abstract. We prove that ω1 → (ω + ω + 1, n)3 for all n < ω.

1. Some background

The conjecture below is generally attributed to P. Erdős, though it seems to have
first appeared in print in [9] by E. C. Milner and K. Prikry.

Conjecture (ZFC). ω1 → (α, n)3 for all α < ω1 and all n < ω.

In [5] A. Hajnal proved that

ω1 � (ω1, 4)
3.

In [6, §4, Theorem 2] we(a) proved that

ω1 � (ω + 2, ω)3.

Thus, if the conjecture is true, then it is sharp.
Some progress has been made on the conjecture. In [9, §1, Equation 1.8]

E. C. Milner and K. Prikry proved that

ω1 → (ω +m, 4)3

for all m < ω. In [7, §3, Theorem 1] we proved that

ω1 → (ω +m,n)3

for all m < ω and all n < ω. In [10, §1, Equation 1.6] E. C. Milner and K. Prikry
proved that

ω1 → (ω + ω + 1, 4)3.

Here we prove that
ω1 → (ω + ω + 1, n)3

for all n < ω. To our knowledge, this result represents the best progress thus far
on the conjecture above.
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2. Our notation and terminology

In this section, we define many terms that we use in later sections, including the
notion of wondrous graph, the family of all such graphs W, basic notation like VG,
EG, TG, and G[X] associated with a graph G.

If X is a set of ordinals and α is an ordinal, then [X]
α
is the collection of subsets

of X whose ordertype is α. In particular, [X]2 and [X]3 are the sets of pairs and
triples of elements of X, respectively.

If X and Y are sets of ordinals and α and β are ordinals, then [X,Y ]
α,β

is the
collection of subsets of X∪Y whose intersection with X has ordertype α and whose
intersection with Y has ordertype β. In particular, [X,Y ]1,1 is the set of pairs of
elements of X ∪ Y with one element from X and the other element from Y , and

[X,Y ]
2,1

is the set of triples of elements of X ∪ Y with two elements from X and
one element from Y .

If G is a graph, then VG is the set of vertices of G, EG is the set of edges of G,

and TG = {X ∈ [VG]
3 | [X]

2 ⊆ EG} is the set of triangles of G.
We say that G is a subgraph of H if VG ⊆ VH and EG ⊆ EH . We write G ≤ H

to indicate this relation. (Note that if G ≤ H, then TG ⊆ TH , too.)
If X ⊆ VG, then G[X] is the graph induced on X by G, the graph with vertices

VG[X] = X and edges EG[X] = EG ∩ [X]
2
.

For us, a graph G is large if its vertices form an uncountable subset of ω1, i.e.,
if VG ∈ [ω1]

ω1 . A large graph G is boring if it has an uncountable independent set,

i.e., there is X ∈ [VG]
ω1 with [X]

2 ∩EG = ∅.
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A large graph G is wondrous if for any X ∈ [VG]
ω1 there are

A ∈ [X]ω1 and B = {bξ | ξ < ω1} ⊆ [X]<ω

such that

(1) bξ 	= ∅ for all ξ < ω1,
(2) bξ < bη for all ξ < η < ω1, and
(3) for each α ∈ A and ξ < ω1 with α < bξ there is β ∈ bξ

with {α, β} ∈ EG.

Call such A and B wondrous witnesses for X in G. Note that
if A and B are wondrous witnesses for X in G, then they are
wondrous witnesses for any superset of X in G, as well. Also, if
A and B are wondrous witnesses for X in G, then the same is
true for any uncountable subsets of A and B.

Let W be the collection of all wondrous graphs.
Martin’s axiom for ω1 many dense sets (MAω1

) asserts that
for any c.c.c. notion of forcing P and any collection {Dα |α < ω1}
of dense subsets of P there is a filter G on P such that G∩Dα 	= ∅
for all α < ω1. We kindly refer the reader to K. Kunen [8] or
M. Fremlin [4] for more information on Martin’s Axiom. We
do not use MAω1

directly, but we do use several well-known
consequences of it. When we do, we provide specific references.

3. Exploring wondrous graphs

In this section we establish some basic facts about wondrous graphs. In par-
ticular, we define Axiom W , introduce simply wondrous graphs, and prove that
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if ZFC is consistent, then so is ZFC+MAω1
+Axiom W . Assuming ZFC+MAω1

+
Axiom W , we prove that G → (α)2n for each α < ω1 and each n < ω for any
wondrous graph G.

Lemma 3.1 (ZFC). A large graph G is wondrous if and only if all of its large
induced subgraphs are wondrous. Moreover, if a graph G is large but not wondrous,
then there is X ∈ [VG]

ω1 such that no subgraph (induced or otherwise) of G[X] is
wondrous.

Proof. These follow immediately from the definition of wondrous graph. �
Adding edges to a wondrous graph preserves wondrousness. Removing edges

preserves non-wondrousness. On the other hand, adding or removing any countably
many edges or vertices preserves both wondrousness and non-wondrousness.

Let Axiom W be the assertion that W → (W)2n for all n < ω. In other words,
Axiom W states that if the edges of a wondrous graph are partitioned into finitely
many classes, then it must include a homogeneous wondrous subgraph, i.e., a won-
drous subgraph all of whose edges belong to the same class. Note that the homoge-
neous wondrous subgraph need not be an induced subgraph of the original graph.
Axiom W is a kind of generalization of Ramsey’s Theorem to the uncountable that
hopes to avoid the obstructions discovered by Sierpiński.

If G is a large graph and ≺ is a linear ordering of its vertices, then G(≺) is the
graph on the same vertices whose edges are gated by ≺.

VG(≺) = VG and EG(≺) = {{α, β} ∈ EG |α < β ∧ α ≺ β}.
Note that EG(�) = EG � EG(≺).

For any large graph G and linear orderings ≺1,≺2, . . . ,≺n of its vertices, the
Sierpiński graph

G(≺1,≺2, . . . ,≺n)

is constructed by iterating this gating in the obvious way. Note that the order in
which linear orderings are applied is immaterial.

A large graph is simply wondrous if for any X ∈ [VG]
ω1 there are A,B ∈ [X]

ω1

such that {α, β} ∈ EG whenever α ∈ A, β ∈ B, and α < β. The sets A and B are
simply wondrous witnesses for X in G. Clearly, any graph that is simply wondrous
is also wondrous. Note that all large complete graphs are simply wondrous.

If A and B are simply wondrous witnesses for X in G, then so are any uncount-
able subsets of A and B.

Lemma 3.2 (ZFC). A large graph G is simply wondrous if and only if all of its
uncountable induced subgraphs are simply wondrous. Moreover, if a graph G is large
but not simply wondrous, then there is X ∈ [VG]

ω1 such that no subgraph (induced
or otherwise) of G[X] is simply wondrous.

Proof. These follow immediately from the definition of simply wondrous. �
Lemma 3.3 (ZFC). If G is a simply wondrous graph and ≺ is a linear ordering
of the vertices of G, then at least one of G(≺) or G(�) includes an induced simply
wondrous subgraph.

Proof. For γ ∈ VG and X ⊆ VG, let

X[γ] = {ξ ∈ X | ξ ≺ γ} and X [γ] = {ξ ∈ X | ξ � γ}.
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In particular,

X[γ] ≺ γ ≺ X [γ]

for all γ ∈ VG and all X ⊆ VG.
There are three cases to consider.

Case 3.3.1. There is X ∈ [VG]
ω1 such that α < β implies α ≺ β for all α, β ∈ X.

In this case, the subgraph of G(≺) induced on X is the same as the subgraph
of G induced on X, which is simply wondrous by Lemma 3.2.

Case 3.3.2. There is X ∈ [VG]
ω1 such that α < β implies α � β for all α, β ∈ X.

Once again, the subgraph of G(�) induced on X is the same as the subgraph
of G induced on X, which is simply wondrous by Lemma 3.2.

Case 3.3.3. For all X ∈ [VG]
ω1 there are α, β ∈ X with α < β and α ≺ β and there

are γ, δ ∈ X with γ < δ and γ � δ.

In this case, we suppose that G(�) has no induced simply wondrous subgraphs
and argue that G(≺) must have an induced simply wondrous subgraph.

Because G(�) is not simply wondrous, there must exist X ∈ [VG]
ω1 such that for

all A,B ∈ [X]ω1 there are α ∈ A and β ∈ B with α < β and {α, β} /∈ EG(≺) (that

is, either {α, β} /∈ EG or α ≺ β). In other words, there must be X ∈ [VG]
ω1 which

has no simply wondrous witnesses in G(�). We prove that the subgraph of G(≺)
induced on X is simply wondrous.

Let Y be an arbitrary uncountable subset of X.

Claim 3.3.1. For any B ∈ [Y ]ω1 and any γ ∈ Y , either
∣
∣B[γ]

∣
∣ = ω1 or

∣
∣B[γ]

∣
∣ = ω1.

Proof. The union of finitely many countable sets is countable. �
Claim 3.3.2. For any A ∈ [Y ]

ω1 there is γ ∈ Y with
∣∣A[γ]

∣∣ =
∣∣A[γ]

∣∣ = ω1.

Proof. This (and more) was proved by P. Erdős and R. Rado in [3, §7, Lemma 1].
�

Because G is simply wondrous, there must be A,B ∈ [Y ]ω1 which are simply
wondrous witnesses for Y in G. In particular, we know that for every α ∈ A
and β ∈ B, if α < β, then {α, β} ∈ EG.

If only it were true that A ≺ B, then A and B would be simply wondrous
witnesses for Y in the subgraph of G(≺) induced on X. This is not necessarily
true, but we can use our assumptions and the claims above to find subsets of A
and B which do the trick.

By Claim 3.3.2, there must be γ ∈ Y with
∣
∣A[γ]

∣
∣ =

∣
∣A[γ]

∣
∣ = ω1. By Claim 3.3.1,

either
∣
∣B[γ]

∣
∣ = ω1 or

∣
∣B[γ]

∣
∣ = ω1.

Claim 3.3.3. In fact,
∣∣B[γ]

∣∣ < ω1 and
∣∣B[γ]

∣∣ = ω1.

Proof. Otherwise, A[γ] and B[γ] would be simply wondrous witnesses forX in G(�),
contradicting our assumption that X had no such witnesses. �

It now follows that A[γ] and B[γ] are simply wondrous witnesses for Y in the
subgraph of G(≺) induced on X.

As our choice of Y ∈ [X]
ω1 was arbitrary, we conclude that the subgraph of G(≺)

induced on X is simply wondrous. The lemma follows. �
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Lemma 3.4 (ZFC). There is a proper notion of forcing which forces ZFC+MAω1
+

Axiom W .

Proof. Let Axiom T be the assertion that for any partition [ω1]
2
= K0 ∪K1 either

there is X ∈ [ω1]
ω1 with [X]2 ⊆ K0, or there are A ∈ [ω1]

ω1 and B = {bξ | ξ <

ω1} ⊆ [ω1]
<ω

such that

(1) bξ 	= ∅ for all ξ < ω1,
(2) bξ < bη for all ξ < η < ω1, and
(3) for each α ∈ A and ξ < ω1 with α < bξ there is β ∈ bξ with {α, β} ∈ K1.

It is easily checked that Axiom T is equivalent to the assertion that every large
graph is either boring or wondrous, that ω1 → (ω1,W)2. S. Todorc̆ević demon-
strated in [12] that there is a proper notion of forcing which forces ZFC+MAω1

+
Axiom T .

It suffices then to prove that Axiom T implies Axiom W . Suppose that G is
a wondrous graph and that EG = K0 ∪ K1. Consider the graph H = 〈VG,K1〉.
By Axiom T , we know that H is either wondrous or boring. If H were wondrous,
then H would be a monochromatic wondrous subgraph of G. On the other hand,
if H were boring, then there would be X ∈ [VG]

ω1 with [X]2 ∩K1 = ∅. The graph
G[X] would be wondrous by Lemma 3.1 and monochromatic because EG[X] =

EG ∩ [X]2 ⊆ K0. �

Lemma 3.5 (ZFC+MAω1
). (α : ω1) → (α : ω1)

1,1
n for all additively indecomposable

α < ω1 and all n < ω. In other words, if α < ω1 is additively indecomposable and
[α, ω1]

1,1
is partitioned into finitely many classes, then there must be A ∈ [α]

α
and

B ∈ [ω1]
ω1 with [A,B]1,1 contained in a single class.

Proof. This was proven by J. Baumgartner and A. Hajnal in [1, §4, Corollary 2]. �

Proposition 3.6 (ZFC + MAω1
). For any wondrous graph G and any ordinal

α < ω1 there is A ∈ [VG]
α with [A]2 ⊆ EG.

Proof. By induction on α < ω1. Suppose that the theorem is true for all β < α.
Let G be an arbitrary wondrous graph.

For each X ∈ [VG]
ω1 and each additively indecomposable ordinal β < α, define

A(X, β) ∈ [X]
β
and B(X, β) ∈ [X]

ω1 as follows. First, let U ∈ [X]
ω1 and V ⊆ [X]

<ω

be wondrous witnesses for X in G. G[U ] is wondrous by Lemma 3.1. Hence, there

must be Y ∈ [U ]β with [Y ]2 ⊆ EG[U ] ⊆ EG. Choose n < ω and Z = {zη | η < ω1} ⊆
V such that |zη| = n for all η < ω1 and zξ < zη for all ξ < η < ω1. For each η < ω1

and i < n, let zη,i be the ith element of zη in increasing order. Since U and V

are wondrous witnesses, for each υ ∈ Y and η < ω1, there must be i < n with

{υ, zη,i} ∈ EG. Let i(υ, η) = i. By Lemma 3.5, there must i < n, A ∈ [Y ]β , and
Z ∈ [ω1]

ω1 with i(υ, η) = i for each υ ∈ A and each η ∈ Z. Let B = {zη,i | η ∈ Z}.
Note that [A]

2 ∪ [A,B]
1,1 ⊆ EG. Finally, let A(X, β) = A and B(X, β) = B.

Choose μ ≤ ω and additively indecomposable ordinals {αk | k < μ} ⊆ α such
that α =

∑
{αk | k < μ}. Let B0 = VG. For each k < μ, assuming that Bk ∈ [VG]

ω1

is defined, let Ak = A(Bk, αk) and Bk+1 = B(Bk, αk). Let A =
⋃
{Ak | k < μ}. It

is easily checked that A ∈ [VG]
α and [A]2 ⊆ EG. �

Corollary 3.7 (ZFC +MAω1
+Axiom W ). W → (α)2n for all n < ω.
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Though we do not need the result, we remark that the assumption of Axiom W
in Corollary 3.7 is unnecessary.

4. Partitioning triangles in wondrous graphs

In this section, we prove that ZFC +MAω1
+Axiom W implies that

W → (ω + ω + 1, n)3

for each n < ω. Since the complete graph on ω1 is wondrous, it follows that
ZFC +MAω1

+Axiom W implies that ω1 → (ω + ω + 1, n)3 for each n < ω.

Lemma 4.1 (ZFC + MAω1
). (ω : ω1) → (ω : ω1)

m,1
n for all m,n < ω. In other

words, whenever [ω, ω1]
m,1

is partitioned into finitely many classes, there must be

an infinite A ∈ [ω]ω and an uncountable B ∈ [ω1]
ω1 with [A,B]m,1 contained in a

single class.

Proof. This was proven by J. Baumgartner and A. Hajnal in [1, §4, Corollary 4]. �

Lemma 4.2 (ZFC+MAω1
). W → ((ω : ω1)

2,1, n)3 for each n < ω. In other words,
for each wondrous graph G and each partition TG = K0 ∪K1 of the triangles of G,
either

(a) there are A ∈ [VG]
ω and B ∈ [VG]

ω1 with A < B and [A,B]2,1 ⊆ K0

or

(b) for each n < ω there is C ∈ [VG]
n with [C]3 ⊆ K1.

Note that in (a) having [A,B]2,1 ⊆ K0 also implies that [A]2 ∪ [A,B]1,1 ⊆ EG and

that in (b) having [C]
3 ⊆ K1 also implies that [C]

2 ⊆ EG.

Proof. For each n < ω and each A ∈ [VG]
ωn

there is a unique order isomorphism
between 〈[ω]n , <lex〉 and 〈A,<〉. For each x ∈ [ω]n, let A(x) be the element of A
identified with x via this isomorphism.

For each B ∈ [VG]
ω1 , each n < ω, each A ∈ [VG]

ωn

with A < B and [A]
2 ∪

[A,B]1,1 ⊆ EG, and each m < n, define the partition

[ω, ω1]
2n−m,1

= KB,A,m
0 ∪KB,A,m

1

as follows. Decompose each a ∈ [ω]2n−m as a = u ∪ v0 ∪ v1 with u < v0 < v1,
|u| = m, and |v0| = |v1| = n −m. For each β < ω1, let B(β) be the βth element
of B in increasing order. For each i ∈ {0, 1}, let

KB,A,m
i = {〈a, β〉 ∈ [ω, ω1]

2n−m,1 | {A(u ∪ v0), A(u ∪ v1), B(β)} ∈ Ki}.

By Lemma 4.1, there must be X = XB,A,m ∈ [ω]
ω
, Y = Y B,A,m ∈ [B]

ω1 , and
i = iB,A,m ∈ {0, 1} with

[X,Y ]
2n−m,1 ⊆ KB,A,m

i .

For each n < ω, let Bn be the collection of all B ∈ [VG]
ω1 for which there are

A ∈ [VG]
ωn

andm < n with A < B, with [A]
2∪[A,B]

1,1 ⊆ EG, and with iB,A,m = 0.
Note that B0 is always empty.

Claim 4.2.1. If (a) fails, then Bn is empty for all n < ω.
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Proof. We prove the contrapositive. Suppose Bn is non-empty for some n < ω. By

the definition of Bn, there are B ∈ [VG]
ω1 , A ∈ [VG]

ωn

, and m < n with A < B,

[A]
2 ∪ [A,B]

1,1 ⊆ EG, and iB,A,m = 0. Let X = XB,A,m and Y = Y B,A,m. Choose

u ∈ [X]
m

and {vi | i < ω} ⊆ [X]
n−m

with

u < v0 < v1 < v2 < . . . .

Let Ā = {A(u ∪ vi) | i < ω} and B̄ = {B(β) |β ∈ Y }. Note that Ā ∈ [VG]
ω,

B̄ ∈ [VG]
ω1 , Ā < B̄, and

[
Ā, B̄

]2,1 ⊆ K0. Thus (a) holds. �

For each n < ω and each x, y ∈ [ω]
n
, put x � y if and only if there are m < n,

u ∈ [ω]m, and v0, v1 ∈ [ω]n−m with u < v0 < v1 and such that x = u ∪ v0, and
y = u ∪ v1.

Let An be the collection of all A ∈ [VG]
ωn

with [A]
2 ⊆ EG and {A(a), A(b), A(c)}

∈ K1 for all a, b, c ∈ [ω]
n
with a � b � c and |a ∩ b| > |b ∩ c|.

Claim 4.2.2. If Bn is empty for all n < ω, then An is non-empty for all n < ω.

Proof. For eachX ∈ [VG]
ω1 and each n < ω, let An(X) = An∩[X]ω

n

. In particular,
An = An(VG).

Suppose that Bn is empty for all n < ω. We prove by induction on n < ω
that An(X) is non-empty for every X ∈ [ω1]

ω1 .

We first note that A0(X) = [X]
1
(and is therefore non-empty) for every X ∈

[VG]
ω1 . We then fix n < ω and suppose that An(X) is non-empty for every X ∈

[VG]
ω1 . We must prove that An+1(X) is non-empty for every X ∈ [VG]

ω1 .

Subclaim 4.2.2.1. For each X ∈ [VG]
ω1 there are A ∈ An(X) and B ∈ [X]

ω1 with
A < B and {A(x), A(y), β} ∈ K1 for all x, y ∈ [ω]n with x � y and all β ∈ B.

Proof. Let U and V = {vξ | ξ < ω1} be wondrous witnesses for X in G. Choose
W ∈ An(U). There must be a non-zero r < ω such that

R = {ξ < ω1 |W < vξ ∧ |vξ| = r}

is uncountable. For each ξ < ω1, let R(ξ) be the ξth element of R in increasing
order. For each ξ < ω1 and each i < |vξ|, let vξ(i) be the ith element of vξ in

increasing order. Choose a coloring c : [ω, ω1]
n,1 → r for which

{W (x), vR(ξ)(c(x, ξ))} ∈ EG

for all x ∈ [ω]
n
and all ξ < ω1.

By Lemma 4.1 there must be i < r, P ∈ [ω]
ω
, and Q ∈ [R]

ω1 so that c(x, ξ) = i
for all x ∈ [P ]n and ξ ∈ Q. Let

C = {W (x) |x ∈ [P ]n} and D = {vR(ξ)(i) | ξ ∈ Q}.

Define Ck ∈ [C]
ωn

and Dk ∈ [D]
ω1 recursively for each m ≤ n as follows. Let

C0 = C and D0 = D. Given Cm and Dm, let

Cm+1 = {Cm(x) |x ∈
[
XDm,Cm,m

]n} and Dm+1 = Y Dm,Cm,m.

Remember that iDm,Cm,m = 1 for eachm < n becauseBn is empty. Let A = Cn and
B = Dn. It is now straightforward to verify that A and B satisfy the requirements
of the subclaim. �
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Define by recursion sets Aj and Bj for j < ω by first applying the subclaim to X
to get A0 and B0 and then applying the subclaim to each Bj to get Aj+1 and Bj+1.
Note that Aj < Ak for all j < k < ω.

Set A =
⋃

j<ω Aj . Note that A ∈ [X]
ωn+1

and [A]
2 ⊆ EG. To see that

A ∈ An+1(X), consider a � b � c ∈ [ω]n+1 with |a ∩ b| > |b ∩ c|. Set j =
min(a ∩ b) ≤ k = min c. Then A(a), A(b) ∈ Aj and A(c) ∈ Ak. If j = k, then
{A(a), A(b), A(c)} ∈ K1 because Aj ∈ An(X). If j < k, then {A(a), A(b), A(c)} ∈
K1 by construction. �
Claim 4.2.3. If An is non-empty for all n < ω, then (b) holds. (More specifically,

for each n < ω, if An is non-empty, then there is Y ∈ [ω1]
n+1 with [Y ]3 ⊆ K1.)

Proof. Fix n < ω. Suppose A ∈ An. For each k ≤ n let

xn,k = {c | c < n− k} ∪ {kn+ c | c < k}.
For all i < j < k ≤ n it is easily verified that xn,i � xn,j � xn,k and |xn,i ∩ xn,k| =
n − k < n − j = |xn,i ∩ xn,j |. Let Y = {A(xn,k) | k ≤ n}. Then Y ∈ [ω1]

n+1
and

[Y ]3 ⊆ K1. �
The lemma now follows directly from the three claims above. By Claim 4.2.1,

if (a) fails, then Bn is empty for all n < ω. By Claim 4.2.2, if Bn is empty for all
n < ω, then An is non-empty for all n < ω. By Claim 4.2.3, if An is non-empty
for all n < ω, then (b) holds. Thus, either (a) holds or (b) holds, and the lemma is
proven. �
Proposition 4.3 (ZFC+MAω1

+Axiom W ). For all n < ω, W → (ω+ω+1, n)3.
In other words, for each wondrous graph G and each partition TG = K0∪K1 of the
triangles of G, either

(a) there is A ∈ [VG]
ω+ω+1

with [A]
3 ⊆ K0, or

(b) for each n < ω there is B ∈ [VG]
n with [B]3 ⊆ K1.

Note that having [A]3 ⊆ K0 in (a) also implies that [A]2 ⊆ EG and that having

[B]
3 ⊆ K1 in (b) also implies that [B]

2 ⊆ EG.

Proof. By induction on n < ω. Suppose that

W → (ω + ω + 1, n)3.

Let G be an arbitrary wondrous graph and TG = K0∪K1 be an arbitrary partition
of the triangles of G into two classes.

Claim 4.3.1. If there are α ∈ VG and a wondrous subgraphH of G with {α}∪e ∈ K1

for all e ∈ EH , then either there is X ∈ [VH ]
ω+ω+1

with [X]
3 ⊆ K0 or there is

Y ∈ [VG]
n+1 with [Y ]3 ⊆ K1.

Proof. Since W → (ω + ω + 1, n)3, if there is no X ∈ [VH ]
ω+ω+1

with [X]
3 ⊆ K0,

then there is Ȳ ∈ [VH ]
n
with

[
Ȳ
]3 ⊆ K1. Let Y = {α} ∪ Ȳ . Clearly, Y ∈ [VG]

n+1

and [Y ]3 ⊆ K1. �
Claim 4.3.2. If there are A ∈ [VG]

ω
, a non-principal ultrafilter U on A, and a

wondrous subgraph H of G such that Ae = {α ∈ A | {α} ∪ e ∈ K1} ∈ U for all

e ∈ EH , then either there is X ∈ [VH ]
ω+ω+1

with [X]
3 ⊆ K0 or there is Y ∈ [VG]

n+1

with [Y ]3 ⊆ K1.
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Proof. Since W → (ω + ω + 1, n)3, if there is no X ∈ [VH ]ω+ω+1 with [X]3 ⊆ K0,

then there is Ȳ ∈ [VH ]n with
[
Ȳ
]3 ⊆ K1. Let Ā =

⋂
{Ae | e ∈

[
Ȳ
]2}. Choose

α ∈ Ā. Let Y = {α} ∪ Ȳ . Clearly, Y ∈ [VG]
n+1 and [Y ]3 ⊆ K1. �

Suppose that there is no B ∈ [VG]
n+1 with [B]3 ⊆ K1. By Lemma 4.2 there

must then be A ∈ [VG]
ω
and B ∈ [VG]

ω1 with A < B and [A,B]
2,1 ⊆ K0.

Let U be a non-principal ultrafilter over A. For each edge e ∈ EG[B], there are

then ie ∈ {0, 1} and Ae ∈ U with [Ae, e]
1,2 ⊆ Kie .

By Lemma 3.1, G[B] is wondrous. Hence, by Axiom W , there are i ∈ {0, 1} and
a wondrous subgraph H of G[B] such that ie = i for all e ∈ EH . By Claim 4.3.2,
we may assume that i = 0 without loss of generality.

For each β ∈ B, call 〈x, y〉 a good pair for β if

(1) x ∈ [A]<ω, y ∈ [VH ]<ω, and max y < β,

(2) [x, y]
1,2 ∪ [x, y, {β}]1,1,1 ∪ [y, {β}]2,1 ⊆ K0.

If 〈x, y〉 and 〈x′, y′〉 are both good pairs for β, then put 〈x, y〉 ≺ 〈x′, y′〉 if x � x′

and y � y′, but max x < min(x′ � x) and max y < min(y′ � y). Note that 〈∅, ∅〉 is
a good pair for each β ∈ VH .

Claim 4.3.3. If for some β ∈ VH there is an infinite increasing sequence 〈x0, y0〉 ≺
〈x1, y1〉 ≺ 〈x2, y2〉 ≺ · · · of good pairs for β, then either there is A ∈ [VG]

ω+ω+1

with [A]
3 ⊆ K0 or there is B ∈ [VG]

n+1
with [B]

3 ⊆ K1.

Proof. Let X =
⋃
{xn |n < ω} and Y =

⋃
{yn |n < ω}. Note that X,Y ∈

[VG]
ω

because 〈xk, yk〉 ≺ 〈xk+1, yk+1〉 for each k < ω. Note that X < Y and

[X,Y ∪ {β}]2,1 ⊆ K0 because X ⊆ A and Y ∪ {β} ⊆ VH ⊆ B. Also, [X,Y ]1,2 ∪
[X,Y, {β}]1,1,1 ∪ [Y, {β}]2,1 ⊆ K0 because each 〈xk, yk〉 is a good pair for β. This

is almost enough to ensure that [X ∪ Y ∪ {β}]3 ⊆ K0; all that is lacking is that

[X]
3 ⊆ K0 and [Y ]

3 ⊆ K0. Note that the preceding already guarantees that

[X ∪ Y ∪ {β}]2 ⊆ EG.

But because ω → (ω, n+1)3, if there is no B ∈ [X]
n+1∪ [Y ]

n+1
with [B]

3 ⊆ K1,

then there must be X̄ ∈ [X]
ω

and Ȳ ∈ [Y ]
ω

with
[
X̄
]3 ⊆ K0 and

[
Ȳ
]3 ⊆ K0.

Thus, X̄ ∪ Ȳ ∪ {β} ∈ [VG]
ω+ω+1

and
[
X̄ ∪ Ȳ ∪ {β}

]3 ⊆ K0. �

Without loss of generality, we may therefore assume that for each β ∈ VH there
is a ≺-maximal good pair 〈xβ, yβ〉. By pressing down we can find C ∈ [VH ]ω1 ,

x ∈ [A]
<ω

, and y ∈ [VH ]
<ω

with 〈xβ, yβ〉 = 〈x, y〉 for all β ∈ C.
Note that this implies that for each edge {β, γ} ∈ EH[C], there is α ∈ x∪ y with

{α, β, γ} ∈ K1. (Otherwise, 〈x ∪ {α}, y ∪ {β}〉 is a good pair for γ, where α is any

element of
⋂
{Ae | e ∈ [y ∪ {β, γ}]2}.)

By Lemma 3.1, H[C] is wondrous. It follows from Axiom W that H[C] →
(W)2|x|+|y|, so there must be α ∈ x ∪ y and a wondrous subgraph J of H[C] such

that {α, β, γ} ∈ K1 for each pair {β, γ} ∈ EJ . By Claim 4.3.1, either there is

A ∈ [VJ ]
ω+ω+1 with [A]3 ⊆ K0 or there is B ∈ [VG]

n+1 with [B]3 ⊆ K1. �

5. Partitioning triples of countable ordinals

Lemma 5.1 (ZFC). If there is a proper notion of forcing that forces

ZFC+ �ω1 → (ω + ω + 1, n)3 for all n < ω�,



3538 ALBIN L. JONES

then ω1 → (ω + ω + 1, n)3 for all n < ω. In other words, to prove that ω1 →
(ω+ω+1, n)3 for all n < ω, it suffices to prove that it is forced by a proper notion
of forcing.

Proof. Proofs of this result (and much more) appear in both [1] and [11]. �

Proposition 5.2 (ZFC). For all n < ω

ω1 → (ω + ω + 1, n)3.

Proof. By Lemma 3.4, there is a proper notion of forcing which forces ZFC+MAω1
+

Axiom W . By Proposition 4.3, this same notion also forces that

W → (ω + ω + 1, n)3

for all n < ω. In particular, it forces that ω1 → (ω + ω + 1, n)3 for all n < ω. By
Lemma 5.1, it follows that ω1 → (ω + ω + 1, n)3 for all n < ω. �

6. Final remarks

We note that each instance of MAω1
above and below could be replaced with

MAω1
(σ-centered) or its equivalent (by a straightforward generalization of a result

of M. G. Bell in [2]), the cardinal inequality p > ω1.

Question 1. Does ZFC prove that ω1 → (α, n)3 for all α < ω1 and n < ω? By
the results presented above, the simplest open problem here is whether or not the
relation

ω1 → (ω + ω + 2, 4)3

is decided by ZFC.

Question 2. Does ZFC +MAω1
prove that ω1 → (ω1, α)

2 for all α < ω1? By an
unpublished result of J. Hirschorn, the simplest open problem here is whether or
not the relation

ω1 → (ω1, ω
2 + 2)2

is decided by ZFC +MAω1
.

Question 3. Does ZFC prove that ω1 → ((α : ω1)
2,0∨1,1)2n for all α < ω1? (Here,

[X,Y ]
2,0∨1,1

= [X,Y ]
2,0 ∪ [X,Y ]

1,1
= [X]

2 ∪ [X,Y ]
1,1

and the partition symbol has
the corresponding meaning.)

Question 4. Does ZFC prove that if G is wondrous and ≺ is a linear ordering
of its vertices, then either G(≺) or G(�) includes a wondrous graph? An induced
wondrous subgraph?

Question 5. Is Axiom W a consequence of ZFC? In other words, does ZFC prove
that W → (W)2n for all n < ω? If not, then what if we assume ZFC + MAω1

? (If
so, then all the results presented above would follow from ZFC +MAω1

alone.)

Question 6. It follows from ZFC + MAω1
+ Axiom W that W → (W, α)2 for all

α < ω1. Does ZFC alone prove this? If not, then what if we assume ZFC +MAω1

but not Axiom W? (Note that ZFC does prove that ω1 → (W, α)2 for all α < ω1.)

Question 7. The assumption of Axiom W in Corollary 3.7 is unnecessary. It
follows from ZFC+MAω1

alone that W → (α)2n for all α < ω1 and all n < ω. Can
the assumption of MAω1

be removed, as well?
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Question 8. Do c.c.c. forcings preserve wondrousness? In other words, if G is a
wondrous graph, then does each c.c.c. notion of forcing force that G is wondrous?
(If so, then the answer to Question 7 would be affirmative, and the assumption of
MAω1

+Axiom W in Corollary 3.7 would be unnecessary.) If not, then what about
σ-centered or σ-finite-c.c. forcings?

Question 9. Does it follow from ZFC+MAω1
+Axiom W that W → (W, n)3 for

all n < ω? (If so, then ZFC proves that ω1 → (α, n)3 for all α < ω1 and all n < ω.)

Question 10. Is there a graph G on ω1 such that G → (ω + 1, ω)2 but G � (α)2n
for some α < ω1 and some n < ω? Is there a graph G on ω1 such that G → (α)2n
for each α < ω1 and each n < ω but G � (β, n)3 for some β < ω1 and some n < ω?

Question 11. Let B denote the collection of graphs G on uncountable subsets
of ω1 for which G → (α)2n for all n < ω. It is easily seen that B → (B)2n for all
n < ω. Is it true (or consistent) that W is a basis for B, that every element of B
includes a subgraph in W?
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