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(Communicated by Mourad Ismail)

Abstract. Under investigation in this paper is a (2+1)-dimensional nonlinear
Schrödinger equation (NLS), which is a generalisation of the NLS equation.
By virtue of Wronskian determinants, an effective method is presented to suc-
cinctly construct the breather wave and rogue wave solutions of the equation.
Furthermore, the main characteristics of the breather and rogue waves are
graphically discussed. The results show that rogue waves can come from the
extreme behavior of the breather waves. It is hoped that our results could be
useful for enriching and explaining some related nonlinear phenomena.

1. Introduction

As we well know rogue waves (RWs), killer waves, extreme waves and giant waves
are notorious for causing disastrous consequences in the ocean [1, 2], and appear
both in the shallow waters and in the deep ocean [3]. An obvious feature of RWs is
that they “suddenly come from nowhere and disappear with no trace”, and it only
takes seconds before they attack a ship. Nowadays, RWs have drawn more and more
experimental and theoretical attention in many other fields such as optical fibres,
Bose-Einstein (BE) condensates, capillary wave, plasma physics, finance and other
related fields [4]-[12]. The most commonly used mathematical model for describing
the rogue wave is the focusing nonlinear Schrödinger (NLS) equation [13]-[16]

(1.1) iqt + qxx +
1

2
q|q|2 = 0,

where subscripts denote partial derivatives, q denotes the wave envelope, x de-
notes the spatial variable and t denotes the temporal variable. In [17], Ma and
his collaborator provide a direct and effective method for finding exact solutions
to the NLS equation. Recently, by means of the Darboux transformation (DT),
Hirota’s bilinear (HB) method, Wronskian technique and orthogonal polynomials,
etc., there have been a number of works to investigate exact solutions of other
systems [18]-[31].
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Besides the NLS equation, it is known that most NLS-type equations also ad-
mit the RW solutions such as the Hirota equation [32], the Kundu-Eckhaus (KE)
equation [33], the Davey-Stewarson (DS) equation [34], the derivative nonlinear
Schrödinger (DNLS) equation [35] and other systems [36]-[43]. In recent years,
many efforts were devoted to studying RWs for a (1+1)-dimensional model. How-
ever, there are few research studies on RWs for (2+1)-dimensional nonlinear equa-
tions.

In this paper, we will focus on a (2+1)-dimensional nonlinear Schrödinger equa-
tion [44, 45]

(1.2) iqt + qxy +
1

2
q∂−1

x ∂y|q|2 = 0,

which can be rewritten in the following form:

(1.3)

⎧⎨
⎩ iqt + qxy +

1

2
V q = 0,

∂xV = ∂y|q|2,

by introducing a new potential function V = V (|q|), where q = q(x, y, t) is a
differentiable complex-value function. If ∂x = ∂y, equation (1.2) can be reduced to
equation (1.1). To our knowledge, although there are many studies concerning the
(1+1)-dimensional nonlinear Schrödinger equation (1.1), there are very few studies
on equation (1.2).

The primary purpose of the present work is to employ a direct method to con-
struct the breather and rogue wave solutions of equation (1.2) by using the Wron-
skian determinants technique [18, 19]. Additionally, the dynamic behaviors of the
breather and rogue waves are also considered by choosing different parameters.

The structure of this paper is as follows. Some important formulas are briefly
introduced in Section 2. In Section 3, we consider the rogue wave solutions of
equation (1.2) by using Theorem 2.1. In Section 4, the dynamical behaviors of the
breather and rogue waves are graphically discussed. Finally, some conclusions and
discussions are presented in the last section.

2. The main formulas

In [46,47], Matveev and co-authors present an important method to investigate
the multi-rogue wave solutions of the NLS equation. Here we briefly recall some
important formulas.

Let n be any positive integer. We define two polynomials u2n(k) and Φ(k) by
the following formulas:

u2n :=

n∏
j=1

(
k2 + i cot

aj
2

)
, aj :=

(2j − 1)π

2n+ 1
,

Φ := i
2n∑
l=1

ϕl(ik)
l, ϕl ∈ R.(2.1)

In what follows, we consider the function F given by the following formulas:

(2.2) F (k, x, y, t) :=
exp

(
kx+ ky + ik2t+Φ(k)

)
u2n(k)

,
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that for any k is a solution of the nonstationary linear Schrödinger equation with
zero potential

(2.3) −iFt = Fxx = Fyy.

The same is true for F1, F2, . . . , F2n defined by the following formula:

Fj(x, y, t) := D2j−1
k F (k, x, y, t)|k=1, Dk :=

k2

k2 + 1

∂

∂k
,

Fn+j(x, y, t) := D2j−1
k F (k, x, y, t)|k=−1, j = 1, 2, . . . , n.(2.4)

We suppose that W1,W2 have the following Wronskian determinants:

W1 := W (F1, F2, . . . , F2n) ≡ detA, Alj = ∂l−1
x Fj ,

W2 :== W (F1, F2, . . . , F2n, F ) .(2.5)

Then based on the above analysis and [47, 48], the following theorem can be con-
structed.

Theorem 2.1. The function

(2.6) qn(x, y, t) := (−1)nu2n(0) exp

(
it

2

)
W2|k=0

W1
,

represents a family of solutions of equation (1.2) that relies on 2n real parameters
ϕ1, ϕ2, . . . , ϕ2n.

In the next section, Theorem 2.1 will be applied to investigate the multi-rogue
wave solutions of the (2+1)-dimensional nonlinear Schrödinger equation (1.2).

3. Rogue wave solutions

In this section, we will investigate the rogue wave solutions of equation (1.2) by

using Theorem 2.1. If taking n = 1, ϕ1 = 0, ϕ2 =
√
3/4, ϕi = 0(i ≥ 3), the solution

(2.6) yields the following form:

q1(x, y, t) =

[
1− 4

1 + it

1 + (x+ y)2 + t2

]
exp

(
it

2

)
,

V =

[
(x+ y)2 + t2 − 3

]2
+ 16t2

[1 + (x+ y)2 + t2]
2 .(3.1)

Substituting x = 0 or y = 0 into (3.1), we can obtain the well-known Peregrine
soliton [49]. As shown in Figures 1 and 2, for fixed t, solution (3.1) can be trans-
formed into a W-shaped soliton. For fixed x or y, solution (3.1) is the well-known
eye shaped rogue wave which has one local hump and two valleys. In addition, the
profile of the rogue wave is symmetric about the t or x-axis.

In a similar way, if taking n = 2, ϕ1 = 3ϕ3, ϕ2 = 2ϕ4 +
(3+

√
5)

4 sin
(
π
5

)
, a = 48ϕ3,

b = 4(5 +
√
5) sin (π/5)− 96ϕ4, the solution (2.6) yields the following form:

q2(x, y, t, a, b) =

[
1− 12

A2 + iB2

C2

]
exp

(
it

2

)
,

V =
(C2 − 12A2)

2
+ 144B2

2

C2
2

,(3.2)
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Figure 1. (Color online) W-shaped soliton wave via solution (3.1)
with t = 0. (a) Perspective view of the real part of the wave. (b)
The overhead view of the wave. (c) The wave propagation pattern
of the wave along the x(y) axis.

where

A2(x, y, t, a, b) = (x+ y)4 + 6t2(x+ y)2 + 6(x+ y)2

+ 4a(x+ y) + 5t4 + 18t2 − 4bt− 3,

B2(x, y, t, a, b) = t(x+ y)4 +
(
t3 − 3t+ b

)
(x+ y)2

+ 4a(x+ y)t+ t5 + 2t3 − 2bt2 − 15t+ 2b,

C2(x, y, t, a, b) =
[
1 + (x+ y)2 + t2

]3 − 4a(x+ y)3

− 12
(
2t2 − bt− 2

)
(x+ y)2 + 4

[
3a

(
t2 + 1

)
(x+ y)

]
+ 24t4 − 4bt3 + 96t2 − 36bt+ 4a2 + 4b2 + 8,(3.3)

and a and b are arbitrary constants. When the parameters a, b are small enough, the
solution (3.2) is very close to the P2-breather. When the parameters a, b are large
enough, we can obtain the form of a two-order rogue wave. As shown in Figures 3
and 4, for fixed x or y, the solution (3.2) has a single peak when a = b = 0, which
can split into three peaks as a2 + b2 increase. The solution is called the “three
sisters” in [50] and a “rogue wave triplet” in [51]. As depicted in Figure 5, for fixed
t, the solution (3.2) can be transformed into a soliton solution. Furthermore, for
fixed a and b, the wave will propagate along the x(y)-axis as the time changes.

Remark 3.1. On the (x, t)−plane, taking the transformation X = x+y, T = t, then
q1, q2 in (3.2) can be reduced to rogue wave solutions of equation (1.1).

4. Breather wave solutions

In this section, we will consider the dynamical behaviors of breather wave solu-
tions. Based on the results in [20,22,23,32], the first-order breather solution reads
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Figure 2. (Color online) Rogue wave solution (3.1) for equation
(1.2) by taking y = 0 or x = 0. (a) Perspective view of the real
part of the wave. (b) The overhead view of the wave. (c) The
wave propagation pattern of the wave along the t axis.
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Figure 3. (Color online) Rational solution (3.2) for equation (1.2)
by taking suitable parameters: a = b = 0 for (a), a = b = 25 for
(b) and a = b = 45 for (c), respectively.
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Figure 4. (Color online) Rational solution (3.2) for equation (1.2)
by taking suitable parameters: a = b = 500. (a) Perspective view
of the real part of the wave. (b) The overhead view of the wave.
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Figure 5. (Color online) Rational solution (3.2) for equation (1.2)
by taking suitable parameters: a = b = 0. (a) Perspective view of
the real part of the wave (t = 0). (b) The overhead view of the
wave. (c) The wave propagation pattern of the wave along the x
axis(t = −2, 0, 2).

as

(4.1) q
[1]

bw
= exp(iθ)

[(
a2 − 2η2

)
cosh(ω1) + 2iημ sinh(ω1) + aη cos(ω2)

a cosh(ω1)− η cos(ω2)

]
,

where

λ = ξ + iη, k = −2ξ, θ = kx+ δy − kδt, ω1 = ημt,

ω2 = ημ[x+ y + (ξ − δ/2)t], μ =
√

a2 − η2.(4.2)

and λ is a complex spectral parameter.
As shown in Figures 6 and 7, for fixed x or y, if μ2 > 0, the solution (4.1)

is a periodic breather wave (i.e., Akhmediev breather wave), which can evolve
periodically along a straight line with a certain angle with the x axis and y-axis.
Its velocity, amplitude and width remain unchanged during the propagation (The
number of the rogue wave in a single period.) Additionally, we can find that
the wave is not the time-periodic breather but the space-periodic breather. For
fixed t, the solution (4.1) is a periodic wave, Figure 7 is plotted for the periodic
wave propagating in x(y) direction with a single period. For simplicity, we set
ξ = 1, η = 1, δ = 1 in equation (4.1). When |a|2 > |η|2 and μ is imaginary, the
hyperbolic and trigonometric functions in equation (4.1) convert to their analogues
via the following relation:

(4.3) sinh(Θ) = −i sin(iΘ), cosh(Θ) = cos(iΘ).

Substituting these transformations into equation (4.1), we can obtain a soliton
solution in the following form:

q
[1]

km
=

[(
a2 − 2

)
cos(mt)− 2im sin(mt) + a cosh(ξkm)

a cos(mt)− cosh(ξkm)

]

× exp(iθ),(4.4)

where μ = im, μ =
√
a2 − 1 and ξkm = m(x + y − 0.5t). As shown in Figures

8(a)-8(c), for fixed x or y, on the (x(y), t) plane, the wave solution can represent
the Kuznetzon-Ma (KM) [52,53] breather that is spatially localized and temporally
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Figure 6. (Color online) Akhmediev breather wave via solution
(4.1) with parameters: y = 0, a = 1, η = 0.9, ξ = 0.5, δ = 2. (a)
Perspective view of the real part of the wave. (b) The overhead
view of the wave. (c) The wave propagation pattern of the wave
along the t axis.

breathing. For fixed t, on the (x, y) plane, the wave can be transformed into a
W-shaped soliton wave (see Figures 8(e) and (f)).

In what follows, based on the Taylor expansion of the function q(x, y, t) at μ = 0

exp(μt) = 1 + μt+
(μt)2

2
+O(μ3),

cos[μ(x+ y + γt)] = 1− μ2

2
(x+ y + γt)2 +O(μ3),(4.5)

we can obtain the following rogue wave solutions:

(4.6) q
[1]
rw = lim

a→η

(
q
[1]

bw

)
=

[
−1 +

q1N
q1D

]
a exp(iθ),

where

(4.7) q1N = 4 + 4iη2t, q1D = 1 + η4t2 + η2 [x+ y + (ξ − δ/2) t]
2
.

Figures 9 and 10 are plotted for the rogue waves |q| for equation (1.2) with
suitable parameters, which are localized both in time and space, thus revealing the
usual rogue wave features. Moreover, by comparing Figures 9 and 10, we find that
the parameters can determine the central symmetry pattern of the rogue wave. If
taking ξ = δ = 0, the profile of the wave is symmetric about the t-axis (see Figure
10). Particularly, it is worth mentioning that the rogue wave can come from the
extreme behavior of the breather wave for equation (1.2) (i.e., from Figure 6 to
Figure 9).

Remark 4.1. The dynamical behaviors of breather waves are graphically discussed.
To the best of our knowledge, the dynamical behaviors of breather waves for equa-
tion (1.2) have not been presented in previous literatures.
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Figure 7. (Color online) A periodic wave for equation (1.2) with
parameters: t = 0, a = 1, η = 0.9, ξ = 0.5, δ = 2. (a) Perspective
view of the real part of the wave. (b) The overhead view of the
wave. (c) The wave propagation pattern of the wave along the x
axis.
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Figure 8. (Color online) Kuznetzon-Ma breather wave via solu-
tion (4.4) with parameters: m = 0.5. (a) Perspective view of the
real part of the wave (y = 0). (b) The overhead view of the wave.
(c) The wave propagation pattern of the wave along the t axis. (d)
Perspective view of the real part of the solitary wave (t = 0). (e)
The overhead view of the wave. (f) The wave propagation pattern
of the wave along the x axis.
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Figure 9. (Color online) Rogue wave (4.6) for equation (1.2) by
choosing suitable parameters: y = 0, ξ = 1, δ = 1, η = 1. (a)
Perspective view of the real part of the wave. (b) The overhead
view of the wave. (c) The wave propagation pattern of the wave
along the x axis.
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Figure 10. (Color online) Symmetry rogue wave for equation
(1.2) by choosing suitable parameters: y = 0, ξ = 0, δ = 0, η = 1.
(a) Perspective view of the real part of the wave. (b) The over-
head view of the wave. (c) The wave propagation pattern of the
wave along the x axis.

5. Conclusions and discussions

In this work, a (2+1)-dimensional nonlinear Schrödinger equation (1.2) has been
systematically investigated, which can be reduced to the NLS equation (1.1). Based
on Wronskian determinants, we construct its multi-rogue wave solutions. In order
to make the readers understand the solutions better, we have made some graphical
analysis of these solutions. Furthermore, the main characteristics of the breathers
and rogue waves are graphically discussed. Meanwhile, it is very necessary to point
out that the rouge wave comes from the extreme behavior of the breather wave
(depicted in Figures 6 and 9).

In [17], three ansätze of transformations are analyzed and used to construct exact
solutions to the nonlinear Schrödinger equation. If μ = 1/2, the solutions obtained
in [17] solve the standard NLS equation (1.1). In our paper, by virtue of Wron-
skian determinants and the Darboux transformation method, an effective method
is presented to succinctly construct the breather and rogue wave solutions of the
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equation (1.2). Taking the transformationsX = x+y, T = t, the solutions obtained
in this paper can be reduced to the solutions of the standard NLS equation (1.1).
The reduced solutions are similar to the solutions (3.26) and (3.27) presented in
[17]. By comparing the reduced solutions with the solutions presented in [17], one
can find that the solutions presented (3.26) and (3.27) in [17] should be breather
wave and rogue wave solutions of the (1+1)-dimensional NLS equation. By using
the method proposed in [17], one can also construct the (2 + 1)-dimensional solu-
tions by using the similar ansätzes. In [18, 19], based on the bilinear formalism, a
Wronskian technique leading to rational solutions is also presented by Ma and his
collaborators for the KdV equation and the Boussinesq equation, respectively.

In [44], Hirota’s method is used to construct the soliton solutions of the equation
(1.2). Strachan has obtained its one-soliton and two-soliton solutions, respectively.
In [45], the bilinear form is used to construct the soliton solutions of the equation
(1.2). Radha and Lakshmanan have obtained the bilinear form directly from the
P-analysis of the equation (1.2), which can then be used to generate its soliton
solutions. They also indicate the absence of two genuine nonparallel ghost solitons
which in isolation can produce a vanishing physical field in order to give rise to a
‘dromion’. In their paper, the soliton solutions are also presented for the equation
(1.2).

In our paper, by virtue of Wronskian determinants and the Darboux transforma-
tion method, an effective method is presented to succinctly construct the breather
and rogue wave solutions of the equation (1.2). Furthermore, the main characteris-
tics, such as dynamical behaviors, of these solutions are graphically discussed. As
we stated before that the solution presented in this paper can be reduced to a W-
shaped soliton, the eye shaped rogue wave, the Kuznetzon-Ma breather wave, etc.
One can verify that the breather and rogue wave solutions provided here are differ-
ent from the soliton solutions obtained by Strachan [44], and Radha, Lakshmanan
in [45]. Our results show that rogue waves can come from the extreme behavior
of the breather waves. We hope that our results could be useful for enriching and
explaining some related nonlinear phenomena. There is still a lot of work to do for
multi-breather waves in the near future.
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