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Abstract. Let M be a smooth compact manifold without boundary. We
consider two smooth Sub-Semi-Riemannian metrics on M . Under suitable
conditions, we show that they are almost conformally isometric in an Lp sense.
Assume also that M carries a Riemannian metric with parallel Ricci curvature.
Then an equation of Ricci type is solvable in a specific sense, without assuming
any proximity to a special metric.

1. Introduction

The goal of this note is to prove that the two principal results of D. DeTurck
[11], established for positive definite symmetric bilinear forms and for some Einstein
metrics can be extended significantly in various ways.

First, we can weaken the positive definiteness to tensor fields being only Sub-
Semi-Riemmannian and having equal signature.

Next, we are able to replace Einstein metrics by parallel Ricci metrics (i.e. met-
rics with covariantly constant Ricci tensor).

Let M be a smooth compact manifold without boundary. A Sub-Semi-Riemann-
ian metric G (SSR-metric for short) is a symmetric covariant 2-tensor field with
constant signature.

Let us now state a lemma, interesting by itself, about almost conformal isome-
tries, and whose proof deviates from DeTurck’s original argument only slightly

Lemma 1.1. Assume that G and G are two smooth SSR-metrics on M with equal
signature. Let g be a smooth Riemannian metric on M , let p ∈ [1,∞) and let ε > 0.
Then there exist a smooth diffemorphism Φ and a smooth positive function f such
that Φ∗(fG)−G is ε-close to zero in the Lp norm relative to g.

Before moving on to an application to the Ricci equation, let us introduce some
notation. Given a smooth Riemannian manifold (M, g), we let Ric(g) denote its
Ricci curvature. Let Λ be a real constant. We consider the operator

Ein(g) := Ric(g) + Λg.
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This operator is geometric in the sense that for any smooth diffeomorphism ϕ it
holds that

ϕ∗ Ein(g) = Ein(ϕ∗
g).

We would like to invert Ein. For this, we choose onM a tensor field E ∈ C∞(M,S2),
where S2 is the set of covariant symmetric 2-tensors, and we look for a Riemannian
metric g such that

(1.1) Ein(g) = E .
This is a geometrically natural and difficult quasilinear system to solve, even by
perturbation methods. The prescribed Ricci curvature problem has a long history
starting with the work of D. DeTurck [9]. It was studied in many different situations
as the following non-exhaustive list illustrates: [11], [10], [13], [12], [1], [14], [2], [3],
[6],[8], [7], [5], [4].

Motivated by the explosion of studies around the Ricci flow, and recently, some
discrete versions thereof (e.g. Ein(gi+1) = gi), a renewed interest arises for this
kind of natural geometric equations. We invite the reader to look at the nice recent
works of A. Pulemotov and Y. Rubinstein [16], as well as [17] for related results.
Our contribution here is the following.

Theorem 1.2. Assume that M carries a Riemannian metric g with parallel Ricci
tensor. Let Λ ∈ R be such that Ein(g) is non-degenerate, and that −2Λ is not in
the spectrum of the Lichnerowicz Laplacian of g.1 Then for any E ∈ C∞(M,S2)
with the same signature as Ein(g) at each point of M , there exist a smooth positive
function f and a Riemannian metric g in C∞(M,S2) such that

Ein(g) = f E .
The proof goes by combining Lemma 1.1, the local inversion result of Proposi-

tion 3.1 for weakly regular metrics (where the conformal factor f is not required)
and a regularity argument. We have then solved the problem up to a positive func-
tion f . Here we do not expect that f can be taken equal to one in general; this will
be the subject of future investigations.

Parallel Ricci metrics are (locally) products of Einstein metrics (see, e.g., [18]).
They exist on the simplest examples of manifolds that do not admit Einstein met-
rics, like S

1 × S
2, Σγ × S

2, (γ ≥ 1) or Σγ × T
2, (γ ≥ 2), where Σγ is a surface

of genus γ. Here, we should stress that the latter manifolds provide examples in
which, for suitable values of the parameter Λ, the tensor Ein(g) does not fulfill
DeTurck’s positivity assumption (see [11], Theorem 1.2, p. 358). These examples
illustrate the interest of our Theorem 1.2.

Parallel Ricci metrics are also static solutions of geometric fourth order flows
(e.g., ∂tg = Δg Ric(g)). Finally they are particular cases of Riemannian manifolds
with harmonic curvature (equivalently, Codazzi Ricci tensor).

Our global result shows again that metrics with covariantly constant Ricci tensor
deserve particular attention.

2. Lp
closeness of some Sub-Semi-Riemannian metrics

We follow Section 3, called an “approximation lemma” in [11], in order to verify
that all the steps can be adapted to SSR-metrics as above. This will prove Lemma
1.1.

1Similarly to D. DeTurck [11], we allow an eigenspace spanned by g when Λ = 0.
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We will keep almost the same notation as in [11], replacing S by G and R by G.
Let G and G be as in the Introduction; we thus assume they have equal signature.

For the rest of the section we fix a Riemannian metric g, an ε > 0 and p ∈ [1,+∞).
All the measures, volumes, and norms are understood with respect to g.

At each point x ∈ M , since the two SSR-metrics G and G have equal signature,
there exists an orientation preserving automorphism ux of TxM , such that

Gx(ux(·), ux(·)) = Gx(·, ·) .

For x ∈ M , the following construction can be performed using the g-exponential
map at x. There exists an open set Ux such that:
(i) Ux is contained in a coordinate neighbourhood of x such that, in this coordinate
system centred at 0, up to a positive automorphism ux of TxM , G is equal to G at
x:

tux Gx ux = Gx.

(ii) For any positive real αx, the linear change of coordinates

Φx :=
√
αx ux

satisfies on Ux the estimate (the left-hand side of which does not depend upon αx,
and vanishes at the origin),

(2.1)

∣∣∣∣(Φ∗
x

1

αx
G)y −Gy

∣∣∣∣
p

≤ min

(
εp

2Vol(M)
, |Gy|p

)
.

We consider a triangulation of M where each simplex S lies in the interior of some
Ux with x ∈ S̊. Since the point x belongs to the interior of the simplex S, shrinking
αx if necessary, we are sure that Φx send S into S (the norm of Φx approaches zero
when αx tends to zero).

Let Ω, Ω1, Ω2, Ω3 be open neighbourhoods of the (n − 1)-dimensional skeleton
of the triangulation, with the properties:

Vol(Ω) <
εp

2(maxM |G|+ 2maxM |G|)p ,

and

Ω3 ⊂ Ω3 ⊂ Ω2 ⊂ Ω2 ⊂ Ω1 ⊂ Ω1 ⊂ Ω.

The rest of the proof in Section 3 of [11] is based on triangular inequalities between
norms of tensors and can be implemented here without any change. For a better
understanding, though, we provide further details of the figure on page 368 of [11],
specifying the estimates that occur on the different parts of the simplex; see Figure
1. On the picture, we have denoted the error |Φ∗(fG)−G| by e:

e = |Φ∗(fG)−G|.

On the inner part T of the simplex, e is estimated by (2.1). The transition of
the diffeomorphism Φ, on the middle annulus R2 = S ∩ (Ω1\Ω2), from Φx to the
identity, still exists because our Φx =

√
αx ux is an orientation preserving map with

norm less than 1 as in [11].
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Figure 1. The simplex S with the values of f and Φ, and the
estimates on e.

Remark 2.1. The proof above only uses that at each point x ∈ M , the two symmet-
ric 2-tensor fields G and G have equal signature. Thus the conclusion of Lemma 1.1
stays true for symmetric 2-tensor fields having varying signatures and not only for
SSR-metrics.

Example 2.2. The simplest non-trivial example consists of a product of manifolds
M = X × Y × Z with two SSR-metrics of the form

G(x, y, z) = −gX ,y,z(x)⊕ gY,x,z(y)⊕ 0Z ,

where gX ,y,z is a family of Riemannian metrics on X , depending on the parameters
y, z and smooth in all of its arguments. Here, any of the three manifolds but one
may be reduced to a point.

3. Solvability of a Ricci type equation

We revisit Section 2 of [11] called “perturbation lemma”.
We first need to introduce some operators. The divergence of a symmetric 2-

tensor field and its L2-adjoint acting on one form is

(δh)j := −∇ihij , (δ∗v)ij :=
1

2
(∇ivj +∇jvi).

The gravitational operator acting on symmetric 2-tensors is

G(h) := h− 1

2
Trg(h)g.
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The Lichnerowicz Laplacian is2

ΔL = ∇∗∇+ 2Ric−2Riem .

It is part of the linearisation of the Ricci operator:

DRic(g) =
1

2
ΔL + δ∗δ G.

The Hodge Laplacian acting on one form is

ΔH = Δ+Ric = ∇∗∇+Ric = d∗d+ dd∗.

We also define the following Laplacian:

ΔV := 2 δ G δ∗ = ∇∗∇− Ric = ΔH − 2Ric .

We let V denote its finite dimensional kernel, composed of smooth one forms (by
elliptic regularity).

We start with the equivalent of Proposition 2.1 in [11].

Proposition 3.1. Let (M, g) be a smooth Riemannian manifold with parallel Ricci
curvature. Let Λ ∈ R be such that Ein(g) is non-degenerate and that −2Λ is not
in the spectrum of the Lichnerowicz Laplacian. Then for any E close to Ein(g) in
Hk+1,p(M,S2), there exists a Riemannian metric g in Hk+1,p(M,S2) such that

Ein(g) = E .

In [11], the proof of the corresponding proposition is given by a succession of
lemmas. We thus revisit them one after the other. Some care is needed because we
have to replace Ric with Ein and −ΔL with ΔL+2Λ. Furthermore, in our context,
the operator ΔL + 2Λ has trivial kernel whereas the kernel of ΔL is non-empty in
[11], spanned by g. We clearly also have for any Riemannian metric g the Bianchi
identity

δG(Ein(g)) = 0.

We start with a local study of the action of the diffeomorphim group on the covari-
ant symmetric 2-tensors, near a non-degenerate parallel one. The result obtained
remains in the spirit of the local study near a Riemannian metric by Berger, Ebin,
or Palais (see e.g. Lemma 2.3 of [11]). Here the metric tensor is replaced by a
non-degenerate parallel tensor field. In the following, we let T1 denote the set of
one forms.

Lemma 3.2. Let E be a smooth, non-degenerate and parallel symmetric 2-tensor
field. Let X be a smooth Banach submanifold of Hk,p(M,S2), whose tangent
space at E complements δ∗(Hk,p(M, T1)). Then for any E close enough to E in
Hk,p(M,S2), there exists an Hk+1,p diffeomorphism Φ close to the identity such
that Φ∗E ∈ X .

Proof. The tensor field E being parallel, its Lie derivative in the direction of a
vector field v is

LvE = 2δ∗(Ev).

Locally, the submanifold X can be seen as the image of an immersion X : U −→
Hk,p(M,S2), with X(0) = E. We define T ⊥ to be the set of vector fields v ∈
Hk+1,p(M, T1) such that E v is L2-orthogonal3 to ker δ∗.

2Different sign convention from DeTurck
3A closed complementing space suffices.
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Let the map

F : U × T ⊥ ×Hk,p(M,S2) −→ Hk,p(M,S2)

be defined as
F (k, Y, E) = Φ∗

Y,1(E)− X(k),

where ΦY,1 is the flow of the vector field Y at time 1. We have F (0, 0, E) = 0 and
the linearisation of F in the first two variables is

D(k,Y )F (0, 0, E)(l, X) = 2δ∗(EX)−DX(0)l.

Now, since
Hk,p(M,S2) = δ∗(Hk+1,p(M, T1))⊕ Im DX(0),

and since E is non-degenerate, the derivative D(k,Y )F (0, 0, E) is an isomorphism.
From the implicit function theorem, for E close to E, there exists k and Y , small
such that F (k, Y, E) = 0. �

Let us recall Lemma 2.5 in [11]:4

Lemma 3.3. For k ≥ 1, we have

Hk,p(M,S2) =
(ker δG ∩Hk,p(M,S2))

δ∗(V )
⊕ δ∗(Hk+1,p(M, T1))⊕Gδ∗(V ).

The equivalent of Lemma 2.6 in [11] reads (we do not have to quotient by Rg
because there is no kernel in our case, so that no adjustment with a constant c is
needed).

Lemma 3.4. Suppose that k ≥ 0, p > n, and that g satisfies the hypotheses of
Theorem 1.2. Let

K =
(ker δG ∩Hk+2,p(M,S2))

δ∗(V )
⊕Gδ∗(V )

and define F : K −→ Hk,p(M,S2) by
5

F (b) := Ein(g + b).

Then there exists a neighbourhood U of 0 such that F (U) is a Banach submanifold of
Hk,p(M,S2) whose tangent space at F (0)=Ein(g) complements δ∗(Hk+1,p(M, T1)).
Proof. We have to show that the derivative of F at 0 is injective and its image
has the closed subspace δ∗(Hk+1,p) as complementary. A metric with parallel Ricci
tensor is a local Einstein product so it is smooth. We first show that the spaces
Im δ∗ and ker δG are “stable” (modulo two points of regularity) by ΔL + 2Λ but
also by DEin(g) (when the metric is Ricci parallel). Indeed, we recall that in that
case [15]:

δΔL = ΔH δ,

and the adjoint version:
ΔL δ∗ = δ∗ ΔH .

We deduce that

(ΔL + 2Λ) δ∗ = δ∗ (ΔH + 2Λ) = δ∗ (ΔV + 2Ein),

4It seems there is a misprint in the proof of this lemma: The Ricci term for δGδ∗ at the top
of page 362 in [11] has a wrong sign.

5To avoid ambiguities, we may take any fixed closed complementing space W for δ∗(V ) in
ker δG ∩Hk+2,p(M,S2) instead of the first factor of K.
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and

DEin(g) δ∗ =
1

2
δ∗ (ΔH + 2Λ) +

1

2
δ∗ ΔV = δ∗ (ΔV + Ein) = δ∗ (Δ + Λ)

thus the “stability” of Im δ∗ by both operators above.
When restricted to the kernel of δ G, we trivially have

DEin(g) =
1

2
(ΔL + 2Λ),

but also, by linearising δ G Ein(g) = 0 for instance,

δ G (ΔL + 2Λ) = 0,

whence the stability of ker δ G.
We also remark that with the formula above, if v ∈ V we have

(ΔL + 2Λ)(δ∗v) = 2δ∗(Ein v) = 2Ein δ∗v ,

as well as

DEin(g)(δ∗v) = δ∗(Ein v) = Ein δ∗v .

Given any function u, it is well known that ΔL(ug) = (Δu)g, so

(ΔL + 2Λ)(d∗w g) = [(Δ + 2Λ)d∗w]g = [d∗(ΔH + 2Λ)w]g.

We obtain that

(ΔL + 2Λ)Gδ∗ = Gδ∗(ΔH + 2Λ).

If v ∈ V , we deduce

(ΔL + 2Λ)Gδ∗v = Gδ∗(2Ein v).

Assume that −2Λ is not an eigenvalue of ΔL; then ΔL + 2Λ is an isomorphism
from Hk+2,p(M,S2) to Hk,p(M,S2). The image of the splitting in Lemma 3.3 by
ΔL + 2Λ leads to6

Hk,p(M,S2) =
(ker δG ∩Hk,p(M,S2))

δ∗(EinV )
⊕ δ∗(Hk+1,p(M, T1))⊕Gδ∗(EinV ).

The two first factors are the same as the image by DEin(g) of the corresponding
spaces in Lemma 3.3. Let us study the image of the third one. For v ∈ V , we
compute

δ∗δGGδ∗v = δ∗δG(δ∗v +
1

2
d∗v g) =

1

2
δ∗δG(d∗v g) =

2− n

4
δ∗δ(d∗v g)

=
n− 2

4
δ∗dd∗v =

n− 2

2
δ∗δδ∗v = −Gδ∗δδ∗v.

(3.1)

We deduce that

(3.2) DEin(g)Gδ∗V =

[
Gδ∗(Ein .) +

n− 2

2
δ∗δδ∗

]
V.

Let us define

F := δ∗(Hk+1,p(M, T1))⊕Gδ∗(EinV ).

We now prove that

(3.3) F = δ∗(Hk+1,p(M, T1))⊕DEin(g)Gδ∗V.

6Here we also have to replace the first factor by (ΔL + 2Λ)W when a choice of W was made
in the first factor of K.
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The fact that F is the sum of the factors is clear by (3.2). Let w be in the intersection
of the factors, so

w = δ∗u = Gδ∗ Ein v + δ∗δδ∗
n− 2

2
v,

for some u ∈ Hk+1,p(M, T1) and v ∈ V . Because of the decomposition of F , we
deduce that Gδ∗ Ein v = 0 thus (ΔL + 2Λ)Gδ∗v = 0; then Gδ∗v = 0 and finally, by
(3.1), n−2

2 δ∗δδ∗v = 0 so w = 0. We have obtained:

Hk,p(M,S2) = Im DF (0)⊕ δ∗(Hk+1,p(M, T1)).
We claim that DF (0) is injective. Indeed, let h be in the kernel of DF (0); then
h = [u] +Gδ∗v with [u] in the first summand of K. Thus

[ΔL + 2Λ][u] +DEin(g)Gδ∗v = 0 ,

and in view of the decomposition (3.3) we obtain

[ΔL + 2Λ][u] = DEin(g)Gδ∗v = 0 .

This implies [u] = 0 and, from (3.2),

v ∈ Gδ∗ EinV ∩ δ∗(Hk+1,p(M, T1)) = {0} ,
so h = 0. �

From Lemma 3.2 with E = Ein(g) and Lemma 3.4 we directly deduce:

Lemma 3.5. If E ∈ Hk,p and |E − Ein(g)|k,p < ε, then there exist a metric
g ∈ Hk+2,p and a diffeomorphism ϕ ∈ Hk+1,p for which Ein(g) = ϕ∗E .

We will complete the proof of Proposition 3.1, where now E ∈ Hk+1,p, but g

and ϕ still come from Lemma 3.5, so ϕ is a priori not regular enough. Inspection
of pages 364-365 in [11] shows that it suffices to replace Ric(g) by Ein(g) to obtain
that ϕ is in fact in Hk+2,p. We conclude that (ϕ−1)∗g ∈ Hk+1,p, and that its image
by Ein is E . At this level we also use that Ein(g) is non-degenerate (see equation
(2.8) there).

Theorem 1.2 is now a direct consequence of Lemma 1.1, Proposition 3.1 with
k = 0, and the regularity result of [12].

Example 3.6. Recalling that the Ricci curvature of a product of Riemannian
manifolds is the direct sum of the Ricci curvatures of each factor, we see that
a product of Einstein manifolds clearly satisfies the assumption of Theorem 1.2.
The simplest example combining the three possibilities of Einstein constants is
the following. Let us consider three compact Einstein manifolds (X , g−), (Y , g+),
(Z, g0) with Ricci curvatures given by Ric(g−) = −g−, Ric(g+) = g+, Ric(g0) = 0.
Then M = X × Y × Z endowed with

g = g− ⊕ g+ ⊕ g0,

has parallel Ricci curvature equal to

Ric(g) = −g− ⊕ g+ ⊕ 0.

In this example, the kernel of ΔL contains the parallel tensors

h = c−g− ⊕ c+g+ ⊕ c0g0,

for any constants c−, c+, c0. Here, we only have to choose Λ in order to destroy this
kernel and make Ein(g) non-degenerate.
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[3] Ph. Delanoë, Local solvability of elliptic, and curvature, equations on compact manifolds, J.
Reine Angew. Math. 558 (2003), 23–45, DOI 10.1515/crll.2003.041. MR1979181
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