
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 8, August 2018, Pages 3191–3202
http://dx.doi.org/10.1090/proc/13900

Article electronically published on April 17, 2018

A REMARK ON THE LANG-TROTTER

AND ARTIN CONJECTURES

M. RAM MURTY AND AKSHAA VATWANI

(Communicated by Matthew A. Papanikolas)

Abstract. We use recent advances in sieve theory to show that conditional
upon the generalized Elliott-Halberstam conjecture, at least one of the follow-
ing is true:

(i) Artin’s primitive root conjecture holds for all a not equal to ±1 or a
perfect square

(ii) The Lang-Trotter conjecture holds for all CM elliptic curves E/Q with
rank E(Q) ≥ 1 and CM field k �= Q(ω),Q(i), where ω is a primitive cube
root of unity.

1. Introduction

The breakthrough work of Yitang Zhang [23] about bounded gaps between
primes has inspired new and spectacular developments in sieve theory. Foremost
in this direction is the work of Maynard [10] and the Polymath project [18] who
initiated the development of a ‘higher rank Selberg sieve’ that led to substantial sim-
plification of parts of Zhang’s work and improved numerical results. This new sieve
method has been axiomatized, generalized and formulated into a flexible method
by the authors in [20], [16] and applied to an assortment of problems, most notably
to the study of almost-prime k-tuples which improves upon the earlier work of
Heath-Brown [5]. This method has also been applied in [21] to the ring of integers
of imaginary quadratic fields with class number 1.

In this paper, we want to study the implications of this new sieve method to
Artin’s primitive root conjecture and the Lang-Trotter conjectures for CM elliptic
curves. These conjectures have a long history and the reader may find a description
in [14]. However, we give a brief description here so as to introduce and explain
our main result.

In 1927, Artin (see [1]) predicted that any natural number a not equal to ±1
or a perfect square is a generator of (Z/pZ)∗ for infinitely many primes p. This
is called Artin’s conjecture (or more precisely Artin’s primitive root conjecture,
to distinguish it from Artin’s other conjecture concerning the holomorphy of non-
abelian L-series). Artin further conjectured an asymptotic formula for the number
Na(x) of such primes p ≤ x. Both of Artin’s conjectures are still open, though some
advances have been made on both.
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In 1967, Hooley [7] assumed the generalized Riemann hypothesis (for the
Dedekind zeta functions of all number fields Q(e2πi/q, a1/q) with q prime) to derive
an asymptotic formula for Na(x). In 1984, Gupta and Murty [3], using sieve theory,
showed that there exists a finite set S of 13 elements such that for some a ∈ S,
Artin’s conjecture holds. This was further refined by Heath-Brown [6] who showed
that if a1, a2, a3 are mutually coprime, none of which equal ±1 or a perfect square,
then Artin’s conjecture holds for at least one of a1, a2, a3.

In 1977, Lang and Trotter [8] formulated an elliptic analogue of Artin’s primitive
root conjecture. To describe this, let E be an elliptic curve defined over Q. By a
well-known theorem of Mordell [12], the abelian group of rational points E(Q) is
finitely generated, and thus by the structure theorem for finitely generated abelian
groups, we can write

E(Q) � E(Q)tor ⊕ Zr

where E(Q)tor denotes the torsion subgroup and r is called the rank of E over Q.
By a celebrated theorem of Mazur [11],

|E(Q)tor| ≤ 16

so that if r = 0, there are only finitely many rational points on the curve. This
can also be deduced using the more elementary theorem of Lutz and Nagell (see
for example, p. 240 of [19]). In any case, Lang and Trotter suggested that if r ≥ 1
and a is a point of infinite order, an elliptic analogue of Artin’s conjecture would
be to study under what conditions the reduction of a (mod p) generates E(Fp) and
how often this can happen. Using Galois theory, algebraic number theory and
the Chebotarev density theorem, they formulated precise conjectures concerning
the infinitude of such primes and predicted their densities (see [9]). Attempts to
modify Hooley’s approach to study these elliptic analogues failed because of large
error terms in their applications of the Chebotarev density theorem.

Gupta and Murty [4] began a systematic study to see how these difficulties can
be circumvented. They first proved that for CM elliptic curves, Hooley’s methods
can be modified to derive analogous results in this case. Namely, they showed
that the Lang-Trotter conjecture in the CM case is true assuming the generalized
Riemann hypothesis for Dedekind zeta functions of certain algebraic number fields.
They also noted that in the CM case, a lower bound sieve technique can be used to
show that if E is a CM elliptic curve over Q with an irrational 2-division point and
rank E(Q) ≥ 6, then there is a set S of 218 rational points such that for at least
one a ∈ S, we have E(Fp) cyclic and generated by a for infinitely many primes p.

In unpublished work, the stringent condition that r ≥ 6 has been reduced to r ≥
3 by the first author, assuming the Elliott-Halberstam conjecture. This conjecture
can be explained as follows. Let π(x, q, a) be the number of primes p ≤ x with
p ≡ a (mod q). Then for any θ < 1 and any A > 0, we have

(EH)
∑
q<xθ

max
y≤x

max
(a,q)=1

∣∣∣∣π(y, q, a)− li(y)

φ(q)

∣∣∣∣ � x

(log x)A
.

Recently, a generalized version of the Elliott-Halberstam conjecture has emerged
in [18] where the authors prove using it, a “disjunction theorem”, namely that either
the twin prime conjecture holds or the “near miss” Goldbach conjecture holds (that
is, for n with 6|n, either n or n − 2 can be written as a sum of two primes).



A REMARK ON THE LANG-TROTTER AND ARTIN CONJECTURES 3193

We describe the generalized Elliott-Halberstam conjecture (denoted GEH) below
and then proceed to state our central result.

2. The generalized Elliott-Halberstam conjecture

We use the letter p to denote primes. Given a “reasonable” arithmetical function
f → N, one expects that its values are equidistributed over primitive residue classes.
For any (a, q) = 1, we set

(1) Δf (y, q, a) :=
∑
n≤y

n≡a (mod q)

f(n)− 1

φ(q)

∑
n≤y

(n,q)=1

f(n).

In the case when f is the von Mangoldt function

Λ(n) =

{
log p if n = pα with α ≥ 1,
0 otherwise,

the average estimate ∑
q<xθ

max
y≤x

max
(a,q)=1

|ΔΛ(y, q, a)| �
x

(log x)A
,

holds for any θ < 1/2 and A > 0. This is called the Bombieri-Vinogradov theo-
rem. Analogues of the Bombieri-Vinogradov theorem for multiplicative arithmetic
functions satisfying certain restrictions were proved by Siebert and Wolke [22].

In 1976, Motohashi [13] proved a general result showing that the analogue of
the Bombieri-Vinogradov theorem holds for any arithmetical function f which can
be represented as a linear combination of convolutions of two sequences (αm) and
(βn) satisfying certain properties. Such a formulation of his result is given by
Bombieri, Friedlander and Iwaniec in [2], where the authors also conjecture that
such functions should satisfy an Elliott-Halberstam type conjecture. Following the
notation of Claim 12 of [18], we assume that the estimate

(2)
∑
q<xθ

max
(a,q)=1

|Δf (x, q, a)| �
x

(log x)A
,

holds for any θ < 1 and A > 0 for all functions of the above type. As an application
of such conjectured equidistribution estimates, the authors derive some interesting
results regarding the parity problem in [17].

A variant of the Bombieri-Vinogradov theorem that plays a key role in our
discussion is due to M. Ram Murty and V. Kumar Murty [15]. Let P be a set of
primes. We use the standard notation

πP(x) = #{p ∈ P | p ≤ x},

and

πP(x, q, a) = #{p ∈ P | p ≤ x, p ≡ a (mod q)}.
A subset P of the set of rational primes P is called a Chebotarev set if there
is a Galois extension K/Q of number fields with Galois group G and absolute
discriminant dK such that

P =

{
p ∈ P | p is unramified with

(
K/Q

p

)
⊆ C

}
.
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Here, for p unramified (or equivalently, p � dK),
(

K/Q
p

)
denotes the Artin symbol

at p, and C is a union of conjugacy classes of G. It is clear that a Chebotarev set
P(K,C) is determined by K and C. A Chebotarev set P = P(K,C) is said to have
a level of distribution θ if there exists a natural number M such that

(3)
∑
q≤xθ

(q,M)=1

max
y≤x

max
(a,q)=1

∣∣∣∣πP(y, q, a)−
πP(y)

φ(q)

∣∣∣∣ � x

(log x)A
,

holds for any A > 0. In [15], the authors prove the following.

Theorem 1. The average result (3) holds if M = dK and 0 < θ < min
(

2
|G| ,

1
2

)
.

Moreover, assuming a special case of the Artin conjecture (AC) that all L-functions
attached to all abelian twists of any non-trivial character of G are entire, and setting

η = max
χ �=χ0

|χ(1)− 2|,

where the maximum runs over all non-trivial characters of G, one can improve the

estimate (3) with a larger level of distribution 0 < θ < min
(

1
η ,

1
2

)
.

Let ω be a primitive cube root of unity and a be a natural number not equal to
±1 or a perfect square. In the context of our result, we will be interested in applying
Theorem 1 to the primes p which do not split completely in K = Q(ω, a1/3). In
this case, the Galois group G is the symmetric group S3 and the special case of the
Artin conjecture required in Theorem 1 holds. As η = 0 in this case, the above
theorem yields a level of distribution θ < 1/2 for such primes.

Henceforth in this paper, the generalized Elliott-Halberstam conjecture (GEH)
will refer to a level of distribution θ < 1 for primes which do not split completely in
Q(ω, a1/3), as well as the inequality (2) for functions f of the type as stated above.

Our main theorem is:

Theorem 2. Assuming GEH, at least one of the following is true:

(i) Artin’s primitive root conjecture holds for all a not equal to ±1 or a perfect
square.

(ii) The Lang-Trotter conjecture holds for all CM elliptic curves E/Q with rank
E(Q) ≥ 1 and CM field k �= Q(ω),Q(i).

3. Notation

We use notation introduced in [20]. We include the same briefly here for the sake
of completeness. We denote the k-tuple of integers (d1, . . . , dk) by d. A tuple is said
to be square-free if the product of its components is square-free. For R ∈ R, the
inequality d ≤ R means that

∏
i di ≤ R. The notions of divisibility and congruence

among tuples are defined component-wise. Divisibility relations between a tuple
and a scalar are defined in terms of the product of the components of the tuple.
For example,

q|d ⇐⇒ q|
∏
i

di.

We define the multiplicative vector function f(d) as the product of its component
(multiplicative) functions acting on the corresponding components of the tuple,
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that is,

f(d) =
k∏

i=1

fi(di).

We use [·, ·] and (·, ·) to denote lcm and gcd respectively. In the case of tuples,
this means the product of the lcms (or gcds) of the corresponding components. We
employ the following multi-index notation to denote mixed derivatives of a function
on k-tuples, F(t). Then

(4) F (α)(t) :=
∂αF(t1, . . . , tk)

(∂t1)α1 . . . (∂tk)αk
,

for any k-tuple α with α :=
∑k

j=1 αj .
We use the convention n ∼ N to mean N ≤ n < 2N . In practice we have

N → ∞. We fix D0 = log log logN and let W =
∏

p<D0
p. Then W ∼ log logN

by an application of the prime number theorem. Let ω(n) denote the number of
distinct prime factors of n. The greatest integer less than or equal to x is denoted
as �x�. Throughout this paper, δ denotes a positive quantity which can be made
as small as needed.

4. The higher rank Selberg sieve

We give a brief summary of the general higher rank Selberg sieve developed in
[20]. The exposition given here is concise for the sake of brevity and the reader is
encouraged to peruse Section 3.2 of the above mentioned paper.

Given a set S of k-tuples (not necessarily finite),

S = {n = (n1, . . . , nk)},
in [20], we undertook a systematic study of sums of the form

(5)
∑
n∈S

wn

(∑
d|n

λd

)2

,

satisfying certain hypotheses. Here wn is a ‘weight’ attached to the tuples n and
λd’s are sieve parameters chosen in terms of a fixed positive real number R and a
smooth real valued test function F supported on the simplex

Δk(1) := {(t1, . . . , tk) ∈ [0,∞)k : t1 + . . .+ tk ≤ 1}.
More precisely, we chose:

(6) λd = μ(d)F
(
log d1
logR

, . . . ,
log dk
logR

)
.

The sum (5) was assumed to satisfy the following hypotheses.

H1. If a prime p divides a tuple n such that p divides ni and nj , with i �= j,
then p must lie in some fixed finite set of primes P0.

This allows us to perform the ‘W trick’, that is, restrict n in the above sum to be
congruent to a residue class b (mod W ) such that (bi,W ) = 1 for all i.

H2. The function wn satisfies

∑
d|n

n≡b (mod W )

wn =
X

f(d)
+ rd,
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for some multiplicative function f and some quantity X depending on the
set S.

H3. The components of f satisfy

fj(p) =
p

αj
+O(pt), with t < 1

for some fixed αj ∈ N.

We denote the tuple (α1, . . . , αk) as α and the sum of the components
∑k

j=1 αj as
α.

H4. There exists θ > 0 and Y � X such that

∑
[d,e]<Y θ

|r[d,e]| �
Y

(log Y )A
,

for any A > 0.

With all this in place, we state below the main result of the higher rank sieve
obtained in [20].

Theorem 3. Let λd’s be as chosen in (6). Suppose hypotheses H1 to H3 hold and

H4 holds with Y = X. Set R = Xθ/2−δ for small δ > 0. Then,

∑
n≡b (mod W )

wn

(∑
d|n

λd

)2

= (1 + o(1))C(F ,F)(α)c(W )
X

(logR)α
,

with

c(W ) :=
Wα

φ(W )α
,

and

C(F ,F)(α) =

∫ ∞

0

· · ·
∫ ∞

0

⎛
⎝ k∏

j=1

t
αj−1
j

(αj − 1)!

⎞
⎠(

F (α)(t)
)2

dt.

Here F(t)α denotes the mixed partial derivative as given in (4).

5. An application of the higher rank sieve

We apply the theory of the previous section to the set of 3-tuples

S = {(n, 6n+ 1, 12n+ 1) : N < n ≤ 2N}.

There exists np ∈ N so that the set {(np, 6np + 1, 12np + 1)} is not the complete
set of residues modulo p for any prime p, as can be seen by checking for the primes
2, 3. More generally, to check the admissibility of a k-element set, one need only
check admissibility for all primes p ≤ k. Hence, this set is indeed admissible. In
order to set up the sieve for this set, we need to check hypothesis H1 for S. This
condition is vacuous for S because for any n, the elements of S are pairwise co-
prime. We set W =

∏
p<D0

p, with D0 = log log logN , so that W � (log logN)2

by an application of the Chebycheff’s estimate for the prime counting function. We
choose b (mod W ) such that each component of b = (b, 6b+ 1, 12b+ 1) is co-prime
to W .
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Using the notation d to represent a 3-tuple, we are now ready to set up the sums

(7) S1 =
∑
n∼N

n≡b (mod W )

(∑
d|n

λd

)2

,

and

(8) S2 =
∑
n∼N

n≡b (mod W )

(χP(n) + χP(6n+ 1) + χP(12n+ 1))

(∑
d|n

λd

)2

,

where λd’s are chosen as in (6).
The key idea of this approach is then as follows. For some ρ > 1, if S2(N, ρ)−

ρS1 > 0, as N → ∞, then there are infinitely many integers n such that at least 2
of n, 6n+ 1, 12n+ 1 are prime. We refer the reader to Proposition 4.1 of [20] for a
proof of this fact.

We proceed to give asymptotic formulas for the sums S1 and S2. The asymptotic
formula for S1 is given in Lemma 4.2 of [20], which we restate here in the case k = 3
for convenience.

Lemma 4. Choose θ < 1 and R = Nθ/2−δ for some small δ > 0 to be chosen later.
Then, as N → ∞,

S1 :=
∑
n∼N

n≡b (mod W )

⎛
⎝∑

d|n
λd

⎞
⎠

2

= (1 + o(1))
W 2

φ(W )3
N

(logR)3
I(F),

where

I(F) =

∫
R3

(
F (1)(t)

)2

dt1dt2dt3,

with F (1)(t) as in (4).

We also have an asymptotic formula for the sum

S
(1)
2 :=

∑
n∼N

n≡b (mod W )

χP(n)

(∑
d|n

λd

)2

,

originally derived by Maynard and Tao, stated in Lemma 4.3 of [20] as follows.

Lemma 5. With θ < 1/2− δ and R = Nθ/2−δ, we have as N → ∞,

S
(1)
2 :=

∑
n∼N

n≡b (mod W )

χP(n)

⎛
⎝∑

d|n
λd

⎞
⎠

2

= (1 + o(1))
W 2

φ(W )3
(π(2N)− π(N))

(logR)2
J1(F),

with J1(F) given by the integral∫
R2

(
F (1)

1 (t2, t3)
)2

dt2dt3.

Here F1 is the function F restricted to tuples with the first component zero, that

is, F1(t2, t3) = F(0, t2, t3), and F (1)
1 (t2, t3) is as given in (4).

We will show that the sums involving χP(6n+1) and χP(12n+1) give the same

asymptotic formulas as S
(1)
2 .
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Theorem 6. With θ < 1/2− δ and R = Nθ/2−δ, we have as N → ∞,

S
(2)
2 :=

∑
n∼N

n≡b (mod W )

χP(6n+ 1)

⎛
⎝∑

d|n
λd

⎞
⎠

2

= (1 + o(1))
W 2

φ(W )3
(π(2N)− π(N))

(logR)2
J2(F),

and

S
(3)
2 :=

∑
n∼N

n≡b (mod W )

χP(12n+ 1)

⎛
⎝∑

d|n
λd

⎞
⎠

2

= (1 + o(1))
W 2

φ(W )3
(π(2N)− π(N))

(logR)2
J3(F),

where

J2(F) =

∫
R2

(F (1)
2 (t1, t3))

2dt1dt3, J3(F) =

∫
R2

(F (1)
3 (t1, t2))

2dt1dt2

with notation as in Lemma 5.

Proof. Expanding the square and interchanging summation gives

∑
d,e

λdλe

( ∑
n∼N

n≡b (mod W )
[d,e]|n

χP(6n+ 1)

)

For the above sum to be non-trivial, we must have [d2, e2] = 1. Writing 6n + 1 as
n′, the congruence condition n ≡ b (mod W ) implies that n′ ≡ 6b+1 (mod W ) but
is not equivalent to it. Instead we have

n ≡ b (mod W ) ⇔ n′ ≡ 6b+ 1 (mod 6W ).

Note that this condition ensures that n′ is of the form 6n+ 1 for some integer n.
We observe that [d1, e1] must be co-prime to W because [d1, e1] divides n which

is in the residue class b (mod W ) and is hence co-prime to W . In particular, the
co-primality of [d1, e1] and 6 gives

n ≡ 0 (mod [d1, e1]) ⇔ n′ ≡ 1 (mod [d1, e1]).

Similarly, [d3, e3] is co-prime to W , so that

12n+ 1 ≡ 0 (mod [d3, e3]) ⇔ n′ ≡ 2̄(−1) + 1 (mod [d3, e3]),

where 2̄ is the inverse class of 2 (mod [d3, e3]). Using the Chinese remainder theorem
to write this system of congruence equations as a single congruence relation, we have
for the sum above

∑
d,e

d2=e2=1

λdλe

( ∑
n′∼6N

n′≡a (mod q)

χP(n
′)

)
,
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where q = 6W [d1, e1][d3, e3] and a is some residue class co-prime to q. This sum
now is the same as S1 with W,N replaced by 6W, 6N respectively. We can proceed
as in Lemma 4.3 of [20] to obtain

S2 = (1 + o(1))
(6W )2

φ(6W )3
6(π(2N)− π(N))

(logR)2
J2(F).

As
φ(6W )

6W
=

∏
p|6W

(
1− 1

p

)
=

φ(W )

W
,

we see that φ(6W ) = 6φ(W ), thus giving the required asymptotic formula for S
(2)
2 .

This argument can be repeated mutatis mutandis for the sum S
(3)
2 . �

Putting the above formulae together and using the prime number theorem, we
have the following result.

Theorem 7. Choosing θ < 1/2− δ and R = Nθ/2−δ, we have as N → ∞,

S(N, ρ) := S2 − ρS1 ∼ W 2

φ(W )3
N

(logR)3
I(F)

((
θ

2
− δ

)
M3(F)− ρ

)
,

where M3(F) is defined as the functional

J1(F) + J2(F) + J3(F)

I(F)
,

which is the same as 3J1(F)/I(F) because of the symmetry of the function F .

In order to show S(N, ρ) > 0 for some ρ > 0, it is necessary to have good
numerical estimates for

(9) M3 = sup
F

3J1(F)

I(F)
,

where the supremum is taken over all square integrable functions supported on
Δ3(1). More precisely, assuming the Elliott-Halberstam conjecture, that is, θ = 1−ε
for some ε > 0 in (2), if one can show that M3(F) > 2, this gives S(N, ρ) > 0 as
N → ∞, for some ρ > 1. This would prove conditionally that there are infinitely
many n ∈ N such that at least two of n, 6n+ 1, 12n+ 1 are prime. Unfortunately,
we do not have good enough numerical estimates for M3 currently, leading us to
assume the stronger generalized Elliott-Halberstam conjecture.

Assuming GEH, Theorems 28, 29 of [18] show that for any 0 < ε ≤ 1/2, one can
consider instead of M3, the functional

(10) M3,ε(F ) =
3J1,1−ε(F )

I(F )
,

where

(11) J1,1−ε(F) :=

∫
Δ2(1−ε)

(
F (1)

1 (t2, t3)
)2

dt2dt3,

and F is now a non-zero square integrable function supported on the enlarged
simplex

Δ3(3/2) = {(t1, t2, t3) ∈ [0,∞)3 : t1 + t2 + t3 ≤ 3/2}.
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Moreover, F satisfies the condition∫ ∞

0

F (t1, t2, t3)dt1 = 0,

whenever t1 + t2 > 1 + 1/4. Theorem 29 of [18] also establishes that there exists a
piecewise polynomial function F satisfying the above conditions such that M3,1−ε >
2. This gives the following theorem.

Theorem 8. Assuming GEH, there are infinitely many n ∈ N such that at least
two of n, 6n+ 1, 12n+ 1 are prime.

6. The disjunction theorem

We first prove the following result below.

Theorem 9. Assuming GEH, at least one of the following is true:

(i) For all a not equal to ±1 or a perfect square, there are infinitely many
primes q such that the index of a (mod q) is bounded by 3.

(ii) The Lang-Trotter conjecture holds for all CM elliptic curves E/Q with rank
E(Q) ≥ 1 and CM field k �= Q(ω),Q(i).

Proof. In order to prove this, we examine in turn each of the three cases arising in
Theorem 8.

Case 1. n and 6n+ 1 are prime infinitely often:

This means that there are infinitely many primes p and q such that q = 6p+ 1.
Fix b ∈ N not equal to ±1 or a perfect square. We consider the order of a modulo
q, denoted by o(a) (mod q). If o(a) = q− 1, we are done. So assume otherwise. As
o(a)|q − 1 = 6p, the only other possibilities for o(a) are 2, 3, 6, p, 2p and 3p. If the
order of a (mod q) is 2 we have q|a2 − 1. As a is fixed, there can only be finitely
many such primes q and we eliminate these from our discussion. The same can be
done if the order of a (mod q) is 3 or 6.

On the other hand, if the order of a (mod q) is p or 3p, then we have

a
q−1
2 ≡ 1 (mod q),

which means that a is a quadratic residue modulo q. It is possible to eliminate
this possibility by imposing a suitable congruence condition on n (and hence q)
throughout the discussion of Section 4. We are left with the possibility that the

order of a is 2p, which means that a
q−1
3 ≡ 1 (mod q). This means that the index

of a (mod q) is bounded by 3.

Case 2. n and 12n+ 1 are prime infinitely often:

This gives infinitely many primes p, q with q = 12p+ 1. Given a ∈ N not equal
to ±1 or a perfect square, if a (mod q) does not generate Fq, the order of a (mod q)
can only be 2, 3, 4, 6, 12, p, 2p, 3p, 4p or 6p. We consider each of these cases in turn.
If the order of a (mod q) is 2, 3, 4, , 6 or 12, we see as before that the number of such
primes q is finite and can be removed from the set of primes under consideration.

If the order of a (mod q) is p, 2p, 3p or 6p, we have

a
q−1
2 ≡ 1 (mod q),
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so that a is a quadratic residue modulo q. As before, it is possible to get rid of this
possibility. We are left with the case

a4p = a
q−1
3 ≡ 1 (mod q),

which means that the index of a (mod q) is bounded by 3.

Case 3. 6n+ 1 and 12n+ 1 are prime infinitely often:

This means that there are infinitely many primes p, q, with q = 2p − 1. Given
an elliptic curve E/Q, with CM field k �= Q(ω),Q(i), we are ensured that q is inert
in the ring of integers Ok, so that aq = 0. This can be done by imposing a suitable
congruence condition on n. Fix a point a ∈ E(Q) having infinite order and consider
its image modulo q, denoted ā. Then ā ∈ E(Fq). We want to show that ā generates
the group E(Fq). As |E(Fq)| = q + 1 − aq = 2p, we see that the order of ā can
either be 2, p or q + 1. If it is 2, then ā is a two-torsion point in E(Fq), giving
only finitely many such q. If the order is p, then ā = 2m̄ for some m̄ ∈ E(Fq).
Writing a = (a1, a2), we see that a1 must be the solution of a quartic polynomial
modulo q. This leads to a quartic polynomial having a solution (mod q). Since
the splitting field of a quartic polynomial contains a quadratic extension, we can
impose congruence conditions on q so that q does not split in this extension. This
means that the order of ā must be q + 1. �

7. Concluding remark

In the previous section, we obtained a conditional disjunction result concerning
the bounded index problem and the Lang-Trotter conjecture for CM elliptic curves.
The proof of Theorem 2 can be obtained by a slight variation of this argument.
In Cases 1 and 2 of the above proof, it is possible to get rid of the possibility

that a
q−1
3 ≡ 1 (mod q) by noticing that this means that q splits in the field K =

Q(ω, a1/3). For any ε > 0, we can apply Theorem 1 with level of distribution
θ = 1− ε (assumed under GEH), to get rid of the contribution from such primes q.
This gives a positive proportion of primes q for which a is a primitive root modulo
q. One could also modify these arguments to treat elliptic curves which have CM
by Q(i) or Q(ω).
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