
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 8, August 2018, Pages 3553–3563
http://dx.doi.org/10.1090/proc/13954

Article electronically published on May 2, 2018

ON A QUESTION OF KALIMULLIN

ROD DOWNEY, GREGORY IGUSA, AND ALEXANDER MELNIKOV

(Communicated by Mirna Dz̆amonja)

Abstract. We prove that for every computable limit ordinal α there exists a
computable structure A which is Δ0

α-categorical and α is smallest such, but
nonetheless for every isomorphic computable copy B of A there exists a β < α
such that A ∼=Δ0

β
B. This answers a question raised by Kalimullin in personal

communication with the third author.

1. Introduction

Much of classical mathematics is concerned with classification of mathematical
structures by their isomorphism types. Two mathematical structures are usually
identified if they are isomorphic. However, such a classification blurs fine-grained
distinctions related to the algorithmic nature of the structures. For example, it is
easy to construct two algorithmically presented structures, both isomorphic to a
simple structure like (N,≤) but with wildly differing computability-theoretic prop-
erties, such as decidability (or non-decidability) of the adjacency relation. On the
other hand, sometimes computable isomorphism type coincides with classical iso-
morphism type, which is the case for a dense countable linear ordering or a finitely
presented group.

Computable structure theory [AK00,EG00] has grown to understand the com-
putability-theoretic properties of computably presented structures. Recall that a
countably infinite algebraic structure is computable if its domain is the natural
numbers N and its operations are Turing computable functions. If an algebraic
structure A is isomorphic to a computable structure B, then we say that B is a
computable copy, a computable presentation, or a constructivization of A. As we
noted above, an algebraic structure may have computable copies with wildly differ-
ing computability-theoretic properties. Based on this observation, Mal′cev [Mal61]
suggested that computable structures should be studied under computable isomor-
phism. In particular, we say that a countably infinite structure is computably cate-
gorical if it has a unique computable copy up to computable isomorphism. Although
computably categorial structures are “unclassifiable” in general (see [DKL+15]),
computable categoricity tends to be very well-behaved within many standard al-
gebraic classes. For instance, a Boolean algebra is computably categorical iff it
has only finitely many atoms [Gon97, LaR77], and a torsion-free abelian group
is computably categorical iff its rank is finite [Nur74]. For most of these “nice”
algebraic classes, computable categoricity is equivalent to the stronger notion of

Received by the editors November 19, 2016, and, in revised form, August 9, 2017 and Septem-
ber 11, 2017.

2010 Mathematics Subject Classification. Primary 03D45, 03C57; Secondary 03D75, 03D80.
The authors were partially supported by Marsden Fund of New Zealand.

c©2018 American Mathematical Society

3553

http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/13954

3554 ROD DOWNEY, GREGORY IGUSA, AND ALEXANDER MELNIKOV

relative computable categoricity; we omit the definition of relative computable cat-
egoricity; see [AK00]. In contrast to computable categoricity in general, relative
computable categoricity admits a syntactical description, a so-called computably
enumerable Scott family [AK00]. There have been many successful applications
of various syntactical techniques to the study of relative computable categoricity
and related notions; see, e.g., the recent work of Montalbán [Mon13,Mon15] that
relate computable structure theory with descriptive set theory and model theory.
On the other hand, the study of the more “wild” general computable categoricity
enjoys applications of advanced recursion-theoretic techniques; it also often leads
to novel methods and new results which are not necessarily related to categoric-
ity questions (see, e.g., [DM13,Gon81]). One of the most remarkable theorems of
this kind says that there is a structure with exactly two computable copies up to
computable isomorphism; see Goncharov [Gon80], and see Hirschfeldt [Hir01] for
further applications of the technique of Goncharov.

As we see, there are two main strands within modern computable structure the-
ory. The first seeks to relate definability with effectivity [AK00], and the other
tends to be concerned with properties which revolve around the specifics of the
computation level and the structures concerned; see [EG00]. In this paper, we
will be working on the interaction between the two strands. More specifically,
we answer the following question of Kalimullin. A few years ago, Kalimullin asked
whether a computable structure could be arithmetically categorical in the following
unbounded way. Can there be a computable structure A, such that for any com-
putable structure B isomorphic to A, there is an n such that A is Δ0

n-isomorphic
to B, but for each m < ω there is a computable Cm with Cn isomorphic to A but
not by a Δ0

m-isomorphism? In other words, can there be a computable structure
such that every isomorphic computable structure is arithmetically isomorphic, but
such that this fact is not witnessed by any fixed level of the arithmetic hierarchy?
In this paper we answer this question affirmatively. In fact, we prove more.

Theorem 1.1. For every computable limit ordinal α there exists a computable
structure Aα such that:

• For every computable structure M ∼= A, there exists a β < α such that
M ∼=Δ0

β
Aα.

• For every β < α, there exists a computable structure B ∼= Aα such that
B �Δ0

β
Aα.

We note that the structure Aα witnessing Theorem 1.1 will be built up from
structures that are themselves relatively Δ0

β-categorical. Although the isomor-
phism types of these substructures will depend on the construction, their nice uni-
form properties will allow us to exploit techniques borrowed from the “syntactical”
strand, more specifically a result of Ash [Ash86]. The construction will be an iter-
ated priority argument, along the lines of a “worker” argument. We believe that the
easiest presentation is to give a direct proof rather than to try to use any of the ex-
isting metatheorems ([AK00,Mon14,LL97]), aside from using the above mentioned
result of Ash.1

1Thanks to Noam Greenberg, we are aware that Asher Kach and Antonio Montalbán have
(independently) announced the case α = ω. As far as we know, their proof has not yet been
formally written or published.

ON A QUESTION OF KALIMULLIN 3555

From the algebraic standpoint, the structure A witnessing Theorem 1.1 is an
abomination. It was designed to prove the theorem. Can we find examples in nice
classes?

Problem. Find structures with the property from Theorem 1.1 in natural non-
universal classes, such as linear orders or abelian groups.

We strongly suspect that manufacturing examples of such linear orders should
be doable. In contrast, we are not sure how to approach this problem in the class
of abelian groups.

The remainder of this paper will be focused on proving Theorem 1.1.

2. Proof

2.1. Setup and notation. Let α be a fixed computable limit ordinal. For nota-
tional convenience, when we wish to discuss Δ0

β constructions as oracle construc-

tions, we will use 0(β) as the name of the oracle which is equal to 0(β−1) when
1 ≤ β < ω, and is equal to the β′th jump (using specifically chosen Turing degree
representatives that can uniformly resolve Δ0

β questions) when ω ≤ β < α.

Let 〈αn : n ∈ ω〉 be a computable increasing sequence of ordinals whose limit is
α, with α0 > 0. For each n, let βn = 2 · αn + 1, and note that 〈βn : n ∈ ω〉 is also
a computable increasing sequence of ordinals whose limit is α, but with β0 > 2.

The signature of our structure will have an edge relation, an ordering relation,
and a collection of unary predicates (Pi)i∈ω, denoting disjoint portions of the struc-
ture which we will use to meet diagonalization requirements. We will call the part
of the structure restricted to one such Pi a Pi-box and sometimes simply a P -box.
The ordering relation and edge relation will never hold between elements of different
P -boxes.

2.1.1. The requirements. Let 〈Mn : n ∈ 1, 2, . . .〉 be a listing of all the computable
structures in our signature, which will be specified later. We will have isomorphism
requirements and diagonalization requirements:

In : Mn
∼= A → Mn

∼=Δ0
βn−1+1

A,

Dn : ∃Bn(Bn is computable & Bn
∼= A & Bn �Δ0

βn
A).

Note that if we meet all of these requirements, then we will have proved the the-
orem. For trivial counting reasons (such as βn−1 in In above) and without loss of
generality, we may assume that n ranges over the positive natural numbers.

We will discuss two different diagonalization strategies. The “attempted di-
agonalization strategy” will be the naive attempt of meeting a Dn requirement,
in isolation. The “actual diagonalization strategy” will be different from the at-
tempted one due to interactions between requirements. The isomorphism-building
strategy In will be formally described simultaneously with the tree of strategies,
but we will give some intuition already in the next subsection.

2.2. One diagonalization strategy in isolation. In this subsection, we describe
the attempted diagonalization strategy that will have to be modified before placing
it onto the tree.

3556 ROD DOWNEY, GREGORY IGUSA, AND ALEXANDER MELNIKOV

2.2.1. The result of Ash. Our primary tool for the attempted diagonalization strat-
egy will be the following result of Ash (Theorem 18.15 of [AK00]).

Theorem 2.1 (Ash). Let γ be a computable ordinal, and suppose L is a Δ0
2γ+1

linear ordering. Then we can uniformly produce a computable presentation F (L)
of ωγ · L.

It will be crucial that the proof of Theorem 2.1 is uniform as long as L does
not have a least element. Moreover, there is a Δ0

2γ+1 function f taking a ∈ L to

the first element of the corresponding copy of ωγ in F (L). The Δ0
2γ+1 index of the

function is also uniform in (the notation for) γ and the index for L.

Remark 2.2. Using the uniformity of Theorem 2.1 we will shortly define our at-
tempted diagonalization strategy on Pi. In the proof of the main result, all such
Pi will be put together onto a priority tree. At every node of the tree, we will use
the uniform version of Theorem 2.1 to produce copies of linear orders (they will be
slightly modified, but with all possible uniformity). One could use the recursion
theorem to make the proof work. We remark that the recursion theorem is not
really necessary here. We could simply dynamically outsource the task of building
F (L) to the construction from Theorem 2.1 whose index is known (by the s-m-n
Theorem).

For our attempted diagonalization strategy on Pi, we begin by constructing
two linear orders in A and Bn, that we will ensure are isomorphic, but not via a
Δ0

βn
isomorphism. This will be done by constructing linear orderings L0 and L1,

computably in 0(βn), both of order type ω∗, and then constructing F (L0) as our
linear ordering in Pi of A and F (L1) as our linear ordering in Pi of Bn. Here, we
are using Theorem 2.1 with γ = αn, and hence 2γ + 1 = βn.

2.2.2. The construction of F (L0) and F (L1). We build two Δ0
βn
-copies of ω∗. We

diagonalize against the e′th potential Δ0
βn

isomorphism fe : L0 → L1, as follows.
Construct ω∗ in both L0 and L1, initially letting x0,e and x1,e be adjacent elements
in L0. Wait for fe to converge on x0,e and x1,e. If the images are adjacent, insert one
extra point between them, and preserve the interval. Note that this construction
is computable in 0(βn). Both L0 and L1 have no least element, so that we can
apply Theorem 2.1 with all possible uniformity. In particular, we obtain F (L0) and
F (L1) which are isomorphic, but not by a Δ0

βn
-map.

For each element of our linear orders F (L0) and F (L1), we will have one extra
element that is attached to it by the edge relation. The additional elements will
not be related to any elements via the ordering relation.

Remark 2.3. At this stage we owe the reader an informal explanation of why we
need this extra edge relation. The idea is as follows. Suppose at stage s our linear
order that we’ve built in Pi of A looks as follows:

â0 < â1 < â3 < â4,

where the hat indicates that a point carries a label, i.e., it is adjacent to an extra
point via the edge relation. (The ith extra point is specific and unique for each
such ai and is not connected to anything else.) We will also attempt to build a
computable isomorphism from M onto A. At stage s we would have built a partial
map fs : Ms → As.

ON A QUESTION OF KALIMULLIN 3557

According to our dynamic definition of the linear order in Pi, we will attempt
to extend Pi by adding one more point, say b. We add the point without a label:

â0 < b < â1 < â3 < â4,

and then wait for M to respond. Note the location of b is uniquely determined by
its current position. If M gives us some other configuration, we permanently “kill”
M by, say, freezing our enumeration in Pi. In particular, if M is too quick in its
enumeration, then it will be “killed”. As soon as we see a suitable candidate for
f−1(b) (if ever), we define fs on b accordingly. Only then we put a label onto b:

â0 < ̂b < â1 < â3 < â4,

and wait for f−1(b) to be assigned a label (in M). Once it is found, we extend f
to that label. Repeat.

This way we force M to follow A very closely lagging at most one step behind
us. At the end M is either dead (i.e., not isomorphic to A) or is forced to copy us
via the computable isomorphism f , at least when restricted to the P -box.

We will implement the idea from Remark 2.3 later, in the full construction. But,
in isolation, the strategy within its Pi in both A and Bn look essentially the same
(with L0 replaced by L1 in Bn). We give the details below.

2.2.3. Attempted Dn strategy. Recall that the diagonalization strategy works within
its Pi-box. We describe our actions in A.

During the first stage, we declare F (L0) empty. After this, each time we wish to
add a new element to F (L0), we will do so over the course of two substages. At the
beginning of the first substage, there will be a finite number of elements in F (L0),
each with an element attached by an edge.

Substage 1: Add a new element x to F (L0).

Substage 2: Create a new element and attach by an edge to x.

At the end of the construction, we will have constructed F (L0) with an extra
element attached to each element of F (L0). (This ends the strategy.)

In Bn we slowly build a (labeled) copy of F (L1), unless interrupted.

Remark 2.4. The structure Bn will be computably copying A everywhere except
for the diagonalization location. In the actual construction, the diagonalization
strategy can either be forever left inactive or declared initialized. In each of these
cases we may end up with Bn 	∼= A, but this is fine since some other version of the
strategy will successfully build its own version of Bn.

As we have already noted above, the actual strategy may be interrupted by
higher priority requirements, and thus may never finish building its Pi block in
both A and Bn. The straightforward lemma below describes what happens in the
absence of such interaction, i.e., when it acts as intended.

Lemma 2.5. The attempted diagonalization strategy on Pi in A satisfies the fol-
lowing properties:

(1) The attempted diagonalization strategy in Pi is uniform (in i).
(2) If the attempted diagonalization strategy is completed, then A is not iso-

morphic to Bn via a Δ0
βn

map.

(3) If the attempted diagonalization strategy is completed in Pi, then the re-
striction of A to Pi is relatively Δ0

βn+1-categorical.

3558 ROD DOWNEY, GREGORY IGUSA, AND ALEXANDER MELNIKOV

Proof. (1) The uniformity follows from the fact that the sequence 〈αn〉 is com-
putable, as well as the fact that the proof of Theorem 2.1 is uniform. (Also, see
Remark 2.2 above.)

(2) Any isomorphism between A and Bn must also be an isomorphism when
restricted to Pi, and must therefore also be an isomorphism when restricted to the
linear order part of Pi. In our construction, we ensured that F (L0) and F (L1) were
not isomorphic by the ith Δ0

β map, for each i.

(3) This folklore fact follows at once from a straightforward definability analysis
(see the book [AK00]). �

2.3. Construction. As we noted above, the attempted diagonalization strategy
needs to be modified in the actual construction.

2.3.1. The tree of strategies, and an informal discussion. The construction will be
phrased as a tree construction. The tree of strategies is {∞, fin}<∞. Each level of
the tree will be monitoring the nth partial computable structure Mn.

Each of the two outcomes of the isomorphism-building strategy at σ will be
associated with a version of the diagonalization strategy. We will call these versions
the finitary and the infinitary diagonalization strategy of σ, respectively. (Instead,
we could introduce a node for each of them below the respective outcome of an
isomorphism-building σ, and also assume each such extra node has exactly one
outcome which is always played.)

Remark 2.6. The true path can be approximated in the usual Π0
2-fashion. The out-

comes at level n will reflect our current guess on whether the nth partial computable
structure has followed us for one more step or not, in the sense of Remark 2.3.

The non-standard feature of this proof is that each diagonalization strategy at
level n will be working relative to 0(βn) within its P -box, and thus the complexity
of the strategies is going up as n increases. Using the construction of Ash (Theo-
rem 2.1), we will attempt to uniformly extend the 0(βn)-linear order produced by
the strategy to an infinite labeled computable linear order. If the process is inter-
rupted or forever paused we will end up with a finite (partially) labeled linear order
in the P -box.

2.3.2. The isomorphism-building strategy. Each node at this level will attempt to
build a computable partial isomorphism on the P -boxes (in A and Mn) which are
controlled by requirements of priorities no stronger than the priority of σ. This will
be done as follows. Every time the diagonalization strategy of σ, or any weaker
priority diagonalization strategy below σ̂∞, puts a new point into their part of A,
we wait for Mn to respond by giving us the exact same configuration, restricted to
the respective P -box of Mn.

There will be another, finitary diagonalization requirement assigned with node
σ and played when σ̂ fin is visited. This diagonalization strategy and every weaker
priority diagonalization strategy below will ignore Mn.

The exact actions of the diagonalization strategies at σ will be clarified shortly.
But regardless of the actions, it is clear how to define the notion of σ-expansionary
stage and thus the notion of the current true path at stage s (we leave it to the
reader).

2.3.3. Assignment of P -boxes to diagonalization strategies. Recall that each such
strategy is working within its P -box. If σ is at level n, then at stage s at which σ

ON A QUESTION OF KALIMULLIN 3559

is active the first time after initialization, we assign Pi (with i least never used for
this purpose) for the infinitary diagonalization strategy of σ. We denote this P -box
of σ by P∞

σ .

Remark 2.7. We will be pressing M = Mn = M|σ| to follow A computably within
P∞
σ by pausing our actions within P∞

σ of A (thus, of B as well) until the P∞
σ -box

of M is extended to be isomorphic to P∞
σ of A built so far. We will give formal

details of the modified diagonalization strategy in the next paragraph, but we have
already seen the main idea in Remark 2.3. Since M may never respond, we have to
restart the diagonalization strategy within some fresh Pn,j , under the assumption
that Mn 	∼= A.

The finitary version of the diagonalization strategy below σ will be working
within its own P -box, we denote it P fin

σ . If we play σ̂ fin and P fin
σ is undefined,

then pick Pj (where j is least never used for this purpose so far) and declare
P fin
σ = Pj .

Remark 2.8. Within this box, we will implement the attempted diagonalization strategy that
ignores M.

2.3.4. The modified diagonalization strategy. Suppose |σ| = n. Each Pi-box will be
eventually assigned to either P∞

σ or P fin
σ . For each u ∈ σ, the P x

σ -box will attempt
to implement the diagonalization strategy and also build its own version of Bn, we
denote it by Bu

σ . Outside its Pu
σ -box the structure Bu

σ will be copying A, making
one more step in its approximation every time σ̂ u is visited again.

Within Pu
σ , we need to modify the “attempted diagonalization strategy” (Section

2.2.3) as follows. We follow the notation of Section 2.2.3. Between Substage 1 and
Substage 2, Pu

σ will wait for every M|τ | with τ ∞̂ ⊆ σ̂ u to reveal such an x from
Substage 1. After Substage 2 is finished, it will also wait for each such M|τ | to
reveal the extra element now attached to x by an edge. This pause also applies to
the respective P -box of Bu

σ .
As we noted above, the definition of the current true path is standard.

2.3.5. Initialization. We declare Pu
σ initialized if the current true path moves to

the left of σ̂ u. We set Pu
σ undefined, and we also declare Bu

σ empty.
At stage 0, initialize all strategies. At stage s of the construction, we simply let

the strategies along the current true path act according to their instructions.

2.4. Verification. The plan is as follows. Recall that every version of the diago-
nalization strategy builds its own version of Bn, and it copies A everywhere outside
of its (eventually stable) P -box. We will argue that Mn

∼= A implies that the true
outcome of the node σ at level n of the true path is ∞. The strategy of σ cannot
control the finitely many nodes above it, but this won’t be a problem. For each
strategy τ at deeper levels of the tree, there are only two possibilities. The first
possibility is that such a P -box will be eventually left finite, in which case the box
will be Δ0

3-uniformly Δ0
2-categorical. Otherwise, each box controlled by τ û ⊇ σ

will have to respect Mn and wait for it to respond before acting again. Therefore,
all such boxes will be working towards building a computable isomorphism between
their respective boxes Mn to A. Note that 0′′ can compute the true path. Thus, σ
can ensure that almost all P -boxes of M are uniformly Δ0

βn−1+1-isomorphic to the

respective boxes of A (see Lemma 2.5(3)).

3560 ROD DOWNEY, GREGORY IGUSA, AND ALEXANDER MELNIKOV

We give the formal details. The definitions of the true path and the true outcome
were standard. The guessing procedure that determines the current true path is
merely Π0

2. The tree does not depend on our diagonalization actions whose outcomes
are not even put onto the tree. It is clear that M|σ| can either follow A or not
follow A, and this is exactly what each node measures. (The same can be said if
we restrict our guessing to a computable collection of P -boxes.) We conclude that
there are only two possible (true) outcomes of the guessing procedure. It is thus
straightforward that the true path is infinite.

We need to argue that, for every σ̂ x along the true path (where x ∈ {∞, fin}),
the diagonalization requirement D|σ| is met within P x

σ and with the help of its
version Bx

σ of Bn. We also need to check that, if M|σ| is isomorphic to A, then it
is isomorphic to A via an isomorphism strictly computationally simpler than 0(α).

Lemma 2.9. For every n, the diagonalization requirement Dn is met within the
P x
σ -box, where σ̂ x lies at the true path and |σ| = n.

Proof. For simplicity, we first consider the highest priority diagonalization require-
ment. If there were no higher priority I-requirements to respect, this would be
exactly Lemma 2.5. However, according to our setup, σ = e (the empty string)
must respect M0. But if the true outcome of I0 is ∞, then M0 always responds by
copying us at the intermediate stage; see the description of the actual diagonaliza-
tion strategy in the previous section. Thus, the diagonalization strategy within P∞

e

will be acting at infinitely many stages. Apart from pausing at the intermediate
stage, the actual diagonalization strategy (see Section 2.3.4) is no different from the
attempted one (see Section 2.2.3). Thus, we can appeal to Lemma 2.5 and conclude
that D0 is met within the P∞

e -box.
On the other hand, if M0 eventually either never responds or proves to be non-

isomorphic, then we implement the diagonalization strategy within some other,
fresh box P fin

e which (eventually) will never be initialized. The strategy will ignore
M0 and will be exactly the same as the attempted one (see Section 2.2.3). We thus
can safely appeal to Lemma 2.5.

We also note here that each version of the diagonalization strategy builds its own
version of Bn that computably copies A everywhere except for the P -box controlled
by the strategy.

The general case of n > 0 is not very much different from the basic case n = 0.
It is sufficient to take σ with |σ| = n along the true path and consider the box P x

σ ,
where x is the true outcome of σ. The only difference is that the strategy within
P x
σ will have to respect only those Mτ with τ ∞̂ ⊆ σx. �
Recall that (βn)n∈N+ has the property 0(βn) ≥T 0′′, for each n.

Lemma 2.10. For every n, if Mn
∼= A, then Mn

∼=Δ0
βn−1+1

A. (That is, In is

met.)

Proof. Consider Mn and assume that Mn
∼= A. There are several types of P -boxes

that we need to consider. We argue that in each case we can (uniformly) produce
an isomorphism of complexity at most Δ0

βn−1+1 between the respective boxes in A
and Mn.

Suppose m < n. Then Pm,i is either eventually permanently assigned to P x
τ for

some τ of length m along the true path, or is eventually left finite. With the help
of 0′′ we can see which case applies to each such Pm,i, m < n. It follows that 0′′

ON A QUESTION OF KALIMULLIN 3561

can uniformly build an isomorphism when restricted to each finite P -box. By the
choice of the sequence of (βn)n∈ω, 0

′′ is no greater than each such βm, thus the
isomorphism within each Pm,i is (uniformly) computable in 0(βn). By Lemma 2.5,
for the finitely many τ û along the true path with |τ | < n, Pu

τ of A is relatively
Δ0

βn−1+1-categorical. It follows that the collection of all Pm,i, m < n, is Δ0
βn−1+1-

categorical, with the finite initial segment of the true path being the parameter of
uniformity.

If m ≥ n, then we appeal to the intermediate stage of the actual diagonalization
strategy (Section 2.3.4). Again, each P -box is either eventually left finite or is
stably controlled by one of the diagonalization strategies along the true path. As
above, with the help of 0′′ we can see it. If the box is eventually initialized, then
this means that the substructure within it is finite, and thus 0′′ can uniformly
and fully reconstruct its open diagram. If it is never initialized, then suppose it
is permanently declared P x

τ for some τ of length m ≥ n. Consider σ of length
n along the true path. Then σ monitors Mn, and it must be the case that the
true outcome of σ is ∞. In particular, σ̂∞ ⊆ τ , for otherwise τ would have to be
eventually initialized. This means that the actual diagonalization strategy of P x

τ

will not add another point to the box unless M|σ| responds by giving the previous
point; see Section 2.3.4. At every such stage, P x

τ will be a finite linear order with at
most one element not labeled. We will define a computable isomorphism between
P x
τ in M|σ| = Mn and P x

τ in A by stages, as follows.
Let P [s] denote the substructure of A restricted to the P x

τ -box, at stage s.
Similarly, P ′[s] will denote the respective substructure of Mn, also at stage s.
Suppose we have already defined an isomorphism fs : P [s] → P ′[s]. We may
assume that P [s] is either empty (in which case fs is also empty) or it is a finite
linear order all of whose elements are labeled using the edge relation. (See Section
2.2.2 for the description of labels.)

At the next stage s∗ at which τ is visited again, we will expand P [s] by one extra
point b to get P [s∗]. For now, we will keep this extra point not labeled. Here is a
“typical” configuration within P [s∗]:

â0 < . . . < âi < b < âi+1 < . . . < âk(s),

where only the elements that carry a hat are labeled. The hatted elements and the
auxiliary elements that use to label them together form the domain of fs. Since fs
is an isomorphism onto P ′[s], in Mn[s

∗] we have

f̂s(a0) < . . . < f̂s(ai) < ̂fs(ai+1) < . . . < ̂fs(ak(s)),

where the auxiliary elements labelling each of the f̂s(ai) have the auxiliary elements
labelling the respective âi as their fs-preimages. After stage s∗, τ will enter the
waiting phase (see Section 2.3.4). During this substage, it will be waiting for Mn

(and perhaps for finitely many other structures as well) to respond. More formally,
it will wait until Mn reveals a point c such that

f̂s(a0) < . . . < f̂s(ai) < c < ̂fs(ai+1) < . . . < ̂fs(ak(s)),

and so that it is currently not labeled. If Mn never responds or gives some other
configuration, we will permanently abandon the infinitary outcome of σ. This will
be done by simply freezing this P -box of A. This way we will make sure A 	∼= Mn

contradicting the assumption. It is crucial that the configuration of labels and the

3562 ROD DOWNEY, GREGORY IGUSA, AND ALEXANDER MELNIKOV

linear order uniquely define the location of b. Thus, such a c must eventually be

found in Mn, and it must necessarily be between f̂s(ai) and ̂fs(ai+1). Once c is
found, at stage t, we extend fs to ft by setting ft(b) = c.

After this is done, we add a label to b by introducing an auxiliary y and declaring
E(b, y) on it. This element y will not be related to any other element in the
construction by <, and it will not be connected to anything else via the edge
relation E. Thus, similarly to how we argued that c can be found for b, we could
argue that a z in Mn can be found for y. It is also necessary that z labels c. We
extend f accordingly.

Note that f is computable. Furthermore, fs is an isomorphism of P [s] onto P ′[s],
for every s. It follows that f is a computable isomorphism from P x

τ of A to P x
τ in

Mn. The index of f can be found uniformly in 0′′.
Thus, in each case we can Δ0

βn−1+1 -uniformly (in i and n) find a Δ0
βn−1+1

isomorphism between Pi-boxes in A and Mn. �

We conclude that all requirements are met, and thus Theorem 1.1 is proved.

References

[AK00] C. J. Ash and J. Knight, Computable structures and the hyperarithmetical hierarchy,
Studies in Logic and the Foundations of Mathematics, vol. 144, North-Holland Pub-
lishing Co., Amsterdam, 2000. MR1767842

[Ash86] C. J. Ash, Recursive labelling systems and stability of recursive structures in hy-
perarithmetical degrees, Trans. Amer. Math. Soc. 298 (1986), no. 2, 497–514, DOI
10.2307/2000633. MR860377

[DKL+15] Rodney G. Downey, Asher M. Kach, Steffen Lempp, Andrew E. M. Lewis-Pye, Antonio
Montalbán, and Daniel D. Turetsky, The complexity of computable categoricity, Adv.
Math. 268 (2015), 423–466, DOI 10.1016/j.aim.2014.09.022. MR3276601

[DM13] Rodney Downey and Alexander G. Melnikov, Effectively categorical abelian groups, J.
Algebra 373 (2013), 223–248, DOI 10.1016/j.jalgebra.2012.09.020. MR2995024

[EG00] Yuri L. Ershov and Sergei S. Goncharov, Constructive models, Siberian School of Al-
gebra and Logic, Consultants Bureau, New York, 2000. MR1749622

[Gon80] S. S. Gončarov, The problem of the number of nonautoequivalent constructivizations
(Russian), Algebra i Logika 19 (1980), no. 6, 621–639, 745. MR622606

[Gon81] S. S. Gončarov, Groups with a finite number of constructivizations (Russian), Dokl.
Akad. Nauk SSSR 256 (1981), no. 2, 269–272. MR600943

[Gon97] Sergei S. Goncharov, Countable Boolean algebras and decidability, Siberian School of
Algebra and Logic, Consultants Bureau, New York, 1997. MR1444819

[Hir01] Denis R. Hirschfeldt, Degree spectra of intrinsically c.e. relations, J. Symbolic Logic

66 (2001), no. 2, 441–469, DOI 10.2307/2695024. MR1833490
[LaR77] P. LaRoche, Recursively presented Boolean algebras, Notices AMS, 24:552–553, 1977.
[LL97] Steffen Lempp and Manuel Lerman, Iterated trees of strategies and priority arguments,

Arch. Math. Logic 36 (1997), no. 4-5, 297–312, DOI 10.1007/s001530050067. Sacks
Symposium (Cambridge, MA, 1993). MR1473027

[Mal61] A. I. Mal′cev, Constructive algebras. I (Russian), Uspehi Mat. Nauk 16 (1961), no. 3
(99), 3–60. MR0151377

[Mon13] Antonio Montalbán, A computability theoretic equivalent to Vaught’s conjecture, Adv.
Math. 235 (2013), 56–73, DOI 10.1016/j.aim.2012.11.012. MR3010050

[Mon14] Antonio Montalbán, Priority arguments via true stages, J. Symb. Log. 79 (2014), no. 4,
1315–1335, DOI 10.1017/jsl.2014.11. MR3343540

[Mon15] Antonio Montalbán, Analytic equivalence relations satisfying hyperarithmetic-is-
recursive, Forum Math. Sigma 3 (2015), e8, 11, DOI 10.1017/fms.2015.5. MR3376734

[Nur74] A. Nurtazin. Computable classes and algebraic criteria of autostability. Summary of
Scientific Schools, Math. Inst. SB USSRAS, Novosibirsk, 1974.

http://www.ams.org/mathscinet-getitem?mr=1767842
http://www.ams.org/mathscinet-getitem?mr=860377
http://www.ams.org/mathscinet-getitem?mr=3276601
http://www.ams.org/mathscinet-getitem?mr=2995024
http://www.ams.org/mathscinet-getitem?mr=1749622
http://www.ams.org/mathscinet-getitem?mr=622606
http://www.ams.org/mathscinet-getitem?mr=600943
http://www.ams.org/mathscinet-getitem?mr=1444819
http://www.ams.org/mathscinet-getitem?mr=1833490
http://www.ams.org/mathscinet-getitem?mr=1473027
http://www.ams.org/mathscinet-getitem?mr=0151377
http://www.ams.org/mathscinet-getitem?mr=3010050
http://www.ams.org/mathscinet-getitem?mr=3343540
http://www.ams.org/mathscinet-getitem?mr=3376734

ON A QUESTION OF KALIMULLIN 3563

School of Mathematics, Statistics and Operations Research, Victoria University of

Wellington, P.O. Box 600, Wellington, New Zealand

Email address: Rod.Downey@msor.vuw.ac.nz

Department of Mathematics, University of Notre Dame, 255 Hurley, Notre Dame,

Indiana 46556

Email address: gigusa@nd.edu

The Institute of Natural and Mathematical Sciences, Private Bag 102 904 NSMC,

Albany 0745, Auckland, New Zealand

Email address: alexander.g.melnikov@gmail.com

	1. Introduction
	2. Proof
	2.1. Setup and notation
	2.2. One diagonalization strategy in isolation
	2.3. Construction
	2.4. Verification

	References

