A LOCALLY QUASI-CONVEX ABELIAN GROUP WITHOUT A MACKEY GROUP TOPOLOGY

SAAK GABRIYELYAN

(Communicated by Heike Mildenberger)

ABSTRACT. We give the first example of a locally quasi-convex (even countable reflexive and k_{ω}) abelian group G which does not admit the strongest compatible locally quasi-convex group topology. Our group G is the Graev free abelian group $A_G(\mathbf{s})$ over a convergent sequence \mathbf{s} .

1. INTRODUCTION

Let (E, τ) be a locally convex space. A locally convex vector topology ν on E is called *compatible with* τ if the spaces (E, τ) and (E, ν) have the same topological dual space. Using the terminology from [4], the famous Mackey–Arens theorem states the following

Theorem 1.1 (Mackey–Arens). Let (E, τ) be a locally convex space. Then (E, τ) is a pre-Mackey locally convex space in the sense that there is the finest locally convex vector space topology μ on E compatible with τ . Moreover, the topology μ is the topology of uniform convergence on absolutely convex weakly* compact subsets of the topological dual space E' of E.

The topology μ is called the *Mackey topology* on *E* associated with τ , and if $\mu = \tau$, the space *E* is called a *Mackey space*.

For an abelian topological group (G, τ) we denote by \widehat{G} the group of all continuous characters of (G, τ) . Two topologies μ and ν on an abelian group G are said to be *compatible* if $(\widehat{G, \mu}) = (\widehat{G, \nu})$. Being motivated by the Mackey–Arens Theorem 1.1 the following notion was introduced and studied in [4] (for all relevant definitions see the next section):

Definition 1.2 ([4]). A locally quasi-convex abelian group (G, μ) is called a *Mackey* group if for every locally quasi-convex group topology ν on G compatible with τ it follows that $\nu \leq \mu$. In this case the topology μ is called a *Mackey group topology* on G. A locally quasi-convex abelian group (G, τ) is called a *pre-Mackey group* and τ is called a *pre-Mackey group topology* on G if there is a Mackey group topology μ on G compatible with τ .

Not every Mackey locally convex space is a Mackey group. Indeed, answering a question posed in [5], we proved in [7] that the metrizable locally convex space $(\mathbb{R}^{(\mathbb{N})}, \mathfrak{p}_0)$ of all finite sequences with the topology \mathfrak{p}_0 induced from the product

Received by the editors August 28, 2017, and, in revised form, November 10, 2017.

²⁰¹⁰ Mathematics Subject Classification. Primary 22A10; Secondary 54H11.

 $Key\ words\ and\ phrases.$ The Graev free abelian topological group, Mackey group topology.

S. GABRIYELYAN

space $\mathbb{R}^{\mathbb{N}}$ is not a Mackey group. In [8] we show that the space $C_p(X)$, which is a Mackey space for every Tychonoff space X, is a Mackey group if and only if it is barrelled.

A weaker notion than the notion of a Mackey group was introduced in [7]. Let (G, τ) be a locally quasi-convex abelian group. A locally quasi-convex group topology μ on G is called *quasi-Mackey* if μ is compatible with τ and there is no locally quasi-convex group topology ν on G compatible with τ such that $\mu < \nu$. The group (G, τ) is *quasi-Mackey* if τ is a quasi-Mackey group topology. Proposition 2.6 of [7] states that every locally quasi-convex abelian group has quasi-Mackey group topologies.

The Mackey–Arens theorem suggests the following general question posed in [4]: Is every locally quasi-convex abelian group a pre-Mackey group? In other words, if (G, τ) is a locally quasi-convex group, is there a Mackey group topology compatible with τ ? We answer this question in the negative as stated in Theorem 1.3, the main result of this paper.

Let $\mathbf{s} = \{0\} \cup \{1/n : n \in \mathbb{N}\}$ be the convergent sequence endowed with the topology induced from \mathbb{R} . Denote by $A_G(\mathbf{s})$ the Graev free abelian topological group over \mathbf{s} . Note that the group $A_G(\mathbf{s})$ is a countable reflexive group ([6]) and is a k_{ω} -group ([10]). In Question 4.4 of [7] we ask: Is it true that $A_G(\mathbf{s})$ is a Mackey group? Below we answer this question negatively in a stronger form.

Theorem 1.3. The group $A_G(\mathbf{s})$ is neither a pre-Mackey group nor a quasi-Mackey group.

This result gives the first example of a locally quasi-convex group which is not pre-Mackey and additionally shows an essential difference between the classes of locally quasi-convex groups and of locally convex spaces. For historical remarks and references on Mackey topology on locally quasi-convex groups see [11].

2. Proof of Theorem 1.3

Set $\mathbb{N} := \{1, 2, ...\}$. Denote by \mathbb{S} the unit circle group and set $\mathbb{S}_+ := \{z \in \mathbb{S} : \operatorname{Re}(z) \geq 0\}$. Let G be an abelian topological group. A character $\chi \in \widehat{G}$ is a continuous homomorphism from G into \mathbb{S} . A subset A of G is called *quasi-convex* if for every $g \in G \setminus A$ there exists $\chi \in \widehat{G}$ such that $\chi(x) \notin \mathbb{S}_+$ and $\chi(A) \subseteq \mathbb{S}_+$. An abelian topological group G is called *locally quasi-convex* if it admits a neighborhood base at the neutral element 0 consisting of quasi-convex sets. It is well known that the class of locally quasi-convex abelian groups is closed under taking products and subgroups. The dual group \widehat{G} of G endowed with the compact-open topology is denoted by G^{\wedge} . The homomorphism $\alpha_G : G \to G^{\wedge \wedge}, g \mapsto (\chi \mapsto \chi(g))$, is called *the canonical homomorphism*. If α_G is a topological isomorphism the group G is called *reflexive*. Any reflexive group is locally quasi-convex; see for instance Proposition 1 of [3] and the comments after.

Let X be a Tychonoff space with a distinguished point e. Following [10], an abelian topological group $A_G(X)$ is called the Graev free abelian topological group over X if $A_G(X)$ satisfies the following conditions:

- (i) X is a subspace of $A_G(X)$;
- (ii) any continuous map f from X into any abelian topological group H, sending e to the identity of H, extends uniquely to a continuous homomorphism *f* : A_G(X) → H.

For every Tychonoff space X, the Graev free abelian topological group $A_G(X)$ exists, is unique up to isomorphism of abelian topological groups, and is independent of the choice of e in X; see [10]. Further, $A_G(X)$ is algebraically the free abelian group on $X \setminus \{e\}$.

We denote by τ the topology of the group $A_G(\mathbf{s})$. For every $n \in \mathbb{N}$, set

$$e_n := (0, \ldots, 0, 1, 0, \ldots) \in \mathbb{Z}^{(\mathbb{N})},$$

where 1 is placed in position n and $\mathbb{Z}^{(\mathbb{N})}$ is the direct sum $\bigoplus_{\mathbb{N}} \mathbb{Z}$. Now the map $i(1/n) := e_n, n \in \mathbb{N}$, defines an algebraic isomorphism of $A_G(\mathbf{s})$ onto $\mathbb{Z}^{(\mathbb{N})}$. So we can algebraically identify $A_G(\mathbf{s})$ and $\mathbb{Z}^{(\mathbb{N})}$.

Let g_n be a sequence in $A_G(\mathbf{s})$ of the form

$$g_n = (0, \dots, 0, r_{i_n}^n, r_{i_n+1}^n, r_{i_n+2}^n, \dots),$$

where $i_n \to \infty$ and there is a C > 0 such that $\sum_j |r_j^n| \leq C$ for every $n \in \mathbb{N}$. Since $e_n \to 0$ in τ we obtain

The following group plays an essential role in the proof of Theorem 1.3. Set

$$c_0(\mathbb{S}) := \{ (z_n) \in \mathbb{S}^{\mathbb{N}} : z_n \to 1 \},\$$

and denote by $\mathfrak{F}_0(\mathbb{S})$ the group $c_0(\mathbb{S})$ endowed with the metric $d((z_n^1), (z_n^2)) = \sup\{|z_n^1 - z_n^2|, n \in \mathbb{N}\}$. Then $\mathfrak{F}_0(\mathbb{S})$ is a Polish group, and the sets of the form $V^{\mathbb{N}} \cap c_0(\mathbb{S})$, where V is an open neighborhood at the identity 1 of \mathbb{S} , form a base at 1 in $\mathfrak{F}_0(\mathbb{S})$. Actually $\mathfrak{F}_0(\mathbb{S})$ is isomorphic to $c_0/\mathbb{Z}^{(\mathbb{N})}$ (see [6]). In [6] we proved that the group $\mathfrak{F}_0(\mathbb{S})$ is reflexive and $\mathfrak{F}_0(\mathbb{S})^{\wedge} = A_G(\mathbf{s})$.

If g is an element of an abelian group G, we denote by $\langle g \rangle$ the subgroup of G generated by g. We need the following lemma.

Lemma 2.1. Let $z, w \in \mathbb{S}$ and let z have infinite order. Let V be a neighborhood of 1 in \mathbb{S} . If $w^l = 1$ for every $l \in \mathbb{N}$ such that $z^l \in V$, then w = 1.

Proof. The main result of [2] applied to $\langle z \rangle$ states the following: there exists a sequence $A = \{a_n\}_{n \in \mathbb{N}}$ in \mathbb{N} such that if $v \in \mathbb{S}$, then

$$\lim_{n} v^{a_n} = 1 \text{ if and only if } v \in \langle z \rangle.$$

Now suppose for a contradiction that $w \neq 1$. Since $\langle z \rangle$ is dense in \mathbb{S} , there is an $l \in \mathbb{N}$ such that $z^l \in V$. So w has finite order, say q. Observe that $w \notin \langle z \rangle$. Then, by assumption, for every $l \in \mathbb{N}$ such that $z^l \in V$ we have $w^l = 1$, and hence there is a $c(l) \in \mathbb{N}$ such that $l = c(l) \cdot q$. Since $\lim_n z^{a_n} = 1$, there exists an $N \in \mathbb{N}$ such that $z^{a_n} \in V$ for every n > N. So $a_n = c(a_n) \cdot q$ for every n > N. But in this case we trivially have $\lim_n w^{a_n} = 1$ which contradicts the choice of the sequence A since $w \notin \langle z \rangle$. Thus w = 1.

In the proof of Theorem 1.3 we use the following result; see Proposition 3.11 of [4] or Theorem 2.7 of [7].

Theorem 2.2 ([4,7]). For a locally quasi-convex abelian group (G, τ) the following assertions are equivalent:

- (i) the group (G, τ) is pre-Mackey;
- (ii) $\tau_1 \vee \tau_2$ is compatible with τ for every locally quasi-convex group topologies τ_1 and τ_2 on G compatible with τ .

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. First we construct a family

 $\{\mathcal{T}_z : z \in \mathbb{S} \text{ has infinite order}\}\$

of locally quasi-convex group topologies on $\mathbb{Z}^{(\mathbb{N})}$ compatible with the topology τ of $A_G(\mathbf{s})$. To this end, we use the idea described in Proposition 4.1 of [7].

Let $z \in \mathbb{S}$ be of infinite order. For every $i \in \mathbb{N}$, set

$$\chi_i := (1, \dots, 1, z, 1, \dots) \in \mathfrak{F}_0(\mathbb{S}) = A_G(\mathbf{s})^\wedge,$$

where z is placed in position i. For every $(n_k) \in A_G(\mathbf{s})$, it is clear that $\chi_i((n_k)) = 1$ for all sufficiently large $i \in \mathbb{N}$ (i.e., $\chi_i \to 1$ in the pointwise topology on $\mathfrak{F}_0(\mathbb{S})$). So we can define the following algebraic monomorphism $T_z : \mathbb{Z}^{(\mathbb{N})} \to A_G(\mathbf{s}) \times \mathfrak{F}_0(\mathbb{S})$ by

(2.2)
$$T_z((n_k)) := \left((n_k), \left(\chi_i((n_k)) \right) \right) = \left((n_k), \left(z^{n_k} \right) \right) \quad \forall \ (n_k) \in \mathbb{Z}^{(\mathbb{N})}$$

Denote by \mathcal{T}_z the topology on $\mathbb{Z}^{(\mathbb{N})}$ which is the inverse image under the mapping T_z of the product topology of $A_G(\mathbf{s}) \times \mathfrak{F}_0(\mathbb{S})$. It is a locally quasi-convex group topology.

Claim 1. The topology \mathcal{T}_z is compatible with τ .

Indeed, set $G := (\mathbb{Z}^{(\mathbb{N})}, \mathcal{T}_z)$. We must prove that $\widehat{G} = c_0(\mathbb{S})$. Since \mathcal{T}_z is weaker than the discrete topology τ_d on $\mathbb{Z}^{(\mathbb{N})}$, we obtain $\widehat{G} \subseteq (\widehat{\mathbb{Z}^{(\mathbb{N})}}, \tau_d) = \mathbb{S}^{\mathbb{N}}$. Fix arbitrarily $\chi = (y_n) \in \widehat{G}$. To prove the claim we have to show that $y_n \to 1$.

Suppose for a contradiction that $y_n \not\rightarrow 1$. As \mathbb{S} is compact we can find a sequence $0 < m_1 < m_2 < \ldots$ of indices such that $y_{m_i} \rightarrow w \neq 1$ at $i \rightarrow \infty$. Since χ is \mathcal{T}_z -continuous, there exists a standard neighborhood $W = T_z^{-1}(U \times V^{\mathbb{N}})$ of zero in G, where U is a neighborhood of zero in $A_G(\mathbf{s})$ and V is a neighborhood of 1 in \mathbb{S} , such that $\chi(W) \subseteq \mathbb{S}_+$. Observe that, by (2.2), $(n_k) \in W$ if and only if

(2.3)
$$(n_k) \in U \text{ and } z^{n_k} \in V \text{ for every } k \in \mathbb{N},$$

and, the inclusion $\chi(W) \subseteq \mathbb{S}_+$ means that

(2.4)
$$\chi((n_k)) = \prod_k y_k^{n_k} \in \mathbb{S}_+ \text{ for every } (n_k) \in W.$$

We assume additionally that $w \notin V$. Set $L := \{l \in \mathbb{N} : z^l \in V\}$. Since $\langle z \rangle$ is dense in \mathbb{S} , the set L is not empty. We distinguish between two cases.

Case A 1. Assume that $w^l = 1$ for every $l \in L$.

Then Lemma 2.1 implies w = 1. Since $w \neq 1$ we obtain that this case is impossible.

Case B 1. There is an $l_0 \in L$ such that $w^{l_0} \neq 1$.

Then there exists a $t \in \mathbb{N}$ such that $w^{l_0 t} \notin \mathbb{S}_+$. By (2.1), there is an $N(t) \in \mathbb{N}$ such that every $\mathbf{x}_i \in \mathbb{Z}^{(\mathbb{N})}$ of the form

(2.5)
$$\mathbf{x}_{i} = (0, \dots, 0, \underbrace{l_{0}}_{m_{i+1}}, 0, \dots, 0, \underbrace{l_{0}}_{m_{i+2}}, 0, \dots, 0, \underbrace{l_{0}}_{m_{i+t}}, 0, \dots)$$

belongs to W for every $i \ge N(t)$. For every $\mathbf{x}_i \in W$ of the form (2.5), (2.4) implies

(2.6)
$$\chi(\mathbf{x}_i) = (y_{m_{i+1}} \cdots y_{m_{i+t}})^{l_0} \to w^{l_0 t} \notin \mathbb{S}_+ \quad \text{at } i \to \infty.$$

3630

Therefore, by (2.6), $\chi(W) \nsubseteq \mathbb{S}_+$, a contradiction.

Cases A and B show that our assumption that $y_n \nleftrightarrow 1$ is wrong. Therefore, $y_n \to 1$ and $\widehat{G} \subseteq c_0(\mathbb{S})$. In order to prove the equality, observe that $\tau \leq \mathcal{T}_z$. In fact, if U is a neighborhood of zero in $A_G(\mathbf{s})$, we have $T_z^{-1}(U \times \mathfrak{F}_0(\mathbb{S})) = U$. So U is also a zero neighborhood in \mathcal{T}_z . Therefore, $c_0(\mathbb{S}) \subseteq \widehat{G}$. Thus $\widehat{G} = c_0(\mathbb{S})$ and \mathcal{T}_z is compatible with τ .

Claim 2. For every element $a \in \mathbb{S} \setminus \{1\}$ of finite order, the topology $\mathcal{T}_z \vee \mathcal{T}_{az}$ is not compatible with τ .

Indeed, let r be the order of a and set

$$D_r := r\mathbb{Z}^{(\mathbb{N})} = \left\{ (s_k \cdot r) \in \mathbb{Z}^{(\mathbb{N})} : (s_k) \in \mathbb{Z}^{(\mathbb{N})} \right\}$$

Consider standard neighborhoods of zero

$$W_z = T_z^{-1} (U \times V^{\mathbb{N}})$$
 and $W_{az} = T_{az}^{-1} (U \times V^{\mathbb{N}})$

in \mathcal{T}_z and \mathcal{T}_{az} , respectively, where $U \in \tau$ and V is a symmetric neighborhood of 1 in S such that $V \cdot V \cap \langle a \rangle = \{1\}$. Then, by (2.3), we have

$$W_z \cap W_{az} = \left\{ (n_k) \in \mathbb{Z}^{(\mathbb{N})} : (n_k) \in U \text{ and } z^{n_k}, (az)^{n_k} \in V \text{ for every } k \in \mathbb{N} \right\}.$$

We show that $W_z \cap W_{az} \subseteq D_r$. Indeed, if $(n_k) \in W_z \cap W_{az}$, then $a^{n_k} \in V \cdot V$, and hence $a^{n_k} = 1$ for every $k \in \mathbb{N}$. Therefore, for every $k \in \mathbb{N}$, there is an $s_k \in \mathbb{N}$ such that $n_k = s_k \cdot r$. Thus $W_z \cap W_{az} \subseteq D_r$.

Set $\eta := (a, a, ...) \in \mathbb{S}^{\mathbb{N}}$. Then $\eta(W_z \cap W_{az}) \subseteq \eta(D_r) = \{1\}$. As $W_z \cap W_{az} \in \mathcal{T}_z \vee \mathcal{T}_{az}$ it follows that η is $\mathcal{T}_z \vee \mathcal{T}_{az}$ -continuous. Since $\eta \notin c_0(\mathbb{S})$ we obtain that $\mathcal{T}_z \vee \mathcal{T}_{az}$ is not compatible with τ .

Claim 3. $\tau < \mathcal{T}_z$, so τ is not quasi-Mackey.

By (2.2), it is clear that $\tau \leq \mathcal{T}_z$. To show that $\tau \neq \mathcal{T}_z$, suppose for a contradiction that $\mathcal{T}_z = \tau$. Then, by Claim 1, $\mathcal{T}_z \vee \mathcal{T}_{az} = \tau \vee \mathcal{T}_{az} = \mathcal{T}_{az}$ is compatible with τ . But this contradicts Claim 2.

Claim 4. The group $A_G(\mathbf{s})$ is not pre-Mackey.

This immediately follows from Claim 2 and Theorem 2.2.

We finish with the following question.

Question 2.3. Does there exist a locally convex space without a Mackey group topology? Is the free locally convex space $L(\mathbf{s})$ over \mathbf{s} a pre-Mackey group?

Note that the space $L(\mathbf{s})$ is not a Mackey space; see [9].

Remark 2.4. Just before submission of the paper, Professor Lydia Außenhofer informed the author that she had also solved the problem posed: namely, whether $A_G(\mathbf{s})$ is a Mackey group and had proved Theorem 1.3; see [1]. It is worth mentioning that the author's proof totally differs from hers, being much simpler and shorter.

Acknowledgments

The author thanks the referee for careful refereeing.

S. GABRIYELYAN

References

- [1] L. Außenhofer, On the non-existence of the Mackey topology for locally quasi-convex groups, preprint.
- [2] A. Bíró, J.-M. Deshouillers, and V. T. Sós, Good approximation and characterization of subgroups of ℝ/ℤ, Studia Sci. Math. Hungar. 38 (2001), 97–113. MR1877772
- [3] M. Montserrat Bruguera, Some properties of locally quasi-convex groups, Proceedings of the First Ibero-American Conference on Topology and its Applications (Benicassim, 1995), Topology Appl. 77 (1997), no. 2, 87–94. MR1451643
- [4] M. J. Chasco, E. Martín-Peinador, and V. Tarieladze, On Mackey topology for groups, Studia Math. 132 (1999), no. 3, 257–284. MR1669662
- [5] Dikran Dikranjan, Elena Martín-Peinador, and Vaja Tarieladze, Group valued null sequences and metrizable non-Mackey groups, Forum Math. 26 (2014), no. 3, 723–757. MR3200348
- [6] S. S. Gabriyelyan, Groups of quasi-invariance and the Pontryagin duality, Topology Appl. 157 (2010), no. 18, 2786–2802. MR2729338
- S. Gabriyelyan, On the Mackey topology for abelian topological groups and locally convex spaces, Topology Appl. 211 (2016), 11–23. MR3545285
- [8] S. Gabriyelyan, A characterization of barrelledness of $C_p(X)$, J. Math. Anal. Appl. **439** (2016), no. 1, 364–369. MR3474368
- [9] S. Gabriyelyan, The free locally convex space L(s) over a convergent sequence s is not a Mackey space, available in arXiv:1710.01759.
- [10] M. I. Graev, Free topological groups (Russian), Izvestiya Akad. Nauk SSSR. Ser. Mat. 12 (1948), 279–324. MR0025474
- [11] Elena Martín-Peinador and Vaja Tarieladze, Mackey topology on locally convex spaces and on locally quasi-convex groups. Similarities and historical remarks, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 110 (2016), no. 2, 667–679. MR3534514

DEPARTMENT OF MATHEMATICS, BEN-GURION UNIVERSITY OF THE NEGEV, BEER-SHEVA, P.O. 653, ISRAEL

Email address: saak@math.bgu.ac.il