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A LOCALLY QUASI-CONVEX ABELIAN GROUP

WITHOUT A MACKEY GROUP TOPOLOGY

SAAK GABRIYELYAN

(Communicated by Heike Mildenberger)

Abstract. We give the first example of a locally quasi-convex (even count-
able reflexive and kω) abelian group G which does not admit the strongest
compatible locally quasi-convex group topology. Our group G is the Graev
free abelian group AG(s) over a convergent sequence s.

1. Introduction

Let (E, τ ) be a locally convex space. A locally convex vector topology ν on E is
called compatible with τ if the spaces (E, τ ) and (E, ν) have the same topological
dual space. Using the terminology from [4], the famous Mackey–Arens theorem
states the following

Theorem 1.1 (Mackey–Arens). Let (E, τ ) be a locally convex space. Then (E, τ )
is a pre-Mackey locally convex space in the sense that there is the finest locally
convex vector space topology μ on E compatible with τ . Moreover, the topology μ is
the topology of uniform convergence on absolutely convex weakly* compact subsets
of the topological dual space E′ of E.

The topology μ is called the Mackey topology on E associated with τ , and if
μ = τ , the space E is called a Mackey space.

For an abelian topological group (G, τ ) we denote by Ĝ the group of all con-
tinuous characters of (G, τ ). Two topologies μ and ν on an abelian group G are

said to be compatible if (̂G,μ) = (̂G, ν). Being motivated by the Mackey–Arens
Theorem 1.1 the following notion was introduced and studied in [4] (for all relevant
definitions see the next section):

Definition 1.2 ([4]). A locally quasi-convex abelian group (G,μ) is called aMackey
group if for every locally quasi-convex group topology ν on G compatible with τ it
follows that ν ≤ μ. In this case the topology μ is called a Mackey group topology on
G. A locally quasi-convex abelian group (G, τ ) is called a pre-Mackey group and τ
is called a pre-Mackey group topology on G if there is a Mackey group topology μ
on G compatible with τ .

Not every Mackey locally convex space is a Mackey group. Indeed, answering
a question posed in [5], we proved in [7] that the metrizable locally convex space
(R(N), p0) of all finite sequences with the topology p0 induced from the product
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space RN is not a Mackey group. In [8] we show that the space Cp(X), which is a
Mackey space for every Tychonoff space X, is a Mackey group if and only if it is
barrelled.

A weaker notion than the notion of a Mackey group was introduced in [7]. Let
(G, τ ) be a locally quasi-convex abelian group. A locally quasi-convex group topol-
ogy μ on G is called quasi-Mackey if μ is compatible with τ and there is no locally
quasi-convex group topology ν on G compatible with τ such that μ < ν. The group
(G, τ ) is quasi-Mackey if τ is a quasi-Mackey group topology. Proposition 2.6 of
[7] states that every locally quasi-convex abelian group has quasi-Mackey group
topologies.

The Mackey–Arens theorem suggests the following general question posed in [4]:
Is every locally quasi-convex abelian group a pre-Mackey group? In other words, if
(G, τ ) is a locally quasi-convex group, is there a Mackey group topology compatible
with τ? We answer this question in the negative as stated in Theorem 1.3, the
main result of this paper.

Let s = {0} ∪ {1/n : n ∈ N} be the convergent sequence endowed with the
topology induced from R. Denote by AG(s) the Graev free abelian topological
group over s. Note that the group AG(s) is a countable reflexive group ([6]) and is
a kω-group ([10]). In Question 4.4 of [7] we ask: Is it true that AG(s) is a Mackey
group? Below we answer this question negatively in a stronger form.

Theorem 1.3. The group AG(s) is neither a pre-Mackey group nor a quasi-Mackey
group.

This result gives the first example of a locally quasi-convex group which is not
pre-Mackey and additionally shows an essential difference between the classes of
locally quasi-convex groups and of locally convex spaces. For historical remarks
and references on Mackey topology on locally quasi-convex groups see [11].

2. Proof of Theorem 1.3

Set N := {1, 2, . . . }. Denote by S the unit circle group and set S+ := {z ∈
S : Re(z) ≥ 0}. Let G be an abelian topological group. A character χ ∈ Ĝ is a
continuous homomorphism from G into S. A subset A of G is called quasi-convex

if for every g ∈ G \ A there exists χ ∈ Ĝ such that χ(x) /∈ S+ and χ(A) ⊆ S+. An
abelian topological group G is called locally quasi-convex if it admits a neighborhood
base at the neutral element 0 consisting of quasi-convex sets. It is well known that
the class of locally quasi-convex abelian groups is closed under taking products and

subgroups. The dual group Ĝ of G endowed with the compact-open topology is
denoted by G∧. The homomorphism αG : G → G∧∧, g �→ (χ �→ χ(g)), is called the
canonical homomorphism. If αG is a topological isomorphism the group G is called
reflexive. Any reflexive group is locally quasi-convex; see for instance Proposition
1 of [3] and the comments after.

Let X be a Tychonoff space with a distinguished point e. Following [10], an
abelian topological group AG(X) is called the Graev free abelian topological group
over X if AG(X) satisfies the following conditions:

(i) X is a subspace of AG(X);
(ii) any continuous map f fromX into any abelian topological groupH, sending

e to the identity of H, extends uniquely to a continuous homomorphism
f̄ : AG(X) → H.



A LOCALLY QUASI-CONVEX ABELIAN GROUP 3629

For every Tychonoff space X, the Graev free abelian topological group AG(X) ex-
ists, is unique up to isomorphism of abelian topological groups, and is independent
of the choice of e in X; see [10]. Further, AG(X) is algebraically the free abelian
group on X \ {e}.

We denote by τ the topology of the group AG(s). For every n ∈ N, set

en := (0, . . . , 0, 1, 0, . . . ) ∈ Z(N),

where 1 is placed in position n and Z(N) is the direct sum
⊕

N
Z. Now the map

i(1/n) := en, n ∈ N, defines an algebraic isomorphism of AG(s) onto Z(N). So we
can algebraically identify AG(s) and Z(N).

Let gn be a sequence in AG(s) of the form

gn = (0, . . . , 0, rnin , r
n
in+1, r

n
in+2, . . . ),

where in → ∞ and there is a C > 0 such that
∑

j |rnj | ≤ C for every n ∈ N. Since
en → 0 in τ we obtain

(2.1) gn → 0 in τ.

The following group plays an essential role in the proof of Theorem 1.3. Set

c0(S) := {(zn) ∈ SN : zn → 1},
and denote by F0(S) the group c0(S) endowed with the metric d

(
(z1n), (z

2
n)
)
=

sup{|z1n − z2n|, n ∈ N}. Then F0(S) is a Polish group, and the sets of the form
V N ∩ c0(S), where V is an open neighborhood at the identity 1 of S, form a base at
1 in F0(S). Actually F0(S) is isomorphic to c0/Z(N) (see [6]). In [6] we proved that
the group F0(S) is reflexive and F0(S)∧ = AG(s).

If g is an element of an abelian group G, we denote by 〈g〉 the subgroup of G
generated by g. We need the following lemma.

Lemma 2.1. Let z, w ∈ S and let z have infinite order. Let V be a neighborhood
of 1 in S. If wl = 1 for every l ∈ N such that zl ∈ V , then w = 1.

Proof. The main result of [2] applied to 〈z〉 states the following: there exists a
sequence A = {an}n∈N in N such that if v ∈ S, then

lim
n

van = 1 if and only if v ∈ 〈z〉.

Now suppose for a contradiction that w = 1. Since 〈z〉 is dense in S, there is an
l ∈ N such that zl ∈ V . So w has finite order, say q. Observe that w ∈ 〈z〉. Then,
by assumption, for every l ∈ N such that zl ∈ V we have wl = 1, and hence there
is a c(l) ∈ N such that l = c(l) · q. Since limn z

an = 1, there exists an N ∈ N such
that zan ∈ V for every n > N . So an = c(an) · q for every n > N . But in this case
we trivially have limn w

an = 1 which contradicts the choice of the sequence A since
w ∈ 〈z〉. Thus w = 1. �

In the proof of Theorem 1.3 we use the following result; see Proposition 3.11 of
[4] or Theorem 2.7 of [7].

Theorem 2.2 ([4,7]). For a locally quasi-convex abelian group (G, τ ) the following
assertions are equivalent:

(i) the group (G, τ ) is pre-Mackey;
(ii) τ1 ∨ τ2 is compatible with τ for every locally quasi-convex group topologies

τ1 and τ2 on G compatible with τ .



3630 S. GABRIYELYAN

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. First we construct a family

{Tz : z ∈ S has infinite order}
of locally quasi-convex group topologies on Z(N) compatible with the topology τ of
AG(s). To this end, we use the idea described in Proposition 4.1 of [7].

Let z ∈ S be of infinite order. For every i ∈ N, set

χi := (1, . . . , 1, z, 1, . . . ) ∈ F0(S) = AG(s)
∧,

where z is placed in position i. For every (nk) ∈ AG(s), it is clear that χi

(
(nk)

)
= 1

for all sufficiently large i ∈ N (i.e., χi → 1 in the pointwise topology on F0(S)). So
we can define the following algebraic monomorphism Tz : Z(N) → AG(s)×F0(S) by

(2.2) Tz

(
(nk)

)
:=

(
(nk),

(
χi

(
(nk)

)))
=

(
(nk),

(
znk

))
∀ (nk) ∈ Z(N).

Denote by Tz the topology on Z(N) which is the inverse image under the mapping
Tz of the product topology of AG(s) × F0(S). It is a locally quasi-convex group
topology.

Claim 1. The topology Tz is compatible with τ .

Indeed, set G :=
(
Z(N), Tz

)
. We must prove that Ĝ = c0(S). Since Tz is weaker

than the discrete topology τd on Z(N), we obtain Ĝ ⊆ ̂(
Z(N), τd

)
= SN. Fix arbi-

trarily χ = (yn) ∈ Ĝ. To prove the claim we have to show that yn → 1.
Suppose for a contradiction that yn → 1. As S is compact we can find a sequence

0 < m1 < m2 < . . . of indices such that ymi
→ w = 1 at i → ∞. Since χ is Tz-

continuous, there exists a standard neighborhood W = T−1
z

(
U × V N

)
of zero in G,

where U is a neighborhood of zero in AG(s) and V is a neighborhood of 1 in S,
such that χ(W ) ⊆ S+. Observe that, by (2.2), (nk) ∈ W if and only if

(2.3) (nk) ∈ U and znk ∈ V for every k ∈ N,

and, the inclusion χ(W ) ⊆ S+ means that

(2.4) χ
(
(nk)

)
=

∏
k

ynk

k ∈ S+ for every (nk) ∈ W.

We assume additionally that w ∈ V . Set L := {l ∈ N : zl ∈ V }. Since 〈z〉 is dense
in S, the set L is not empty. We distinguish between two cases.

Case A 1. Assume that wl = 1 for every l ∈ L.

Then Lemma 2.1 implies w = 1. Since w = 1 we obtain that this case is
impossible.

Case B 1. There is an l0 ∈ L such that wl0 = 1.

Then there exists a t ∈ N such that wl0t ∈ S+. By (2.1), there is an N(t) ∈ N
such that every xi ∈ Z(N) of the form

(2.5) xi = (0, . . . , 0, l0︸︷︷︸
mi+1

, 0, . . . , 0, l0︸︷︷︸
mi+2

, 0, . . . , 0, l0︸︷︷︸
mi+t

, 0, . . . )

belongs to W for every i ≥ N(t). For every xi ∈ W of the form (2.5), (2.4) implies

(2.6) χ
(
xi

)
=

(
ymi+1

· · · ymi+t

)l0 → wl0t ∈ S+ at i → ∞.
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Therefore, by (2.6), χ(W ) � S+, a contradiction.
Cases A and B show that our assumption that yn → 1 is wrong. Therefore,

yn → 1 and Ĝ ⊆ c0(S). In order to prove the equality, observe that τ ≤ Tz. In
fact, if U is a neighborhood of zero in AG(s), we have T−1

z

(
U × F0(S)

)
= U . So U

is also a zero neighborhood in Tz. Therefore, c0(S) ⊆ Ĝ. Thus Ĝ = c0(S) and Tz is
compatible with τ .

Claim 2. For every element a ∈ S \ {1} of finite order, the topology Tz ∨ Taz is not
compatible with τ .

Indeed, let r be the order of a and set

Dr := rZ(N) =
{
(sk · r) ∈ Z(N) : (sk) ∈ Z(N)

}
.

Consider standard neighborhoods of zero

Wz = T−1
z

(
U × V N

)
and Waz = T−1

az

(
U × V N

)
in Tz and Taz, respectively, where U ∈ τ and V is a symmetric neighborhood of 1
in S such that V · V ∩ 〈a〉 = {1}. Then, by (2.3), we have

Wz ∩Waz =
{
(nk) ∈ Z(N) : (nk) ∈ U and znk , (az)nk ∈ V for every k ∈ N

}
.

We show that Wz ∩Waz ⊆ Dr. Indeed, if (nk) ∈ Wz ∩Waz, then ank ∈ V · V , and
hence ank = 1 for every k ∈ N. Therefore, for every k ∈ N, there is an sk ∈ N such
that nk = sk · r. Thus Wz ∩Waz ⊆ Dr.

Set η := (a, a, . . . ) ∈ SN. Then η(Wz ∩ Waz) ⊆ η(Dr) = {1}. As Wz ∩ Waz ∈
Tz ∨ Taz it follows that η is Tz ∨ Taz-continuous. Since η ∈ c0(S) we obtain that
Tz ∨ Taz is not compatible with τ .

Claim 3. τ < Tz, so τ is not quasi-Mackey.

By (2.2), it is clear that τ ≤ Tz. To show that τ = Tz, suppose for a contradiction
that Tz = τ . Then, by Claim 1, Tz ∨Taz = τ ∨Taz = Taz is compatible with τ . But
this contradicts Claim 2.

Claim 4. The group AG(s) is not pre-Mackey.

This immediately follows from Claim 2 and Theorem 2.2. �

We finish with the following question.

Question 2.3. Does there exist a locally convex space without a Mackey group
topology? Is the free locally convex space L(s) over s a pre-Mackey group?

Note that the space L(s) is not a Mackey space; see [9].

Remark 2.4. Just before submission of the paper, Professor Lydia Außenhofer in-
formed the author that she had also solved the problem posed: namely, whether
AG(s) is a Mackey group and had proved Theorem 1.3; see [1]. It is worth men-
tioning that the author’s proof totally differs from hers, being much simpler and
shorter.
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