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STRONGER ROLLE’S THEOREM

FOR COMPLEX POLYNOMIALS

BLAGOVEST SENDOV AND HRISTO SENDOV

(Communicated by Jeremy Tyson)

Abstract. The following Rolle’s Theorem for complex polynomials is proved.
If p(z) is a complex polynomial of degree n ≥ 5, satisfying p(−i) = p(i), then
there is at least one critical point of p in the union D[−c; r] ∪ D[c; r] of two
closed disks with centres −c, c and radius r, where

c = cot(2π/n), r = 1/ sin(2π/n).

If n = 3, then the closed disk D[0; 1/
√
3] has this property; and if n = 4, then

the union of the closed disks D[−1/3; 2/3] ∪D[1/3; 2/3] has this property. In
the last two cases, the domains are minimal, with respect to inclusion, having

this property.
This theorem is stronger than any other known Rolle’s Theorem for complex

polynomials.

1. Introduction

Denote by C the complex plane and let C∗ := C ∪ {∞}. In this paper, domain
is a closed subset of the complex plane C with non-empty interior. By D[c; r] we
denote the closed disk with centre c ∈ C and radius r. A point ζ ∈ C is called
critical for the polynomial p(z) if p′(ζ) = 0.

Definition 1.1. A domain Θn is called a Rolle’s domain if every complex polyno-
mial p of degree n, satisfying p(i) = p(−i), has at least one critical point in it. A
Rolle’s domain ΘX

n is stronger than the Rolle’s domain ΘY
n if ΘX

n � ΘY
n . A Rolle’s

domain ΘX
n is sharp if ΘX

n is minimal with respect to inclusion.

A result asserting that Θn is a Rolle’s domain is called a Rolle’s Theorem. There
are several known Rolle’s Theorems for complex polynomials. The most famous one
follows from the following; see [1, p. 126].

Theorem 1.2 (Grace-Heawood). Let p(z) be a polynomial of degree n ≥ 2. If
z1, z2 ∈ C are any two distinct points at which p(z) takes the same value, then the
disk {

z ∈ C :
∣∣∣z − z1 + z2

2

∣∣∣ ≤
∣∣∣z1 − z2

2

∣∣∣ cot(π/n)}
contains at least one critical point of p(z).

In particular, when z1 = i and z2 = −i, we have the following corollary.
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Figure 1. The Rolle’s domains ΘGH
4 ,ΘF

4 , and ΘSS
4

Corollary 1.1 (Grace-Heawood). Let p(z) be a polynomial of degree n ≥ 2, satis-
fying p(i) = p(−i). The disk

(1.1) ΘGH
n := D[0; cot(π/n)]

is a Rolle’s domain.

Another complex Rolle’s Theorem, see [1, Theorem 4.3.4, p. 128], is the follow-
ing.

Theorem 1.3. Let p(z) be a polynomial of degree n ≥ 3, satisfying p(i) = p(−i).
The double disk ΘF

n := D[−c; r] ∪D[c; r], where

c = cot(π/(n− 1)), r = 1/ sin(π/(n− 1))

is a Rolle’s domain.

Neither one of the above two domains is stronger than the other when n ≥ 5.
The main result of this paper is the following.

Theorem 1.4. Let p(z) be a polynomial of degree n ≥ 3, satisfying p(i) = p(−i).

(a) If n = 3, then ΘSS
3 := D[0; 1/

√
3] is a sharp Rolle’s domain.

(b) If n = 4, then ΘSS
4 := D[−1/3; 2/3]∪D[1/3; 2/3] is a sharp Rolle’s domain.

(c) If n ≥ 5, then ΘSS
n := D[−c; r] ∪D[c; r], where

c = cot(2π/n), r = 1/ sin(2π/n)(1.2)

is a Rolle’s domain.

It is easy to see that when n = 3, we have ΘSS
3 = ΘGH

3 = D[0; 1/
√
3] ⊂ ΘF

3 =
D[0; 1]. When n = 4, we have ΘSS

4 ⊂ ΘGH
4 ⊂ ΘF

4 as illustrated in Figure 1. Finally,
when n ≥ 5, we have ΘSS

n ⊂ ΘGH
n ∩ΘF

n as illustrated in Figure 2 for the case n = 12.
In the figures, the Rolle’s domain ΘGH

n is the area bounded by the dashed circle;
ΘF

n is the area bounded by the two dotted circles; and ΘSS
n is the area bounded by

the two solid circles.
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Figure 2. The Rolle’s domains ΘGH
12 ,ΘF

12, and ΘSS
12

The proof of Theorem 1.4 starts effectively with the statement of Theorem 5.2,
where, in addition, we point out a whole family of sharp Rolle’s domains in the cases
n = 3, 4. The proof is based on three main ingredients: the notion of a locus holder
introduced in [2]; on an analogue of the Grace-Walsh-Szegő Coincidence Theorem
called the Argument Coincidence Theorem, proved in [4]; and on a non-convex
analogue of the classical Gauss-Lucas Theorem, called the Sector Theorem, proved
in [5]. In order to make the presentation as self-contained as possible, we present
the necessary facts about locus holders and the above auxiliary results in Section 3.

We conclude this section with a restatement of the main result that matches that
of the Grace-Heawood Theorem. Let A be a compact convex subset of C. Denote
by

P (A;α) := A ∪
{
z ∈ C \ A : max

a,b∈A
Arg

(a− z

b− z

)
≥ α

}

the α-angular extension of A. For example, if [z1, z2] denotes the segment between
two complex numbers z1 and z2, then we have ΘSS

n = P ([i,−i]; 2π/n), whenever n ≥
5, and ΘF

n = P ([i,−i]; 2π/(n−1)), while ΘGH
n = P ([cot(π/n),− cot(π/n)];π/2). If

f(z) = az + b, where a 
= 0, then f
(
P ([z1, z2];α)

)
= P (f([z1, z2]);α); see Property

(v) on page 122 in [1]. With this observation, the following corollary follows easily
from Theorem 1.4.

Corollary 1.2. Let p(z) be a polynomial of degree n ≥ 3. Let z1, z2 ∈ C be two
distinct points at which p(z) takes the same value.

(a) If n = 3 or 4, then A([z1, z2];π/(n− 1)) contains at least one critical point
of p(z) and this is a minimal, by inclusion, set having this property.

(b) If n ≥ 5, then A([z1, z2]; 2π/n) contains at least one critical point of p(z).

2. Solutions and extended solutions

Let Pn be the set of all complex polynomials of degree n:

(2.1) p(z) = anz
n + an−1z

n−1 + · · ·+ a0,
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where a0, . . . , an ∈ C and an 
= 0. Let Pn =
⋃n

k=0 Pk and for every p(z) ∈ Pn,
consider its polarization or symmetrization with n variables:

(2.2) P (z1, z2, . . . , zn) :=
n∑

k=0

ak(
n
k

)Sk(z1, z2, . . . , zn),

where
Sk(z1, z2, . . . , zn) =

∑
1≤i1<···<ik≤n

zi1zi2 · · · zik

is the elementary symmetric polynomial of degree k = 1, 2, . . . , n, with

S0(z1, z2, . . . , zn) := 1.

We say that an n-tuple {z1, z2, . . . , zn} is a solution of p(z) if P (z1, z2, . . . , zn) =
0. Clearly, an n-tuple {z, z, . . . , z} is a solution of p precisely when z is a zero of p.

Definition 2.1. A polynomial q(z) ∈ Pn, given by

q(z) = bnz
n + bn−1z

n−1 + · · ·+ b0,

is called apolar with p(z) ∈ Pn if

(2.3)
n∑

k=0

(−1)k(
n
k

) akbn−k = 0.

This definition allows the leading coefficients of p(z) or q(z) to be zero, unlike
[1, Definition 3.3.1, p. 102]. It is easy to verify that the n-tuple {z1, z2, . . . , zn} ⊂ C
is a solution of p(z) if and only if the polynomial q(z) = (z − z1) · · · (z − zn) is
apolar with p(z). That observation allows us to extend the notion of a solution as
follows.

Definition 2.2. Let 1 ≤ m ≤ n. An m-tuple {z1, z2, . . . , zm} is an extended
solution of p(z) ∈ Pn if the polynomial q(z) = (z − z1) · · · (z − zm) is apolar with
p(z).

In other words, an m-tuple {z1, z2, . . . , zm} is an extended solution of p(z) if
m∑

k=0

an−(m−k)(
n

n−(m−k)

)Sk(z1, . . . , zm) = 0.(2.4)

Clearly, when m = n an extended solution is a solution. It is convenient to formally
complete an extended solution with n−m infinities: {z1, z2, . . . , zm,∞, . . . ,∞} and
think of it as an n-tuple in C∗.

Definition 2.3. A sequence {z1,m, z2,m, . . . , zn,m}∞m=1 of n-tuples in C∗ converges
to the n-tuple {z1, z2, . . . , zn} if it is possible to order the elements of the n-tuples
in the sequence, so that limm→∞ zk,m = zk for all k = 1, . . . , n.

Since C∗ is a compact, it is not difficult to see that every sequence of n-tuples
in C∗ has a convergent subsequence. In general, the limit of a convergent sequence
of n-tuples may be the n-tuple consisting of n infinities. But if the convergent
sequence consists of extended solutions, then at least one component of the limit
has to be finite, as the next lemma shows; see [4, Lemma 2.4].

Lemma 2.4. If a sequence {Zk} of extended solutions of p(z) ∈ Pn converges to
Z, then Z is an extended solution of p(z). That is, at least one component of Z is
finite.
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Extended solutions of p(z) are solutions of its derivative of appropriate order, as
the next lemma shows.

Lemma 2.5. Let p(z) ∈ Pn and let 1 ≤ m ≤ n. If {z1, . . . , zm} ⊂ C is an extended
solution of p(z), then it is an extended solution of p(n−m)(z) ∈ Pm.

The proof of Lemma 2.5 is a straightforward calculation using (2.4); see [4,
Lemma 2.6]. It is analogous to the proof of Lemma 2.7 below. The important
point is that p(n−m)(z) is considered a polynomial in Pm. The lemma is not true
if p(n−m)(z) is considered a polynomial in Pn, as the following example shows.

Example 2.6. Let p(z) = z2+z+1 ∈ P2. The polynomial q(z) = z+1/2 is apolar
with p(z), hence {−1/2} is an extended solution of p(z). Now, {−1/2} is a solution
of p′(z) = 2z + 1 ∈ P1, in fact a zero. But if we consider p′(z) as a polynomial in
P2, that is, p

′(z) = 0z2 +2z+1, then p′(z) and q(z) are not apolar as polynomials
in P2.

Lemma 2.7. Let p(z) ∈ Pn and let 1 ≤ � ≤ m ≤ n. If {z1, . . . , z�} is an extended
solution of p(n−m)(z) ∈ Pm, then it is an extended solution of p(z).

Proof. If a0, . . . , an are the coefficients of p(z), then the coefficients of p(n−m)(z) ∈
Pm are

bm−s := (n− s) · · · (n− s− (n−m) + 1)an−s for s = 0, . . . ,m.

Apply (2.4) with n replaced by m and m replaced by �, to get that {z1, . . . , z�} is
an extended solution of p(n−m)(z) ∈ Pm if and only if

0 =
�∑

k=0

bm−(�−k)(
m

m−(�−k)

)Sk(z1, . . . , z�)

=

�∑
k=0

(n− (�− k)) · · · (n− (�− k)− (n−m) + 1)an−(�−k)(
m

m−(�−k)

) Sk(z1, . . . , z�)

=
�∑

k=0

n(n− 1) · · · (n− (n−m) + 1)an−(�−k)(
n

n−(�−k)

) Sk(z1, . . . , z�)

= n(n− 1) · · · (n− (n−m) + 1)

�∑
k=0

an−(�−k)(
n

n−(�−k)

)Sk(z1, . . . , z�).

The last sum is just (2.4) applied to {z1, . . . , z�} and p(z) ∈ Pn. �

3. Background and preliminary results

Definition 3.1. Let Ω be a closed subset of C∗. We say that Ω is a locus holder of
p(z) ∈ Pn if Ω contains at least one point from every solution of p(z). A minimal
by inclusion locus holder Ω is called a locus of p(z).

Every locus holder contains a locus; see [2, Lemma 1.5].
Let P+

n (resp., P++
n ) be the set of all polynomials of degree n with non-negative

(resp., positive) coefficients. Let P+
n (ϕ) (resp., P++

n (ϕ)) be the set of all polyno-
mials from P+

n (resp., P++
n ) with zeros in the sector

S(ϕ) := {z : | arg(z)| ≥ ϕ, z ∈ C},
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where ϕ ∈ [0, π]. Let Sc(ϕ) := C \ S(ϕ) and denote by S̄c(ϕ) the closure of Sc(ϕ).
The following theorem is the main result in [5].

Theorem 3.2 (Sector Theorem). If p(z) ∈ P+
n (ϕ), then p′(z) ∈ P+

n−1(ϕ).

For ϕ ∈ [π/2, π], Theorem 3.2 is a trivial application of the Gauss-Lucas The-
orem, as in this case S(ϕ) is a convex set. The first corollary of Theorem 3.2 is
trivial.

Corollary 3.1. If p(z) ∈ P+
n (ϕ), then p(k)(z) ∈ P+

n−k(ϕ) for all k = 0, 1, . . . , n−1.

In order to formulate the next corollary, and for further use, we need the notion
of a polar derivative.

Definition 3.3. For a polynomial p(z) of degree n, the linear operator

Du(p; z) := np(z)− (z − u)p′(z)

is called the polar derivative of p with pole u.

It is obvious that

lim
u→∞

1

u
Du(p; z) = p′(z),

so one extends the notation to D∞(p; z) := p′(z). The polar derivative of order � is
defined recursively:

(3.1) Du1,...,u�−1,u�
(p; z) := Du�

(
Du1,...,u�−1

(p; z)
)
.

If all the poles are equal and repeated k times we denote

D(k)
u (p; z) := Du,...,u(p; z).

Corollary 3.2. If p(z) ∈ P++
n (ϕ), then D(k)

0 (p; z) ∈ P++
n−k(ϕ).

Proof. For a polynomial p(z) of degree n, define the operation Ln[p(z)] := znp(1/z).
A simple calculation shows that

Ln−1

[ d

dz
Ln[p(z)]

]
= np(z)− zp′(z) = D0(p; z).(3.2)

It is clear that p(z) ∈ P++
n (ϕ) implies that Ln[p(z)] ∈ P++

n (ϕ). Then, by Theo-
rem 3.2, d

dzLn[p(z)] ∈ P++
n−1(ϕ). This together with (3.2) and an inductive argument

leads to the result. �

The next example shows that the degree of the polar derivative may drop more
than expected and that is important for the theorem that follows.

Example 3.4. The actual degree of a polar derivative depends on the choice of
the poles. Indeed, for the polynomial p(z) = z3 + z2 + z + 1 and a pole u ∈ C, we
have

Du(p; z) = (3u+ 1)z2 + 2(u+ 1)z + u+ 3

and thus for the second polar derivative, we find:

Dv,u(p; z) =

{
2(3uv + u+ v + 1)z + 2(uv + u+ v + 3) if u 
= −1/3,
8
3 + 4

3v if u = −1/3.

We need Theorem 5.2 from [3], that we now state.
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Theorem 3.5. Let p be a polynomial of degree n and let u1, . . . , uk ∈ C. If the
degree of Du1,...,uk−1

(p; z) is n− (k − 1), then

Du1,...,uk
(p; z) =

n!

(n− k)!
P (u1, . . . , uk, z, . . . , z),(3.3)

where P is the symmetrization of p with n variables and k ∈ {1, . . . , n}.

If two multi-affine symmetric polynomials P (z1, . . . , zn) and Q(z1, . . . , zn) satisfy
P (z, . . . , z) = Q(z, . . . , z) for all z ∈ C, then they are equal. Theorem 3.5 says that,
under its conditions, the symmetrization of Du1,...,uk

(p; z) with n− k variables is

n!

(n− k)!
P (u1, . . . , uk, z1, . . . , zn−k).

Applying inductively (3.2) shows that if p(z) ∈ P++
n , then the degree of D(k)

0 (p; z)

is n− k. Denote by P (m) the symmetrization of p(m) with n−m variables.

Lemma 3.6. For any p(z) ∈ Pn, we have

∂

∂zn−m
P (m)(z1, . . . , zn−m) =

1

n−m
P (m+1)(z1, . . . , zn−m−1).

Proof. We prove the result for m = 0 only, since the general case is analogous:

∂

∂zn
P (z1, . . . , zn) =

∂

∂zn

( n∑
k=0

ak(
n
k

)Sk(z1, . . . , zn)
)
=

n∑
k=1

ak(
n
k

)Sk−1(z1, . . . , zn−1).

Letting z1 = z2 = · · · = zn−1 =: z, the last expression becomes

n∑
k=1

ak(
n
k

)
(
n− 1

k − 1

)
zk−1 =

n∑
k=1

k
ak
n
zk−1 =

1

n

n∑
k=1

kakz
k−1 =

1

n
p′(z).

The result follows from here. �

Finally, we need the main results from [4]. For α, β ∈ [−π, π], with α ≤ β, and
u ∈ C, define the sector

Su(α, β) :=
{
u+ reiϕ : r ≥ 0, α ≤ ϕ ≤ β

}
.

Definition 3.7. Sector Su(α, β) is called a zero-free sector for the polynomial
p(z) ∈ Pn if it does not contain a zero of p(k)(z) for all k ∈ {0, 1, . . . , n− 1}.

Theorem 3.8 (Argument Coincidence). Let Su(α, β) be a zero-free sector for
p(z) ∈ Pn with β − α < π. Suppose there is a solution of p(z) in Su(α, β). Then,
there exists an extended solution of p(z) of the form

(3.4)
{
u+ s1e

iψ, u+ s2e
iψ, . . . , u+ smeiψ

}
for some ψ ∈ [α, β], where sk ≥ 0 for all k = 1, 2, . . . ,m, 2 ≤ m ≤ n, and at least
one of {s1, s2, . . . , sm} is strictly positive.

Theorem 3.8 is reminiscent of the classical Grace-Walsh-Szegő Coincidence The-
orem; see [1]. A circular domain, open or closed, is the interior or exterior of a
circle, or a half-plane determined by a line in the complex plane.



3374 BLAGOVEST SENDOV AND HRISTO SENDOV

Theorem 3.9 (Grace-Walsh-Szegő Coincidence). Let P (z1, . . . , zn) be a multi-
affine symmetric polynomial. If the degree of P is n, then every circular domain
containing the points z1, . . . , zn contains at least one point z such that P (z1, . . . , zn)
= P (z, . . . , z). If the degree of P is less than n, then the same conclusion holds,
provided the circular domain is convex.

Finally, an application of the Grace-Walsh-Szegő Coincidence Theorem leads to
the next needed result; see [2, Theorem 1.7].

Theorem 3.10. Let p be a polynomial of degree n with at least two distinct zeros.
If all zeros of p are on the boundary of a closed circular domain B, then B is a
locus of p.

4. The main result

This section is devoted to the proof of the following result, of which the stronger
Rolle’s Theorem is a corollary.

Theorem 4.1. Suppose ϕ ∈ [0, π/2). If p(z) ∈ P++
n (ϕ), then S(ϕ) is a locus

holder for p(z).

Proof. The theorem is trivial if ϕ = 0, so assume ϕ > 0. The proof is by induction
on n. It is trivially true for n = 1 since the only solution of az + b = 0 is on the
negative real axis. As part of the base case we also consider the case n = 2.

Claim 1. The theorem holds for n = 2.

Proof. The polynomial p(z) either has one pair of complex conjugate zeros, say
re±iθ, in the left-half of the complex plane, or has two real negative zeros. In the
first case, consider the disk with re±iθ on its boundary and contained in the sector
S(θ) (that is, the disk tangent to the boundary of the sector). By Theorem 3.10,
the disk is a locus, making S(θ) a locus holder of p(z).

In the case when p(z) has two negative zeros, a similar argument shows that the
left-half of the complex plane, S(π/2), is a locus holder. (If the two zeros coincide,
then that point is itself a locus.)

Suppose n ≥ 3 and the theorem holds for polynomials of degree up to n − 1.
Suppose S(ϕ) is not a locus holder for p(z), that is, there is a solution {z1, . . . , zn} ⊂
Sc(ϕ). Since Sc(ϕ) is an open set, we may assume that {z1, . . . , zn} ⊂ Sc(ϕ− ε) for
some ε > 0. The next three claims are needed in a wider generality. So, suppose

{z1, . . . , zm} ⊂ Sc(ϕ− ε)(4.1)

is an extended solution of p(z), where 1 ≤ m ≤ n. By Lemma 2.5, (4.1) is an
extended solution of p(n−m)(z) ∈ Pm and since the degree of p(n−m)(z) is m, is its
solution.

Claim 2. Extended solution (4.1) satisfies z� 
= 0 for all � = 1, 2, . . . ,m.

Proof. If z� = 0 for all � = 1, . . . ,m, then the polynomial zm is apolar with p(z)
which is impossible, since p(z) has positive coefficients. Suppose that z� = 0 for
� = 1, . . . , k and z� > 0 for � = k + 1, . . . ,m. Applying (3.3), we obtain

D(k)
0 (p(n−m); z) =

m!

(m− k)!
P (n−m)(0, . . . , 0, z, . . . z),(4.2)
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where 0 is repeated k times and z is repeatedm−k times in the argument of P (n−m).

This shows that {zk+1, . . . , zm} is a solution of D(k)
0 (p(n−m); z). Corollary 3.2 shows

that D(k)
0 (p(n−m); z) ∈ P++

m−k(ϕ) and by the induction hypothesis S(ϕ) is a locus

holder for D(k)
0 (p(n−m); z), so one of {zk+1, . . . , zm} is in S(ϕ), a contradiction. �

Claim 3. Extended solution (4.1) contains at least two distinct (finite) points.

Proof. If z1 = · · · = zm, then this common value is a zero of p(n−m)(z). But
by Corollary 3.1 all zeros of p(n−m)(z) are in S(ϕ), a contradiction. The same
argument shows that m ≥ 2. �

Consider the Möbius transformation v = T (w), defined by

P (n−m)(z1, . . . , zm−2, v, w) = 0

after fixing the points z1, . . . , zm−2.

Claim 4. The Möbius transformation T is non-degenerate.

Proof. Write P (n−m)(z1, . . . , zm−2, v, w) = 0 in the form

awv + b(w + v) + c = 0,(4.3)

where the coefficients a, b, c are symmetric multi-affine functions of z1, . . . , zm−2.
Suppose the Möbius transformation T is degenerate: b2 − ac = 0. By Lemma 3.6:

a =
∂2

∂zm∂zm−1
P (n−m)(z1, . . . , zm) =

1

m(m− 1)
P (n−m+2)(z1, . . . , zm−2).

So, if a = 0, then {z1, . . . , zm−2} is a solution of p(n−m+2)(z). By Corollary 3.1,
p(n−m+2)(z) ∈ P++

m−2(ϕ) and by the induction hypothesis S(ϕ) is a locus holder for
it. Thus, one of {z1, . . . , zm−2} is in S(ϕ), a contradiction.

Thus, we have a 
= 0 and equation (4.3) holds with v = −b/a and any w ∈ C.
But av + b is the derivative of (4.3) with respect to w:

av + b =
∂

∂zm
P (n−m)(z1, . . . , zm) =

1

n
P (n−m+1)(z1, . . . , zm−1),

where Lemma 3.6 was used. That is, {z1, . . . , zm−1} is a solution of p(n−m+1)(z).
But p(n−m+1)(z) ∈ P++

m−1(ϕ), so by the induction hypothesis, S(ϕ) is a locus holder
for it. Hence, one of {z1, . . . , zm−1} is in S(ϕ), a contradiction.

Since p(z) ∈ P++
n (ϕ), Corollary 3.1 asserts that S̄c(ϕ − ε) is a zero-free sector.

Since {z1, . . . , zn} ⊂ Sc(ϕ−ε) is a solution of p(z), Theorem 3.8 asserts the existence
of an extended solution of p(z) of the form{

s1e
iψ, s2e

iψ, . . . , smeiψ
}
⊂ Sc(ϕ− ε)(4.4)

for some ψ ∈ [−(ϕ − ε), (ϕ− ε)], where sk ≥ 0 for all k = 1, 2, . . . ,m, 2 ≤ m ≤ n,
and at least one of {s1, s2, . . . , sm} is strictly positive.

Claim 5. The set of all ψ ∈ [−(ϕ − ε), (ϕ − ε)] for which an extended solution of
p(z) of the form (4.4) exists, is closed.

Proof. Take a sequence of arguments {ψ�} ⊂ [−(ϕ − ε), (ϕ − ε)] converging to ψ
such that {

s�1e
iψ� , s�2e

iψ� , . . . , s�m�
eiψ�

}
(4.5)
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is an extended solution of p(z), where snk ≥ 0 for all k = 1, 2, . . . ,m�, 2 ≤ m� ≤ n,
and at least one of {s�1, s�2, . . . , s�m�

} is strictly positive. By Lemma 2.4 and the
comments before it, a subsequence of these extended solutions converges to an
extended solution

{
s1e

iψ, s2e
iψ, . . . , smeiψ

}
, where m ≥ 1. Claims 2 and 3 show

that m ≥ 2 and that all of s1, s2, . . . , sm are strictly positive. �
Choose an extended solution of the form (4.4) with the smallest possible non-

negative argument ψ. Again, Claims 2 and 3 assert that m ≥ 2 and that all of
s1, . . . , sm are strictly positive.

If ψ = 0, then we reach a contradiction with the fact that {s1, s2, . . . , sm} is a
solution of p(n−m)(z), that is, P (n−m)(s1, s2, . . . , sm) = 0. The latter is impossible
since p(n−m)(z) has positive coefficients.

Suppose then that ψ > 0 and let zi := sie
iψ for i = 1, 2, . . . ,m. Since at least

two of the points in the solution (4.4) are distinct, assume z1 
= z2. By Claim 2,
z1 and z2 are not 0. Consider the Möbius transformation v = T (w), defined by
P (n−m)(v, w, z3, . . . , zm) = 0 after fixing the points z3, . . . , z�. By Claim 4, T is
non-degenerate, so let ζ1, ζ2 be its (distinct) fixed points.

Let C be the unique circle, called the joint circle of the pair z1, z2, that passes
through the points z1, z2, ζ1, ζ2. Such a circle exists, since T is an involution, that
is, T (T (v)) = v for all v ∈ C. The joint circle has the property that it is invariant
under T and when v moves over C, w = T (v) moves over C in the opposite direction
until they meet over one of the fixed points ζ1 or ζ2. The fixed points ζ1 and ζ2 are
on different arcs of C defined by v and w. Finally, if v is inside C, then w = T (v)
is outside of C, and vice versa.

We consider two cases.

Case 1. Suppose that the joint circle of some pair of distinct points in the solution
(4.4), say z1 and z2, is a proper circle (i.e., not a straight line). Necessarily, T
has one fixed point on each side of the line through the origin with argument ψ;
see Figure 3. Fixing the points z3, . . . , zm, move slightly z1 along the circle C,

Figure 3. Illustrating the last part of the proof of Theorem 4.1

diminishing its argument, causing the point z2 to move along C in the opposite
direction, also diminishing its argument.

Next, fix point z2 and consider the pair z1, z3 and the Möbius transformation
defined by P (n−m)(v, z2, w, z4, . . . , zm) = 0. Since z1 is in the interior of the sector
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S0(0, ψ), we can perturb it, while keeping it in the interior, so that z3 also enters the
interior of that sector. Doing so with all points of the extended solution (4.4), we
produce a new one inside the sector S0(0, ψ− δ) for some δ > 0. Sector S0(0, ψ− δ)
is a zero-free sector for p(n−m)(z) and the new extended solution is in fact a solution
of p(n−m)(z). According to Theorem 3.8, there is an extended solution of p(n−m)(z)
of the form {

s1e
iψ◦ , s2e

iψ◦ , . . . , s�e
iψ◦

}
⊂ S0(0, ψ − δ),(4.6)

where sk ≥ 0 for all k = 1, 2, . . . , �, 2 ≤ � ≤ m, and at least one of {s1, s2, . . . , s�}
is strictly positive. By Lemma 2.7, (4.6) is an extended solution of p(z). This
contradicts the minimal choice of ψ and completes the proof in this case.

Case 2. Suppose that the joint circle of any pair of distinct points in the solu-
tion (4.4) is a straight line, necessarily the line {teiψ : t ∈ R}. In fact, we may
assume that every extended solution of the form (4.4) has this property, or else
we apply Case 1. Take any two distinct points, say zi and zj , from (4.4). One of
their corresponding fixed points, say ζ, is strictly between them, that is, on the
open segment (zi, zj). Thus, in the solution (4.4) we may replace the pair {zi, zj}
with the pair {ζ, ζ} and keep the property that the m-tuple is an extended so-
lution. Continuing in this way, trying to minimize the diameter of the solution
max{|zi − zj | : 1 ≤ i < j ≤ m}, one can see that we end up with a solution of the
form (4.4) in which all points coincide. This contradicts Claim 3 and completes the
proof in this case. �

5. Stronger Rolle’s domain

Let p be a complex polynomial of degree n satisfying p(i) = p(−i). Let

p′(z) = (z − z1)(z − z2) · · · (z − zn−1) =
n−1∑
k=0

(−1)n−1−kSn−1−k(z1, . . . , zn−1)z
k.

Integrating the last expression, one sees that condition p(i) = p(−i) is equivalent
to

[(n−1)/2]∑
k=0

(−1)n−1−k

2k + 1
Sn−1−2k(z1, . . . , zn−1) = 0.

Observe that the left-hand side of the last equality is the symmetrization of the
polynomial

κn(z) :=

[(n−1)/2]∑
k=0

(−1)n−1−k

2k + 1

(
n− 1

2k

)
zn−1−2k

=
(−1)n−1

n

[(n−1)/2]∑
k=0

(−1)k
(

n

2k + 1

)
zn−(2k+1)

=
(−1)n

2ni

(
(z − i)n − (z + i)n

)
.

Note that the degree of κn(z) is n− 1. Hence, {z1, . . . , zn−1} is a solution of κn if
and only if z1, . . . , zn−1 are the zeros of the derivative of a polynomial p of degree
n satisfying p(i) = p(−i). We point out the known fact, that κn(z) has only real
zeros {cot(kπ/n) : k = 1, . . . , n− 1}.
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We mention in passing that combining this fact with the classical theorem of
Grace leads to a proof of Corollary 1.1, where the classical Grace’s Theorem (see
[1, p. 107]) states the following.

Theorem 5.1 (Grace’s Theorem). Let p and q be apolar polynomials of degree n.
Then every circular domain containing all the zeros of one of them contains at least
one zero of the other.

Indeed, in our terminology, Theorem 5.1 says that every circular domain con-
taining all the zeros of p is a locus holder for p. That is, the disk D[0; cot(π/n)] is a
locus holder for κn(z), hence a Rolle’s domain for complex polynomials of degree n.
Thus, Definition 3.1 implies a trivial refinement of the Grace-Heawood’s Theorem.

Theorem 5.2. Every locus of κn is a sharp Rolle’s domain for complex polynomials
of degree n.

Since κn(z) has only real zeros, Theorem 3.10 implies that the closed upper
(resp., lower) half-plane is a locus of κn(z) and so it is a sharp Rolle’s domain
but trivial and unbounded. Of interest are bounded loci of κn(z) especially those
symmetric with respect to the real axis.

For example, when n = 3, we have κ3(z) = (z − 1/
√
3)(z + 1/

√
3). By Theo-

rem 3.10 any closed circular domain having 1/
√
3 and −1/

√
3 on its boundary is

a sharp Rolle’s domain. The domain ΘGH
3 = D[0; 1/

√
3] is such and is, symmetric

with respect to the real axis.
When n = 4, we have κ4(z) = −z(z2 − 1). A family of loci of this polyno-

mial is described in Section 6.2 of [2]. The representative of this family with the
smallest area, that is, symmetric with respect to both coordinate axes, is the locus
D[−1/3; 2/3] ∪ D[1/3; 2/3]. Another curious locus of κ4(z), also contained in the
unit disk but this time symmetric only with respect to the imaginary axis, is given
in [2, Theorem 5.1].

Finding a bounded locus of κn(z) for n ≥ 5, especially one symmetric with
respect to the real axis, appears to be difficult. Instead, we find a locus holder of
κn(z) leading to a Rolle domain stronger than the known ones.

We recall a few final facts. Let

T (z) = (az + b)/(cz + d) with ad− bc 
= 0(5.1)

be a non-degenerate Möbius transformation. For every polynomial p ∈ Pn define

T [p](z) := (cz + d)np(T (z)).

If U(z) = (ez + f)/(gz + h) is another Möbius transformation, then for every
polynomial p ∈ Pn we have

U [T [p]](z) = (gz + h)n(cU(z) + d)np(T (U(z))) = (T ◦ U)[p](z).

Theorem 2.5 in [2] explains the relationship between the loci of p and T [p].

Theorem 5.3. Suppose that p and T [p] are polynomials of degree n with at least
two distinct zeros. Then Ω is a locus of p if and only if T−1(Ω) is a locus of T [p].

Since every locus holder contains a locus (see Lemma 1.5 in [2]), it is easy to see
that Theorem 5.3 remains true if the word ‘locus’ is replaced by ‘locus holder’.
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Proof of Theorem 1.4. The cases n = 3, 4 were discussed above, so assume n ≥ 5.
Consider the Möbius transformation

T (z) = i
z + 1

z − 1
with T−1(z) =

z + i

z − i
.

We have

T [κn](z) =
(−1)n

2ni
(z − 1)n−1

((
i
z + 1

z − 1
− i

)n

−
(
i
z + 1

z − 1
+ i

)n)

=
(−1)n

2ni
(z − 1)n−1

(( 2i

z − 1

)n

−
( 2iz

z − 1

)n)

=
(−2i)n−1

n

(zn − 1

z − 1

)
=

(−2i)n−1

n
qn(z),

where

(5.2) qn(z) := zn−1 + zn + · · ·+ 1.

It is easy to see that

T (e2ϕi) = cot(ϕ), T (e−2ϕi) = − cot(ϕ), T (0) = −i, T (∞) = i.(5.3)

It is easy to see that qn(z) ∈ P++
n (2π/n). Since n ≥ 5, we have 2π/n < π/2 and

can apply Theorem 4.1 to conclude that sector S(2π/n) is a locus holder of qn(z).
Theorem 5.3 then implies that T (S(2π/n)) is a locus holder of κn(z). Since

T (e2πi/n) = cot(π/n), T (e−2πi/n) = − cot(π/n), T (0) = −i, T (∞) = i,(5.4)

in addition to T (−1) = 0, T (z) maps sector S(2π/n) onto the double diskDD[c; r] =
D[−c; r]∪D[c; r], where the boundary of the disk D[c; r] passes through the points
i,−i, and cot(π/n). From here, one readily calculates the values of c and r given
in (1.2). �
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