BEHAVIOR OF THE SQUEEZING FUNCTION NEAR H-EXTENDIBLE BOUNDARY POINTS

NIKOLAI NIKOLOV
(Communicated by Harold P. Boas)

Abstract

It is shown that if the squeezing function tends to one at an h extendible boundary point of a \mathcal{C}^{∞}-smooth, bounded pseudoconvex domain, then the point is strictly pseudoconvex.

Denote by \mathbb{B}_{n} the unit ball in \mathbb{C}^{n}. Let M be an n-dimensional complex manifold, and $z \in M$. For any holomorphic embedding $f: M \rightarrow \mathbb{B}_{n}$ with $f(z)=0$, set

$$
s_{M}(f, z)=\sup \left\{r>0: r \mathbb{B}_{n} \subset f(M)\right\} .
$$

The squeezing function of M is defined by $s_{M}(z)=\sup _{f} s_{M}(f, z)$ if such f 's exist, and $s_{M}(z)=0$ otherwise.

Many properties and applications of the squeezing function have been explored by various authors; see e.g. $3,5,6$ and the references therein.

It was shown in [3] that if D is a \mathcal{C}^{2}-smooth strictly pseudoconvex domain in \mathbb{C}^{n}, then

$$
\begin{equation*}
\lim _{z \rightarrow \partial D} s_{D}(z)=1 \tag{1}
\end{equation*}
$$

A. Zimmer [10] proved the converse if D is a \mathcal{C}^{∞}-smooth, bounded convex domain; namely, if (1) holds, then D is necessarily strictly pseudoconvex. Recently, he extended this result to the $\mathcal{C}^{2, \alpha}$-smooth case [11].

On the other hand, J.E. Fornæss and E.F. Wold 5 provided an example showing that \mathcal{C}^{2}-smoothness is not enough. They also asked if Zimmer's result holds for \mathcal{C}^{∞} smooth, bounded pseudoconvex domains.
S. Joo and K.-T. Kim [6] gave an affirmative answer for domains of finite type in \mathbb{C}^{2}.

This can be extended to a larger class of domains by using different arguments. Recall that a \mathcal{C}^{∞}-smooth boundary point a of finite type of a domain D in \mathbb{C}^{n} is said to be h-extendible [8, 9] (or semiregular [4) if D is pseudoconvex near a and Catlin and D'Angelo's multitypes of a coincide.

For example, a is extendible if the Levi form at a has a corank at most one 9] or D is linearly convexifiable near $a[1$. In particular, h-extendibility takes place in the strictly pseudoconvex, two-dimensional finite type and convex finite type cases.

[^0]Theorem 1. Let a be an h-extendible boundary point of a \mathcal{C}^{∞}-smooth, bounded pseudoconvex domain D in \mathbb{C}^{n}. If $s_{D}\left(a_{j}\right) \rightarrow 1$ for a nontangential sequence $a_{j} \rightarrow a$, then a is a strictly pseudoconvex point.

Nontangentiality means that $\liminf _{j \rightarrow \infty} \frac{d_{D}\left(a_{j}\right)}{\left|a_{j}-a\right|}>0$, where d_{D} is the distance to ∂D.

Before proving Theorem [1 we need some preparation.
Denote by $\mu=\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ Catlin's multitype of $a\left(m_{1}=1\right.$ and $m_{2} \leq$ $\cdots \leq m_{n}$ are even numbers). By [4,8,9, there exists a local change of variables $w=\Phi(z)$ near a such that $\Phi(a)=0, J \Phi(a)=1$,

$$
r\left(\Phi^{-1}(w)\right)=\operatorname{Re}\left(w_{1}\right)+P\left(w^{\prime}\right)+o(\sigma(w))
$$

where r is the signed distance to $\partial D, \sigma(z)=\sum_{j=1}^{n}\left|w_{j}\right|^{m_{j}}$, and P is a $1 / \mu$-homogeneous polynomial without pluriharmonic terms. Moreover, the so-called model domain

$$
E=\left\{w \in \mathbb{C}^{n}: \operatorname{Re}\left(w_{1}\right)+P\left(w^{\prime}\right)<0\right\}
$$

(which depends on Φ) is of finite type.
In [7, 9, the nontangential boundary behavior of the Kobayashi-Royden and Carathéodory-Reiffen metrics of D near a are expressed in terms of r, Φ, and the respective metrics of E_{Φ} at its interior point $e=\left(-1,0^{\prime}\right)$. Obvious modifications in the proofs of these results allows us to obtain similar results for the KobayashiEisenman and Carathéodory-Eisenman volumes of D :

$$
\begin{aligned}
\mathcal{K}_{D}(u) & =\inf \left\{|J f(0)|^{-1}: f \in \mathcal{O}\left(\mathbb{B}^{n}, D\right), f(0)=u\right\}, \\
\mathcal{C}_{D}(u) & =\sup \left\{|J f(u)|: f \in \mathcal{O}\left(D, \mathbb{B}^{n}\right), f(u)=0\right\} .
\end{aligned}
$$

Proposition 2. Let a be an h-extendible boundary point of a domain D in \mathbb{C}^{n}. Let μ be Catlin's multitype of a and let $m=\sum_{j=1}^{n} \frac{1}{m_{j}}$. Then

$$
\begin{equation*}
\mathcal{K}_{D}\left(a_{j}\right)\left(d_{D}\left(a_{j}\right)\right)^{m} \rightarrow \mathcal{K}_{E}(e) \tag{2}
\end{equation*}
$$

for any nontangential sequence $a_{j} \rightarrow a$.
If, in addition, D is \mathcal{C}^{∞}-smooth, bounded pseudoconvex, then

$$
\begin{equation*}
\mathcal{C}_{D}\left(a_{j}\right)\left(d_{D}\left(a_{j}\right)\right)^{m} \rightarrow \mathcal{C}_{E}(e) . \tag{3}
\end{equation*}
$$

Since E is hyperbolic with respect to the Carathéodory-Reiffen metric [7], it is easy to see that $\mathcal{C}_{E}>0$. So, the limits above are positive.

Sketch of the proof of Proposition 2, Let $\varepsilon>0$ and let

$$
E_{ \pm \varepsilon}=\left\{w \in \mathbb{C}^{n}: \operatorname{Re}\left(w_{1}\right)+P\left(w^{\prime}\right) \pm \varepsilon \sigma(w)<0\right\}
$$

There exists a neighborhood U_{ε} of a such that

$$
E_{+\varepsilon} \cap V_{\varepsilon} \subset \Phi\left(D \cap U_{\varepsilon}\right) \subset E_{-\varepsilon} \cap V_{\varepsilon},
$$

where $V_{\varepsilon}=\Phi\left(U_{\varepsilon}\right)$. Since $a \in \partial D$ is a local holomorphic peak point [4, 8, the localization $\frac{\mathcal{K}_{D \cap U_{\varepsilon}}\left(a_{j}\right)}{K_{D}\left(a_{j}\right)} \rightarrow 1$ holds. On the other hand, $E_{ \pm \varepsilon}$ are taut domains if $\varepsilon \leq \varepsilon_{0}$ [9]; in particular, $\mathcal{K}_{E_{ \pm \varepsilon}}$ are continuous functions. Let $-c_{j}+i d_{j}$ be the first coordinate of $b_{j}\left(c_{j}, d_{j} \in \mathbb{R}\right)$. Since d_{j} / c_{j} is a bounded sequence, it suffices to
show (2) when $d_{j} / c_{j} \rightarrow s$. Set $b_{j}=\Phi\left(a_{j}\right)$ and $\pi_{j}(w)=\left(w_{1} c_{j}^{-1 / m_{1}}, \ldots, w_{n} c_{j}^{-1 / m_{n}}\right)$. Note that $\pi_{j}\left(b_{j}\right) \rightarrow e_{s}:=\left(-1+i s, 0^{\prime}\right)$. Now, applying the scaling of coordinates π_{j} and using normal family arguments, we obtain that $\mathcal{K}_{E_{ \pm \varepsilon} \cap V_{\varepsilon}}\left(b_{j}\right) c_{j}^{m} \rightarrow \mathcal{K}_{E_{ \pm \varepsilon}}\left(e_{s}\right)$. Finally, following [9, Theorem 2.1], one can prove that $\mathcal{K}_{E_{ \pm \varepsilon}}\left(e_{s}\right) \rightarrow \mathcal{K}_{E}(e)$ as $\varepsilon \rightarrow 0$. These facts, together with $\frac{c_{j}}{d_{D}\left(a_{j}\right)} \rightarrow 1$, imply (21).

The proof of (3) follows by similar but more delicate arguments as in [7.
Proof of Theorem [1. By [3, one has that

$$
\left(s_{D}\left(a_{j}\right)\right)^{n} \mathcal{K}_{D}\left(a_{j}\right) \leq \mathcal{C}_{D}\left(a_{j}\right) \leq \mathcal{K}_{D}\left(a_{j}\right)
$$

It follows by Proposition 2 that

$$
\mathcal{C}_{E}(e)=\mathcal{K}_{E}(e) .
$$

Since \mathbb{B}_{n} and E are taut domains [8, 9], there exist extremal functions for $\mathcal{C}_{E}(e)$ and $\mathcal{K}_{E}(e)$. Then the Carathéodory-Cartan-Kaup-Wu theorem implies that E and \mathbb{B}_{n} are biholomorphic. Since E is a model domain of finite type, the main result in [2] shows that $m_{2}=\cdots=m_{n}=2$; that is, a is a strictly pseudoconvex point.

References

[1] M. Conrad, Nicht isotrope Abschätzungen für lineal konvexe Gebiete endlichen Typs, Dissertation, Universität Wuppertal, 2002.
[2] B. Coupet and S. Pinchuk, Holomorphic equivalence problem for weighted homogeneous rigid domains in \mathbb{C}^{n+1}, Complex analysis in modern mathematics (Russian), FAZIS, Moscow, 2001, pp. 57-70. MR1833505
[3] Fusheng Deng, Qi'an Guan, and Liyou Zhang, Properties of squeezing functions and global transformations of bounded domains, Trans. Amer. Math. Soc. 368 (2016), no. 4, 2679-2696. MR3449253
[4] Klas Diederich and Gregor Herbort, Pseudoconvex domains of semiregular type, Contributions to complex analysis and analytic geometry, Aspects Math., E26, Friedr. Vieweg, Braunschweig, 1994, pp. 127-161. MR 1319347
[5] J. E. Fornæss and E. F. Wold, A non-strictly pseudoconvex domain for which the squeezing function tends to one towards the boundary, to appear in Pacific J. Math., arXiv:1611.04464.
[6] S. Joo and K.-T. Kim, On boundary points at which the squeezing function tends to one, J. Geom. Anal., https://doi.org/10.1007/s12220-017-9910-4.
[7] N. Nikolov, Nontangential weighted limit of the infinitesimal Carathéodory metric in an h extendible boundary point of a smooth bounded pseudoconvex domain in \mathbf{C}^{n}, Acta Math. Hungar. 82 (1999), no. 4, 311-324. MR 1675619
[8] Ji Ye Yu, Peak functions on weakly pseudoconvex domains, Indiana Univ. Math. J. 43 (1994), no. 4, 1271-1295. MR 1322619
[9] Ji Ye Yu, Weighted boundary limits of the generalized Kobayashi-Royden metrics on weakly pseudoconvex domains, Trans. Amer. Math. Soc. 347 (1995), no. 2, 587-614. MR 1276938
[10] Andrew M. Zimmer, Gromov hyperbolicity, the Kobayashi metric, and \mathbb{C}-convex sets, Trans. Amer. Math. Soc. 369 (2017), no. 12, 8437-8456. MR3710631
[11] A. Zimmer, Characterizing strong pseudoconvexity, obstructions to biholomorphisms, and Lyapunov exponents, arXiv:1703.01511.

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev 8, 1113 Sofia, Bulgaria - and - Faculty of Information Sciences, State University of Library Studies and Information Technologies, Shipchenski prohod 69A, 1574 Sofia, Bulgaria

Email address: nik@math.bas.bg

[^0]: Received by the editors August 19, 2017, and, in revised form, December 1, 2017. 2010 Mathematics Subject Classification. Primary 32F45, 32T25.
 Key words and phrases. squeezing function, h-extendible boundary point.

