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NEAR H-EXTENDIBLE BOUNDARY POINTS
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(Communicated by Harold P. Boas)

Abstract. It is shown that if the squeezing function tends to one at an h-
extendible boundary point of a C∞-smooth, bounded pseudoconvex domain,
then the point is strictly pseudoconvex.

Denote by Bn the unit ball in Cn. Let M be an n-dimensional complex manifold,
and z ∈ M. For any holomorphic embedding f : M → Bn with f(z) = 0, set

sM (f, z) = sup{r > 0 : rBn ⊂ f(M)}.

The squeezing function of M is defined by sM (z) = sup
f

sM (f, z) if such f ’s exist,

and sM (z) = 0 otherwise.
Many properties and applications of the squeezing function have been explored

by various authors; see e.g. [3, 5, 6] and the references therein.
It was shown in [3] that if D is a C2-smooth strictly pseudoconvex domain in

Cn, then

(1) lim
z→∂D

sD(z) = 1.

A. Zimmer [10] proved the converse if D is a C∞-smooth, bounded convex do-
main; namely, if (1) holds, then D is necessarily strictly pseudoconvex. Recently,
he extended this result to the C2,α-smooth case [11].

On the other hand, J.E. Fornæss and E.F. Wold [5] provided an example showing
that C2-smoothness is not enough. They also asked if Zimmer’s result holds for C∞-
smooth, bounded pseudoconvex domains.

S. Joo and K.-T. Kim [6] gave an affirmative answer for domains of finite type
in C2.

This can be extended to a larger class of domains by using different arguments.
Recall that a C∞-smooth boundary point a of finite type of a domain D in Cn is
said to be h-extendible [8, 9] (or semiregular [4]) if D is pseudoconvex near a and
Catlin and D’Angelo’s multitypes of a coincide.

For example, a is extendible if the Levi form at a has a corank at most one [9]
or D is linearly convexifiable near a [1]. In particular, h-extendibility takes place in
the strictly pseudoconvex, two-dimensional finite type and convex finite type cases.
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Theorem 1. Let a be an h-extendible boundary point of a C∞-smooth, bounded
pseudoconvex domain D in Cn. If sD(aj) → 1 for a nontangential sequence aj → a,
then a is a strictly pseudoconvex point.

Nontangentiality means that lim inf
j→∞

dD(aj)

|aj − a| > 0, where dD is the distance to

∂D.
Before proving Theorem 1, we need some preparation.
Denote by μ = (m1,m2, . . . ,mn) Catlin’s multitype of a (m1 = 1 and m2 ≤

· · · ≤ mn are even numbers). By [4, 8, 9], there exists a local change of variables
w = Φ(z) near a such that Φ(a) = 0, JΦ(a) = 1,

r(Φ−1(w)) = Re(w1) + P (w′) + o(σ(w)),

where r is the signed distance to ∂D, σ(z)=
n∑

j=1

|wj |mj , and P is a 1/μ-homogeneous

polynomial without pluriharmonic terms. Moreover, the so-called model domain

E = {w ∈ C
n : Re(w1) + P (w′) < 0}

(which depends on Φ) is of finite type.
In [7, 9], the nontangential boundary behavior of the Kobayashi-Royden and

Carathéodory-Reiffen metrics of D near a are expressed in terms of r, Φ, and the
respective metrics of EΦ at its interior point e = (−1, 0′). Obvious modifications
in the proofs of these results allows us to obtain similar results for the Kobayashi-
Eisenman and Carathéodory-Eisenman volumes of D :

KD(u) = inf{|Jf(0)|−1 : f ∈ O(Bn, D), f(0) = u},
CD(u) = sup{|Jf(u)| : f ∈ O(D,Bn), f(u) = 0}.

Proposition 2. Let a be an h-extendible boundary point of a domain D in Cn. Let

μ be Catlin’s multitype of a and let m =

n∑

j=1

1

mj
. Then

(2) KD(aj)(dD(aj))
m → KE(e)

for any nontangential sequence aj → a.
If, in addition, D is C∞-smooth, bounded pseudoconvex, then

(3) CD(aj)(dD(aj))
m → CE(e).

Since E is hyperbolic with respect to the Carathéodory-Reiffen metric [7], it is
easy to see that CE > 0. So, the limits above are positive.

Sketch of the proof of Proposition 2. Let ε > 0 and let

E±ε = {w ∈ C
n : Re(w1) + P (w′)± εσ(w) < 0}.

There exists a neighborhood Uε of a such that

E+ε ∩ Vε ⊂ Φ(D ∩ Uε) ⊂ E−ε ∩ Vε,

where Vε = Φ(Uε). Since a ∈ ∂D is a local holomorphic peak point [4, 8], the

localization
KD∩Uε

(aj)

KD(aj)
→ 1 holds. On the other hand, E±ε are taut domains if

ε ≤ ε0 [9]; in particular, KE±ε
are continuous functions. Let −cj + idj be the

first coordinate of bj (cj , dj ∈ R). Since dj/cj is a bounded sequence, it suffices to
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show (2) when dj/cj → s. Set bj = Φ(aj) and πj(w) = (w1c
−1/m1

j , . . . , wnc
−1/mn

j ).

Note that πj(bj) → es := (−1+ is, 0′). Now, applying the scaling of coordinates πj

and using normal family arguments, we obtain that KE±ε∩Vε
(bj)c

m
j → KE±ε

(es).
Finally, following [9, Theorem 2.1], one can prove that KE±ε

(es) → KE(e) as ε → 0.

These facts, together with
cj

dD(aj)
→ 1, imply (2).

The proof of (3) follows by similar but more delicate arguments as in [7]. �
Proof of Theorem 1. By [3], one has that

(sD(aj))
nKD(aj) ≤ CD(aj) ≤ KD(aj).

It follows by Proposition 2 that

CE(e) = KE(e).

Since Bn and E are taut domains [8, 9], there exist extremal functions for CE(e)
and KE(e). Then the Carathéodory-Cartan-Kaup-Wu theorem implies that E and
Bn are biholomorphic. Since E is a model domain of finite type, the main result in
[2] shows that m2 = · · · = mn = 2; that is, a is a strictly pseudoconvex point. �
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