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FRACTIONAL HARDY–SOBOLEV TYPE INEQUALITIES

FOR HALF SPACES AND JOHN DOMAINS

BART�LOMIEJ DYDA, JUHA LEHRBÄCK, AND ANTTI V. VÄHÄKANGAS

(Communicated by Svitlana Mayboroda)

Abstract. As our main result we prove a variant of the fractional Hardy–
Sobolev–Maz’ya inequality for half spaces. This result contains a complete
answer to a recent open question by Musina and Nazarov. In the proof we ap-
ply a new version of the fractional Hardy–Sobolev inequality that we establish
also for more general unbounded John domains than half spaces.

1. Introduction

The main result in this note is the following fractional Hardy–Sobolev–Maz’ya
inequality for functions u ∈ C∞

0 (Rn
+), where Rn

+ is the upper half space of Rn with
n ≥ 2: ∫∫

Rn
+×Rn

+

|u(x)− u(y)|p
|x− y|n+sp

dy dx−D
∫
Rn

+

|u(x)|px−sp
n dx

≥ σ

(∫
Rn

+

|u(x)|qx−bq
n dx

)p/q

.

(1.1)

Here 2 ≤ p, q < ∞, and 0 < s < 1 are such that sp < n and p < q ≤ np/(n− sp),
and b = n(1/q − 1/p) + s; notice that then

b

n
=

1

q
− n− sp

np
and − bq =

q

p
(n− sp)− n .

The constant σ = σ(n, p, q, s) > 0 in (1.1) is independent of u, and D = D(n, p, s) ≥
0 is the optimal constant for which the left-hand side of (1.1) is non-negative for all
u ∈ C∞

0 (Rn
+); see (4.1) in Section 4 for an explicit expression of this constant. By

approximation, inequality (1.1) holds for all functions in the associated fractional
Sobolev space Ws,p

0 (Rn
+); cf. Theorem 4.2.

The validity of inequality (1.1) completely solves the Open Problem 1 posed by
Musina and Nazarov at the end of the paper [18], where actually only the case p = 2
was under consideration. Our results also extend the validity of [18, Theorem 3.1]
to the case 0 < s < 1/2.

When sp = 1, the constant D equals zero, and then for q = np/(n − sp) =
np/(n− 1) inequality (1.1) is the usual Sobolev inequality. For sp �= 1 it holds that
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D > 0. When sp > 1, then in the special case q = np/(n − sp) the validity of
inequality (1.1) was proved in [20] for p = 2 and in [2] for general p ≥ 2; see also [8]
for similar results. On the other hand, when sp < 1, the validity of inequality (1.1)
seems to be completely new.

In the proof of inequality (1.1), we bring together in a novel way adaptations
of some recent results related to fractional inequalities. We begin in Section 2 by
extending a fractional Riesz potential estimate from [13] to the case of unbounded
John domains, including the upper half space Rn

+. The definition and some impor-
tant properties of John domains are recalled at the beginning of that section. In
Section 3, we establish the weighted fractional Hardy–Sobolev inequality

∫
D

∫
B(x,τδ∂D(x))

|u(x)− u(y)|p
|x− y|n+sp

dy δβ∂D(x) dx

≥ C

(∫
D

|u(x)|qδ(q/p)(n−sp+β)−n
∂D (x) dx

)p/q
(1.2)

for functions u ∈ C∞
0 (D), where 0 < τ < 1 and D is an unbounded John domain

satisfying the additional assumption that the Assouad dimension of the boundary
∂D is small enough; we use here the notation δ∂D(x) = dist(x, ∂D). The proof
of inequality (1.2) is based on the Riesz potential estimate from Section 2 and
general two weight inequalities for Riesz potentials from [3]. An important feature
in inequality (1.2) is that, due to the parameter 0 < τ < 1, the inner integral on
the left-hand side is taken over a ball which is not too close to the boundary ∂D.
This crucial fact allows some flexibility to modify the weight functions that are
powers of the distance-to-boundary function δ∂D; cf. estimate (3.2). The fractional
Hardy–Sobolev–Maz’ya inequality (1.1) is then proved in Section 4, relying on the
Hardy–Sobolev inequality (1.2) and a sharp fractional Hardy inequality with a
remainder term from [12, Theorem 1.2]. Section 4 also contains discussion related
to the space Ws,p

0 (Rn
+) and the approximation argument that allows us to extend

the validity of inequality (1.1) for the functions belonging to this space.

Notation. Throughout this note, we work in the n-dimensional Euclidean space Rn,
with n ≥ 2. We write Rn

+ = Rn−1 × (0,∞), and denote by C∞
0 (Rn

+) the space of
smooth functions whose support is a compact set in Rn

+. The open ball centered
at x ∈ Rn and with radius r > 0 is denoted B(x, r). When E �= ∅ is a set in Rn,
the Euclidean distance from x ∈ Rn to E is written as dist(x,E) = δE(x), the
diameter of E is diam(E), and we write χE for the characteristic function of E;
that is, χE(x) = 1 if x ∈ E and χE(x) = 0 if x /∈ E. In addition, E denotes the
closure of E. The Lebesgue n-measure of a measurable set E ⊂ Rn is denoted by
|E|, and if 0 < |E| < ∞ and u is an integrable function on E, we use the notation

uE =
1

|E|

∫
E

u(y) dy .

The letter C is used to denote positive constants whose values are not necessarily
the same at each occurrence. We also write C = C(∗, · · · , ∗) to indicate that the
constant C depends (at most) on the quantities appearing in the parentheses.
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2. A fractional potential estimate on John domains

In this section we prove Theorem 2.4, which provides a fractional potential esti-
mate for unbounded John domains; recall that a domain is an open and connected
set. Following [21], we will first define John domains in such a way that unbounded
domains are allowed. Several equivalent definitions for John domains can be found
in [21]. WhenD ⊂ Rn is a domain and x1, x2 ∈ D, we say that a curve γ : [0, �] → D
joins x1 to x2 if γ(0) = x1 and γ(�) = x2.

Definition 2.1. A domain D � Rn, with n ≥ 2, is a c-John domain, for c ≥ 1, if
each pair of points x1, x2 ∈ D can be joined by a rectifiable arc length parametrized
curve γ : [0, �] → D satisfying dist(γ(t), ∂D) ≥ min{t, �− t}/c for every t ∈ [0, �].

It is clear that for example the half space Rn
+ = Rn−1 × (0,∞) is an unbounded

John domain, but it is also easy to come up with more irregular examples, since the
class of John domains is quite flexible. For instance, the unbounded domain whose
boundary is the usual von Koch snowflake curve is an unbounded John domain in
R2.

The next lemma recalls a useful property which can actually be used to charac-
terize bounded John domains. See [21, Theorem 3.6] for more details and a proof
of this result.

Lemma 2.2. Assume that D ⊂ Rn is a bounded c1-John domain, n ≥ 2. Then
there is a point x0 ∈ D such that each x ∈ D can be joined to x0 by a rectifiable
arc length parametrized curve γ : [0, �] → D satisfying dist(γ(t), ∂D) ≥ t/(4c21) for
every t ∈ [0, �].

The point x0 appearing in Lemma 2.2 is called a John center of D. The following
engulfing property of John domains can be found in [21, Theorem 4.6].

Lemma 2.3. A c-John domain D � Rn can be written as the union of c1-John
domains D1, D2, . . ., where c1 = c1(c, n) and Di is compact in Di+1 for each i =
1, 2, . . ..

We now turn to the potential estimate, which is given in terms of Riesz potentials.
Recall that the Riesz potential Iα(f) of a measurable function f : Rn → [0,∞], for
0 < α < n, is defined as

Iα(f)(x) =
∫
Rn

f(y)

|x− y|n−α
dy , x ∈ Rn .

Theorem 2.4. Assume that D � Rn is an unbounded c-John domain, and let
0 < τ, s < 1, and 1 ≤ p < ∞. Then there is a constant C = C(τ, n, c, s, p) > 0 such
that the inequality

|u(x)| ≤ C

∫
D

g(y)

|x− y|n−s
dy = C Is(χDg)(x)

holds whenever u ∈
⋃

1≤r<∞ Lr(D) and x ∈ D is a Lebesgue point of u, where we
have denoted

(2.1) g(y) :=

(∫
B(y,τδ∂D(y))

|u(y)− u(z)|p
|y − z|n+sp

dz

)1/p

for every y ∈ D.
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For the proof of Theorem 2.4, we first need a a fractional potential estimate for
bounded John domains, which is stated in Proposition 2.5 below. For a simple
proof of Proposition 2.5, we refer to the proof of [13, Theorem 4.10]; see formula
(4.13) therein. For our purposes, we actually need to track the constants a bit more
carefully than what is done in [13], but an inspection of the proof in [13] shows that
the constants depend on the c1-John domain D only through c1; we omit further
details. We also remark that while the statement of [13, Theorem 4.10] contains
the assumption sp < n, this is not needed for [13, formula (4.13)] to hold.

Proposition 2.5. Assume that D ⊂ Rn is a bounded c1-John domain, and let
0 < τ, s < 1, and 1 ≤ p < ∞. Let x0 ∈ D be a John center of D as in Lemma 2.2,
let M > 2/τ , and denote

B = B

(
x0,

δ∂D(x0)

16Mc21

)
.

Then there is a constant C = C(M,n, c1, s, p) > 0 such that

|u(x)− uB| ≤ C

∫
D

g(y)

|x− y|n−s
dy

whenever u ∈ L1
loc(D), x ∈ D is a Lebesgue point of u, and g is as in (2.1) with

respect to the bounded c1-John domain D.

We are now ready for the proof of Theorem 2.4.

Proof of Theorem 2.4. Assume that u ∈ Lr(D) for some 1 ≤ r < ∞ and choose
M = 3/τ . By Lemma 2.3, there are bounded c1-John domains Di with c1 =
c1(c, n) ≥ 1 such that

Di ⊂ Di ⊂ Di+1 for all i = 1, 2, . . . ,

and D =
⋃∞

i=1 Di. Let xi ∈ Di be a John center of Di given by Lemma 2.2, and
write

Bi := B

(
xi,

δ∂Di
(xi)

16Mc21

)
⊂ Di ⊂ D .

By Lemma 2.2 we have δ∂Di
(xi) ≥ (12c21)

−1 diam(Di). Observe that the numbers
diam(Di) converge to ∞ as i → ∞, and thus limi→∞|Bi| = ∞. In particular, by
Hölder’s inequality,

|uBi
| ≤ 1

|Bi|

∫
Bi

|u(x)| dx ≤
‖u‖Lr(D)

|Bi|1/r
i→∞−−−→ 0 .

Let us denote by gi the function defined as in (2.1), but with respect to the bounded
c1-John domain Di, and let x ∈ D be a Lebesgue point of u. Since x ∈ Di for
all sufficiently large indices i and u|Di

∈ L1
loc(Di), we find, by an application of

Proposition 2.5 and monotone convergence, that

|u(x)| = lim
i→∞

|u(x)− uBi
| ≤ C(M,n, c1, s, p) lim sup

i→∞

∫
Di

gi(y)

|x− y|n−s
dy

≤ C(M,n, c1, s, p)

∫
D

g(y)

|x− y|n−s
dy .

This concludes the proof of the theorem. �
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3. Weighted fractional Hardy–Sobolev inequalities

In this section we establish weighted fractional inequalities of the general form

(∫
D

|u(x)|qδ(q/p)(n−sp+β)−n
∂D (x) dx

)p/q

≤ C

∫
D

∫
B(x,τδ∂D(x))

|u(x)− u(y)|p
|x− y|n+sp

dy δβ∂D(x) dx ,

(3.1)

where u ∈ Lr(D) for some 1 ≤ r < ∞ and D � Rn is an unbounded John
domain satisfying the dimensional condition (3.3) below. Recall that we write
δ∂D(x) = dist(x, ∂D). As was already mentioned in the Introduction, an important
feature here is that we obtain inequality (3.1) with a parameter 0 < τ < 1. This
allows us to use in applications of (3.1) estimates of the type

(3.2) δβ∂D(x) ≤ Cδβ1

∂D(y)δβ2

∂D(x)

for x ∈ D and y ∈ B(x, τδ∂D(x)), where β1 + β2 = β and C = C(τ, β1, β2).
When E ⊂ Rn, the Assouad dimension denoted dimA(E) is the infimum of

exponents α ≥ 0 for which there is a constant C ≥ 1 such that for each x ∈ E and
every 0 < r < R, the set E ∩ B(x,R) can be covered by at most C(r/R)−α balls
of radius r. For example, the Assouad dimension of the boudary of the half space
Rn

+ is dimA(∂R
n
+) = n − 1, and more generally, if E ⊂ Rn is an m-dimensional

subspace, then dimA(E) = m. See, e.g., [16] for more details, properties, and
examples related to the Assouad dimension.

The following Theorem 3.1 is a partial generalization of [5, Theorem 1], where
a weighted fractional Hardy type inequality (the case q = p) is addressed, and it
extends [14, Theorem 5.2], where a fractional Sobolev inequality is obtained in the
case when β = 0 and q = np/(n− sp). Theorem 3.1 is an improved version of the
recent metric space result [3, Theorem 5.3], where all the integrals were taken over
the whole space.

Theorem 3.1. Assume that D � Rn is an unbounded c-John domain and that
0 < s < 1,

1 < p ≤ q ≤ np

n− sp
< ∞ ,

and β ∈ R are such that

(3.3) dimA(∂D) < min

{
q

p
(n− sp+ β) , n− β

p− 1

}
.

In addition, let τ ∈ (0, 1). Then there is a constant C = C(β, τ, n, c, s, p, q) > 0
such that inequality (3.1) holds for all u ∈

⋃
1≤r<∞ Lr(D).

Proof. Fix a function u ∈
⋃

1≤r<∞ Lr(D) and write, as in (2.1), for every y ∈ D,

g(y) =

(∫
B(y,τδ∂D(y))

|u(y)− u(z)|p
|y − z|n+sp

dz

)1/p

.

Also denote, for every x ∈ Rn \ ∂D,

w(x) = δ
(q/p)(n−sp+β)−n
∂D (x) .
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We remark that w is defined and positive almost everywhere in Rn. Indeed, notice
first that dimA(∂D) < n by the assumption (3.3), and thus |∂D| = 0; we refer to
[3, Remark 3.2].

By Theorem 2.4, there is a constant C = C(τ, n, c, s, p) > 0 such that inequality

|u(x)|qw(x) ≤ C Is(χDg)(x)qw(x)

holds for every Lebesgue point x ∈ D of u. In particular, since almost every point
x ∈ D is a Lebesgue point of u, we obtain that(∫

D

|u(x)|qw(x) dx
)p/q

≤ C

(∫
D

Is(χDg)(x)qw(x) dx

)p/q

≤ C

(∫
Rn

Is(χDg)(x)qw(x) dx

)p/q

.

Next we apply [3, Theorem 4.1], which yields two weight inequalities for the Riesz
potentials, where the weights are powers of the distance function δ∂D. In [3] the
result is formulated in a general metric space, but it is straightforward to see that in
Rn the dimensional condition in [3, Theorem 4.1] coincides with (3.3). We remark
that the proof of [3, Theorem 4.1] is based on the Muckenhoupt Ap-properties of the
powers of δ∂D and general Ap-weighted inequalities; the Euclidean space versions
of the latter are originally due to Pérez [19]. From [3, Theorem 4.1] it follows that(∫

Rn

Is(χDg)(x)qw(x) dx

)p/q

≤ C

∫
Rn

χD(y)g(y)p δβ∂D(y) dy

= C

∫
D

∫
B(y,τδ∂D(y))

|u(y)− u(z)|p
|y − z|n+sp

dz δβ∂D(y) dy .

Here the constant C > 0 is independent of u and g, and so the desired inequal-
ity (3.1) follows by combining the two estimates above. �
Remark 3.2. In the case D = Rn

+ we have dimA(∂R
n
+) = n − 1. Then the bounds

in (3.3) are equivalent to
p

q
(n− 1)− n+ sp < β < p− 1.

From this we see that the lower bound for β is strictly decreasing in terms of q.
For q = p the lower bound is sp − 1 and for q = np/(n − sp) the lower bound is
sp/n − 1. In particular, the value β = sp − 1, which will be used in the following
Section 4 while proving our main inequality (1.1), is allowed in (3.1) for D = Rn

+

whenever 0 < s < 1 and 1 < p < q ≤ np/(n− sp) < ∞.
Let us however point out that we do not know if the above bounds for β are

optimal in Rn
+ or in more general unbounded c-John domains; in particular, the

necessity of the upper bound β < p− 1 is questionable.

Remark 3.3. Assume that D ⊂ Rn is a bounded c1-John domain such that (3.3)
holds, where s, p, q, β are as in Theorem 3.1, and let u ∈ L1

loc(D). For each y ∈ D,
we write

g(y) =

(∫
B(y,τδ∂D(y))

|u(y)− u(z)|p
|y − z|n+sp

dz

)1/p

.

Then it follows from Proposition 2.5 that

|u(x)− uB|qw(x) ≤ C Is(χDg)(x)qw(x)
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for every Lebesgue point x ∈ D of u, where B is as in Proposition 2.5 and w is as in
the proof of Theorem 3.1. We can then repeat the rest of the proof of Theorem 3.1,
and conclude that

(∫
D

|u(x)− uB|qδ(q/p)(n−sp+β)−n
∂D (x) dx

)p/q

≤ C

∫
D

∫
B(x,τδ∂D(x))

|u(x)− u(y)|p
|x− y|n+sp

dy δβ∂D(x) dx .

Remark 3.4. We note that both Theorem 2.4 and Theorem 3.1 hold for every
u ∈ L1

loc(D) sastisfying uBi
→ 0 whenever Bi ⊂ D is a sequence of balls with

diam(Bi) → ∞. For example, it is enough that u ∈ L1
loc(D) and u(x) → 0 as

|x| → ∞.

4. Fractional Hardy–Sobolev–Maz’ya inequality on half spaces

We are now prepared to prove the fractional Hardy–Sobolev–Maz’ya inequal-
ity (1.1) in the half space Rn

+. As we will see, this inequality, which is reformulated
in Theorem 4.2 below, is a rather immediate consequence of Theorem 3.1 and
the fractional Hardy inequality with the best constant D and a remainder term,
[12, Theorem 1.2]. This constant D has the explicit form

(4.1) D = D(n, p, s) = 2π
n−1
2

Γ( 1+sp
2 )

Γ(n+sp
2 )

∫ 1

0

∣∣∣1− r(sp−1)/p
∣∣∣p dr

(1− r)1+sp
,

where Γ denotes the usual gamma function. In particular, D is the largest number
for which the left-hand side of the Hardy–Sobolev–Maz’ya inequality (1.1) is non-
negative for every u ∈ C∞

0 (Rn
+); see [12, Theorem 1.1]. We also refer to [1,10,11,15]

for more results concerning fractional Hardy inequalities with best constants, and
to [6,7,9,17] for corresponding (non-fractional) Hardy–Sobolev–Maz’ya inequalities
in the case s = 1.

We actually prove inequality (1.1) in Theorem 4.2 for functions belonging to
space Ws,p

0 (Rn
+), which is defined as follows. When 1 ≤ p < ∞ and 0 < s < 1, the

fractional Sobolev seminorm |u|W s,p(Rn
+) of a measurable function u : Rn

+ → R is

|u|W s,p(Rn
+) =

(∫∫
Rn

+×Rn
+

|u(x)− u(y)|p
|x− y|n+sp

dy dx

)1/p

.

The space Ws,p
0 (Rn

+) is then the completion of C∞
0 (Rn

+) with respect to the semi-
norm | · |W s,p(Rn

+).

Remark 4.1. Assume that 1 ≤ p < n/s, where n ≥ 2, 1 ≤ p < ∞, and 0 < s < 1.
Then the space Ws,p

0 (Rn
+) can be identified as a subspace of Lnp/(n−sp)(Rn

+) using
the following reasoning. First, by the Sobolev Embedding Theorem [14, Theorem
5.2], there exists a constant C > 0 such that ‖u‖Lnp/(n−sp)(Rn

+) ≤ C|u|W s,p(Rn
+)

for all u ∈ C∞
0 (Rn

+). Therefore, if (uj)j∈N ⊂ C∞
0 (Rn

+) is a Cauchy sequence with

respect to the seminorm | · |W s,p(Rn
+), then there exists u ∈ Lnp/(n−sp)(Rn

+) such that

limj→∞‖uj −u‖Lnp/(n−sp)(Rn
+) = 0. A straightforward adaptation of [4, Proposition

7] then shows that limj→∞|u− uj |W s,p(Rn
+) = 0.
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Theorem 4.2. Let n ≥ 2 and assume that 2 ≤ p, q < ∞, and 0 < s < 1 are such
that sp < n and p < q ≤ np/(n− sp), and write b = n(1/q − 1/p) + s. Then there
is a constant σ = σ(n, p, q, s) > 0 such that

∫∫
Rn

+×Rn
+

|u(x)− u(y)|p
|x− y|n+sp

dy dx−D
∫
Rn

+

|u(x)|px−sp
n dx ≥ σ

(∫
Rn

+

|u(x)|qx−bq
n dx

)p/q

for all u ∈ Ws,p
0 (Rn

+), where the constant D = D(n, p, s) is as in (4.1).

Proof. The proof follows the ideas presented in [2, Section 2], but instead of using
the Sobolev inequality as in [2], we will use the more general inequality (3.1).

We consider first the case u ∈ C∞
0 (Rn

+). Our starting point is the inequality

(4.2)

∫∫
R

n
+×R

n
+

|u(x)− u(y)|p
|x− y|n+sp

dy dx−D
∫
R

n
+

|u(x)|px−sp
n dx ≥ cpJ [v] ,

where cp > 0 is an explicit constant (for p = 2, (4.2) is an identity with c2 = 1),

J [v] :=

∫∫
Rn

+×Rn
+

|v(x)− v(y)|p
|x− y|n+sp

(xnyn)
(sp−1)/2 dy dx ,

and v(x) := x
−(sp−1)/p
n u(x) for each x ∈ Rn

+. Notice that v ∈ C∞
0 (Rn

+) and
xn = δ∂Rn

+
(x) if x ∈ Rn

+. Inequality (4.2) was derived in [12, Theorem 1.2], using

the ‘ground state representation’ method from [11].
We apply Theorem 3.1 for D = Rn

+, β = sp − 1 and a fixed 0 < τ < 1; recall
here Remark 3.2. Then we use estimate (3.2) with β1 = β2 = β/2, and obtain that

(∫
Rn

+

|v(x)|qx(q/p)(n−sp+β)−n
n (x) dx

)p/q

≤ C

∫
Rn

+

∫
B(x,τxn)

|v(x)− v(y)|p
|x− y|n+sp

dy xβ
n dx

≤ C

∫
Rn

+

∫
B(x,τxn)

|v(x)− v(y)|p
|x− y|n+sp

yβ/2n dy xβ/2
n dx ≤ CJ [v].

Combining the above inequality with (4.2) and the fact that

|v(x)|qx(q/p)(n−sp+β)−n
n = |u(x)|qx(q/p)(n−sp)−n

n = |u(x)|qx−bq
n

proves the claim for functions u ∈ C∞
0 (Rn

+).

In the general case u ∈ Ws,p
0 (Rn

+) ⊂ Lnp/(n−sp)(Rn
+), it suffices to consider

a sequence (uj)j∈N of C∞
0 (Rn

+) functions, which is Cauchy with respect to the

seminorm | · |W s,p(Rn
+) and which converges to u in Lnp/(n−sp)(Rn

+). Then it holds

that limj→∞|u − uj |W s,p(Rn
+) = 0; cf. Remark 4.1. By taking a subsequence, if

necessary, we may also assume that limj→∞ uj(x) = u(x) for almost every x ∈ Rn
+.

By Fatou’s lemma, and the already proved inequality (1.1) for C∞
0 (Rn

+) functions,

σ

(∫
Rn

+

|u(x)|qx−bq
n dx

)p/q

≤ lim inf
j→∞

σ

(∫
Rn

+

|uj(x)|qx−bq
n dx

)p/q

≤ lim inf
j→∞

(∫∫
Rn

+×Rn
+

|uj(x)− uj(y)|p
|x− y|n+sp

dy dx−D
∫
Rn

+

|uj(x)|px−sp
n dx

)
.
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When D = D(n, p, s) �= 0, we have sp �= 1, and therefore, by the fractional Hardy
inequality in [12, Theorem 1.1],

(
D
∫
Rn

+

|uj(x)|px−sp
n dx

)1/p

+

(
D
∫
Rn

+

|u(x)|px−sp
n dx

)1/p

≤ |uj |W s,p(Rn
+) + |u|W s,p(Rn

+) < ∞ ,

and furthermore∣∣∣∣
(
D
∫
Rn

+

|uj(x)|px−sp
n dx

)1/p

−
(
D
∫
Rn

+

|u(x)|px−sp
n dx

)1/p∣∣∣∣

≤
(
D
∫
Rn

+

|u(x)− uj(x)|px−sp
n dx

)1/p

≤ |u− uj |W s,p(Rn
+)

j→∞−−−→ 0 .

Since limj→∞|u− uj |W s,p(Rn
+) = 0, we find that limj→∞|uj |W s,p(Rn

+) = |u|W s,p(Rn
+).

Hence,

lim inf
j→∞

(∫∫
Rn

+×Rn
+

|uj(x)− uj(y)|p
|x− y|n+sp

dy dx−D
∫
Rn

+

|uj(x)|px−sp
n dx

)

=

∫∫
Rn

+×Rn
+

|u(x)− u(y)|p
|x− y|n+sp

dy dx−D
∫
Rn

+

|u(x)|px−sp
n dx .

The claim follows from the above estimates. �
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