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STABILITY OF RIESZ BASES

VITALII MARCHENKO

(Communicated by Michael Hitrik)

Dedicated to the memory of Professor T. Kato on the occasion of the 100th anniversary of his
birthday and of the 50th anniversary of his theorem on similarity for sequences of projections

Abstract. The Kato Theorem on similarity for sequences of projections in
a Hilbert space is extended to the case when both sequences consist of non-
selfadjoint projections. Passing to subspaces, this leads to stability theorems
for Riesz bases of subspaces, at least one of which is finite dimensional, and
for arbitrary vector Riesz bases. The following is proved as an application.
If {φn}∞n=1 is a Riesz basis and |θn| ≤ C for large n, where the constant C
depends only on {φn}∞n=1, then {φn + θnφn+1}∞n=1 also forms a Riesz basis.

1. Introduction

Riesz bases play an important role in an infinite-dimensional linear systems the-
ory [7, 16, 19–22] and signal processing [5, 13]. Riesz bases also frequently appear
as eigenvectors or root vectors (root subspaces) of various nonselfadjoint operators
from mathematical physics, e.g. Hill and Dirac operators [8, 9].

The sequence of nontrivial closed subspaces {Nn}n∈Z+
of a Hilbert space H

is called a Riesz basis of subspaces provided that there exists an isomorphism S
(bounded linear operator with bounded inverse) and an orthogonal basis {Mn}n∈Z+

of H such that

Nn = SMn

for n ∈ Z+. Hereinafter Z+ denotes the set of nonnegative integers. Recall also
that the sequence {φn}n∈Z+

⊂ H is a (vector) Riesz basis provided that φn = Sen
for n ∈ Z+, where S is an isomorphism and {en}n∈Z+

is an orthonormal basis of H.
Note that there are other equivalent definitions of Riesz basis, see, e.g., [5, 10, 14].

The study of stability of bases was initiated by R. E. A. C. Paley and N.Wiener in
1934. The celebrated Paley–Wiener Theorem states that if the sequence {φn}n∈Z+

is close to some orthonormal basis, then {φn}n∈Z+
forms a Riesz basis; see [18].

Fifty years ago T. Kato obtained the following theorem.

Theorem 1.1 ([12]). Let {Pn}n∈Z+
be a sequence of nonzero selfadjoint projections

on H such that
∞∑

n=0
Pn = I, PnPm = δmn Pn, n,m ∈ Z+, and {Jn}n∈Z+

be a sequence
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of nonzero projections on H satisfying JnJm = δmn Jn, n,m ∈ Z+. Suppose that

dimP0 = dim J0 < ∞,(1.1)
∞∑

n=1

‖Pn(Jn − Pn)x‖2 ≤ c2‖x‖2 for all x ∈ H,(1.2)

where c is a constant such that 0 ≤ c < 1. Then {Jn}n∈Z+
is similar to {Pn}n∈Z+

,
i.e., there exists an isomorphism S on H such that Jn = SPnS

−1, n ∈ Z+.

Using the correspondence between bases and sequences of projections (see Propo-
sition 2.1 in [14]), Theorem 1.1 can be reformulated as a stability theorem for Riesz
bases of subspaces in H when the given basis {Mn = PnH}n∈Z+

is orthogonal.
The proof of the Kato Theorem is very elegant, constructive, and relies on stability
theorems for Fredholm operators; see [11, 12]. The desired isomorphism S, which
maps JnH to PnH for n ∈ Z+, is given in the following explicit form:

S =

∞∑
n=0

PnJn.

The theorem of Kato was applied to the analysis of spectral expansions of per-
turbations of various unbounded selfadjoint operators on Hilbert spaces; see the
papers of Clark [6] on perturbations of ordinary differential operators, Adduci and
Mityagin on perturbations of selfadjoint operators with discrete spectrum [1, 2],
Mityagin and Siegl on the study of singular perturbations of the harmonic oscilla-
tor type operators [17], and Chapter 5, §4, of the monograph of Kato devoted to
the study of perturbations of selfadjoint operators [11]. Actually, all these studies
are aimed at proving the fulfillment of conditions of Theorem 1.1 for some classes
of perturbations of selfadjoint operators.

The purpose of this paper is the extension of Theorem 1.1 to the situation when
the sequence {Pn}n∈Z+

is nonselfadjoint and {PnH}n∈Z+
forms a Riesz basis.

2. The extension of the Kato Theorem

Let {Mn}n∈Z+
be a complete sequence of closed subspaces in a Hilbert space H.

Throughout the paper we will say that {Mn}n∈Z+
is a Riesz basis with constant

M provided that there is a constant M ≥ 1 such that∥∥∥∥∥
n∑

i=0

δiyi

∥∥∥∥∥ ≤ M

∥∥∥∥∥
n∑

i=0

yi

∥∥∥∥∥
for any n ∈ Z+, yi ∈ Mi, and δi ∈ {0, 1}. The latter is an equivalent definition of
the Riesz basis; see, e.g., Theorems 3.1 and 3.3 in [14]. Hence such a constant M
exists for every Riesz basis. Moreover, it depends on the mutual arrangement of
subspaces Mn, e.g., for an arbitrary orthogonal basis one has M = 1.

The extension of Theorem 1.1 is formulated as follows.

Theorem 2.1. Let {Mn}n∈Z+
be a Riesz basis of H with constant M and projec-

tions {Pn}n∈Z+
, and let {Jn}n∈Z+

be a sequence of nonzero projections on H such
that JnJm = δmn Jn n,m ∈ Z+. Suppose that condition (1.1) holds and for all x ∈ H
we have

(2.1)

∞∑
n=1

‖Pn(Jn − Pn)x‖2 ≤ ς2‖x‖2,
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where ς ∈ [0, 1/M). Then {JnH}n∈Z+
also forms a Riesz basis of H.

Proof. First we note that all Riesz bases of subspaces (with preassigned dimensions)
in H are mutually isomorphic and corresponding sequences of projections are mu-
tually similar; see, e.g., Theorem 3.3 in [14]. Hence, if {QnH}n∈Z+

is an arbitrary
orthogonal basis of subspaces and T is an isomorphism, then {TQnT

−1H}n∈Z+

forms a Riesz basis. Moreover, {TQnT
−1H}n∈Z+

is a Riesz basis with constant
‖T‖ ‖T−1‖, since∥∥∥∥∥

∞∑
n=0

δnTQnT
−1x

∥∥∥∥∥ ≤ ‖T‖
( ∞∑

n=0

δn
∥∥QnT

−1x
∥∥2)1/2

≤ ‖T‖ ‖T−1‖ ‖x‖ ,

where x ∈ H and δn ∈ {0, 1}, n ∈ Z+, are chosen arbitrarily.
It follows that for our Riesz basis {Mn = PnH}n∈Z+

with constant M there

exist an orthogonal basis
{
PnH

}
n∈Z+

and an isomorphism S such that

(2.2)
{
PnH = SPnS

−1H
}
n∈Z+

, ‖S‖ ‖S−1‖ ≤ M.

In the following steps of the proof we use this orthogonal basis
{
PnH

}
n∈Z+

and

isomorphism S.
So Pn = SPnS

−1, n ∈ Z+, where S is an isomorphism such that (2.2) holds.
Then condition (2.1) turns into

(2.3)
∞∑

n=1

∥∥SPnS
−1(Jn − SPnS

−1)x
∥∥2 ≤ ς2‖x‖2.

Since

‖Sz‖ ≥ ‖z‖
‖S−1‖

for any z ∈ H, condition (2.3) yields that

(2.4)

∞∑
n=1

∥∥PnS
−1Jnx− PnS

−1x
∥∥2 ≤ ς2

∥∥S−1
∥∥2 ‖x‖2.

Next we define a new sequence of projections as follows:

Jn = S−1JnS, n ∈ Z+.

Clearly, JnJm = S−1JnSS
−1JmS = δmn Jn, n,m ∈ Z+. Since S is an isomorphism,

by (1.1) we have
dim J0 = dim J0 = dimP0 = dimP 0.

Further, for any x ∈ H we consider y = S−1x. Then condition (2.4) implies the
following: for any y ∈ H we have

∞∑
n=1

∥∥Pn

(
Jn − Pn

)
y
∥∥2 ≤ ς2‖S−1‖2‖S‖2‖y‖2 = c2‖y‖2.

Taking into account (2.2) we have that c = ς‖S−1‖‖S‖ ≤ ςM ∈ [0, 1). The
next step is to apply Theorem 1.1 and conclude that there exists an isomorphism

S such that Jn = SPnS
−1

, n ∈ Z+. Consequently SPnS
−1

= S−1JnS, n ∈ Z+,
and, finally,

Jn = SSPnS
−1

S−1 = SSS−1PnSS
−1

S−1, n ∈ Z+.

The application of Theorem 3.3 from [14] completes the proof. �
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3. Stability of vector Riesz bases

Let {φn}n∈Z+
be a Riesz basis of H. Then {φn}n∈Z+

will be called a Riesz basis
with constant M provided that the sequence {Lin{φn}}n∈Z+

of one-dimensional
subspaces forms a Riesz basis of subspaces in H with constant M .

Using the general form of one-dimensional projection in a Hilbert space, we
deduce from Theorem 2.1 the following result.

Theorem 3.1. Let {φn}n∈Z+
be a Riesz basis of H with constant M and corre-

sponding biorthogonal sequence {φ∗
n}n∈Z+

. Assume that
(
{ψn}n∈Z+

, {ψ∗
n}n∈Z+

)
is

a biorthogonal system in H satisfying

(3.1) 0 < inf
n

‖ψn‖ ≤ sup
n

‖ψn‖ < ∞.

If for all x ∈ H we have
∞∑

n=1

|〈x, ψ∗
n〉〈ψn, φ

∗
n〉 − 〈x, φ∗

n〉|2‖φn‖2 ≤ ς2‖x‖2,

where ς ∈ [0, 1/M), then {ψn}n∈Z+
is a Riesz basis of H.

Further we apply Theorem 3.1 to the construction of Riesz bases in H. Let
{en}n∈Z+

be an orthonormal basis of H. Then en + 1
n+1en+1, n ∈ Z+, forms a

Riesz basis of H ([4], Example 1.2); see also [3]. This can also be deduced from
Theorem 1.1. Our next aim is to show that similar facts take place if we consider
Riesz bases instead of orthonormal ones.

Let {φn}n∈Z+
be a Riesz basis with corresponding biorthogonal sequence

{φ∗
n}n∈Z+

. Consider the following systems:

ψ∗
n = φ∗

n + θnφ
∗
n+1, n ∈ Z+,

ψn = φn − θn−1φn−1 + θn−1θn−2φn−2 + · · ·+ (−1)n
n−1∏
k=0

θkφ0, n ∈ Z+,

where {θn}n∈Z+
is a sequence of complex numbers and θ−j = 0 for j ∈ N.

Proposition 3.2. Let {φn}n∈Z+
be a Riesz basis of H with constant M and cor-

responding biorthogonal sequence {φ∗
n}n∈Z+

. Suppose that there exists N ∈ N such
that |θn| ≤ C for n ≥ N, where

(3.2) C <

inf
n≥N+1

‖φn‖

2M2 sup
n≥N

‖φn‖
.

Then {ψn}n∈Z+
and {ψ∗

n}n∈Z+
are Riesz bases of H.

Proof. First we prove the proposition for the case N = 1.
Direct computations show that

(
{ψn}n∈Z+

, {ψ∗
n}n∈Z+

)
is a biorthogonal system

in H satisfying (3.1). Clearly, 〈ψn, φ
∗
n〉 = 1 and 〈x, ψ∗

n〉 = 〈x, φ∗
n〉+ θn〈x, φ∗

n+1〉 for
each n ∈ Z+. Consequently, for all x ∈ H,

∞∑
n=1

|〈x, ψ∗
n〉〈ψn, φ

∗
n〉 − 〈x, φ∗

n〉|2‖φn‖2 =

∞∑
n=1

|θn|2|〈x, φ∗
n+1〉|2‖φn‖2(3.3)

≤ C2 sup
n∈N

‖φn‖2
∞∑

n=2

|〈x, φ∗
n〉|2.(3.4)
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Further, since {φn}n∈Z+
is a Riesz basis with constant M , we have

∞∑
n=0

|〈x, φ∗
n〉|2‖φn‖2 ≤ 4M2‖x‖2

for all x ∈ H; see, e.g., [14], Remark 4.7. Hence

(3.5)
∞∑

n=2

|〈x, φ∗
n〉|2 ≤ 4M2

inf
n≥2

‖φn‖2
‖x‖2

for all x ∈ H. Using (3.5) we can continue estimate (3.3) and obtain

∞∑
n=1

|〈x, ψ∗
n〉〈ψn, φ

∗
n〉 − 〈x, φ∗

n〉|2‖φn‖2 ≤ 4M2C2

sup
n∈N

‖φn‖2

inf
n≥2

‖φn‖2
‖x‖2 = ς2‖x‖2,

where ς = 2MC
sup
n∈N

‖φn‖

inf
n≥2

‖φn‖ . By virtue of (3.2) we have that ς < 1/M. Applying

Theorem 3.1 yields that {ψn}n∈Z+
is a Riesz basis of H. Hence a biorthogonal

sequence {ψ∗
n}n∈Z+

also forms a Riesz basis.
The proof of the proposition in the case when N ≥ 2 relies on similar arguments.

We consider projections P0 and J0 of dimension N and use Theorem 2.1 for this
case. �

Note that every Riesz basis is bounded from below and from above, so {φn}n∈Z+

satisfy (3.1) and condition (3.2) always makes sense. For normalized bases we have
the following direct corollary from Proposition 3.2.

Corollary 3.3. Let {φn}n∈Z+
be a normalized Riesz basis of H with constant M

and corresponding biorthogonal sequence {φ∗
n}n∈Z+

. If there exists N ∈ N such that
|θn| ≤ C for n ≥ N, where

(3.6) C <
1

2M2
,

then {ψn}n∈Z+
and {ψ∗

n}n∈Z+
are Riesz bases of H.

For the case when {φn}n∈Z+
is orthonormal we have M = 1, and Corollary 3.3

can be improved, since the condition C < 1/2 is too strong. To improve the result
for this case, using similar arguments we deduce from Theorem 1.1 the following
result and weaken condition (3.6).

Proposition 3.4. Let {φn}n∈Z+
be an orthonormal basis of H. If there exists

N ∈ N and C < 1 such that |θn| ≤ C for n ≥ N, then {ψn}n∈Z+
and {ψ∗

n}n∈Z+
are

Riesz bases of H.

4. Remarks

1) Proposition 3.4 can be deduced from the Paley–Wiener Theorem and is sharp
in the following sense. Let {en}n∈Z+

be an orthonormal basis of H and assume that
there exists N ∈ N such that |θn| ≥ 1, n ≥ N. Then {ϕn = en + θnen+1}n∈Z+

is
complete and a minimal sequence inH but not uniformly minimal. Hence {ϕn}n∈Z+

does not form a Schauder basis.
2) Theorem 2.1 is a much more subtle result than the Bari–Marcus Theorem

(see Theorem 5.2 and Remark 5.3 in [10, Chapter VI]). Indeed, in Theorem 2.1 we
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do not need to require that {JnH}n∈Z+
is complete and that for each k ∈ Z+ the

minimal angle between JkH and Lin{JnH}n�=k is positive.
3) Point 2 is also confirmed by the following observation. Consider the case when

dim Jn = dimPn = 1 for all n. Then [10, Chapter VI, §5] the Bari–Marcus Theorem
reduces to the Bari Theorem (Theorem 2.3 in [10, Chapter VI, §2]; see also [3]).
Let {φn}n∈Z+

be a Riesz basis of H. Using the Bari Theorem we can obtain that
{φn + θnφn+1}n∈Z+

is also a Riesz basis, provided that {θn}n∈Z+
∈ �2. The last is

a much weaker statement than Proposition 3.2. From this point of view, it can be
said that the condition of quadratic closeness of subspaces turns out to be much
more stronger than condition (2.1).

4) In applications all subspaces are usually finite dimensional. However, Theo-
rem 2.1 does not work in the case when all subspaces JnH have infinite dimension,
in contrast to the Bari–Marcus Theorem.

5) For the case when P0 = P ∗
0 and under a stronger condition on ς in (2.1),

namely ς ∈ [0, 1/(2M)), Theorem 2.1 was previously obtained by the author in [14];
see Theorem 7.5. But for the case M = 1, i.e., when {Mn}n∈Z+

is orthogonal, this
result did not coincide with the Kato Theorem, which was unnatural. Moreover,
it was deduced as a consequence of a more general stability result of Kato type for
bases of subspaces in Banach spaces with the so-called Schauder–Orlicz decompo-
sitions; see Theorem 7.2 in [14]. In the present paper we essentially weaken the
condition on ς, drop the condition P0 = P ∗

0 , and present a simple direct proof of
the main result, based on the Kato Theorem. Thereby we eliminate an unnatural
gap between stability result for Riesz bases and the Kato Theorem in such a way
that condition (2.1) approaches condition (1.2) when M → 1. Thus, Theorem 2.1
approaches the Kato Theorem when M → 1, i.e., when {Mn}n∈Z+

becomes more
and more close to the orthogonal basis, which corresponds to the nature of stability.

6) The sequence of nontrivial closed subspaces {Mn}n∈Z+
of a Banach space X

is called by an unconditional basis of subspaces provided that each x ∈ X has a
unique unconditionally convergent expansion

x =

∞∑
n=0

xn,

where xn ∈ Mn. The results on the stability of unconditional bases of subspaces in
�p spaces, similar to Theorem 2.1, were obtained in [15]. Moreover, it was shown
that the properties of unconditional bases of subspaces in �p spaces depend on the
best constants in the Khintchine inequality; see [14, 15].

7) It is known that every Riesz basis of subspaces is an unconditional basis of
subspaces and vice versa; see Theorem 5.1 in [10, Chapter VI] or Theorem 3.3 in [14].
Consequently, an unconditional basis of subspaces (with preassigned dimensions) in
a Hilbert space is unique, up to an isomorphism. However, are there other Banach
spaces with a unique, up to an isomorphism, unconditional basis of subspaces?

References

[1] James Adduci and Boris Mityagin, Eigensystem of an L2-perturbed harmonic oscillator is
an unconditional basis, Cent. Eur. J. Math. 10 (2012), no. 2, 569–589. MR2886559

[2] James Adduci and Boris Mityagin, Root system of a perturbation of a selfadjoint opera-
tor with discrete spectrum, Integral Equations Operator Theory 73 (2012), no. 2, 153–175.
MR2921063

http://www.ams.org/mathscinet-getitem?mr=2886559
http://www.ams.org/mathscinet-getitem?mr=2921063


STABILITY OF RIESZ BASES 3351

[3] N. K. Bari, Biorthogonal systems and bases in Hilbert space (Russian), Moskov. Gos. Univ.
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Harmonic Analysis, Birkhäuser/Springer, [Cham], 2016. MR3495345

[6] Colin Clark, On relatively bounded perturbations of ordinary differential operators, Pacific J.
Math. 25 (1968), 59–70. MR0226447

[7] Ruth F. Curtain and Hans Zwart, An introduction to infinite-dimensional linear systems
theory, Texts in Applied Mathematics, vol. 21, Springer-Verlag, New York, 1995. MR1351248

[8] Plamen Djakov and Boris Mityagin, Criteria for existence of Riesz bases consisting of root
functions of Hill and 1D Dirac operators, J. Funct. Anal. 263 (2012), no. 8, 2300–2332.
MR2964684

[9] Plamen Djakov and Boris Mityagin, Riesz bases consisting of root functions of 1D Dirac
operators, Proc. Amer. Math. Soc. 141 (2013), no. 4, 1361–1375. MR3008883
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