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OF BILINEAR SINGULAR INTEGRAL OPERATORS
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AND LESLEY A. WARD

(Communicated by Svitlana Mayboroda)

Abstract. The commutators of bilinear Calderón–Zygmund operators and
pointwise multiplication with a symbol in CMO are bilinear compact operators
on products of Lebesgue spaces. We show that, for certain non-degenerate
Calderón–Zygmund operators, the symbol being in CMO is not only sufficient

but actually necessary for the compactness of the commutators.

1. Introduction

In this note we resolve a problem that has been open for a while in the multilinear
Calderón–Zygmund theory: namely, whether the compactness of the commutators
of the bilinear Riesz transforms (see the next section for technical definitions) with
pointwise multiplication can be used to characterize the space CMO(Rn). For the
purpose of this article, CMO(Rn) is the closure in the John–Nirenberg BMO(Rn),
with its usual topology, of the space of infinitely differentiable functions with com-
pact support. This problem has been motivated by the analogous situation in the
classical (linear) Calderón–Zygmund theory and several preliminary existing results
in the multilinear setting, which we summarize in what follows.

As is well-known, the first to study the commutator

[b,Rk](f) := Rk(bf)− bRk(f)

of the classical Riesz transforms Rk with pointwise multiplication by a function b
were Coifman, Rochberg, and Weiss [5]. They showed that [b,Rk] is bounded on
Lp for some p with 1 < p < ∞ if and only if the symbol b is in BMO(Rn). Their
result was then extended to other non-degenerate Calderón–Zygmund operators by
Janson [7] and Uchiyama [14]. Moreover, Uchiyama showed that [b,Rk] is compact
on Lp for some (then for all) 1 < p < ∞ if and only if the function b is not just in
BMO(Rn) but actually in CMO(Rn).
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In the multilinear setting, an interesting situation arises: multilinear Calderón–
Zygmund operators, their commutators, and other related operators tend to be
bounded also into Lp spaces outside the Banach space situation. For example, in
the bilinear case a Calderón–Zygmund operator T in the sense of Grafakos and
Torres [6] (see also the references therein) satisfies

T : Lp1 × Lp2 → Lp,

for all 1 < p1 < ∞, 1 < p2 < ∞, and 1/p1 + 1/p2 = 1/p < 2. This creates
complications when studying the case of p < 1 in the target space, as some analytic
tools (often depending on duality) fail in this situation. For this reason the cases
p > 1 and p < 1 have been occasionally treated separately in the literature and by
different arguments. For example, the boundedness of the commutators

[b, T ]1(f, g) :=T (bf, g)− bT (f, g),

[b, T ]2(f, g) :=T (f, bg)− bT (f, g)

of a bilinear Calderón–Zygmund operator T with a BMO function b was first ob-
tained by Pérez and Torres in [10] when p > 1, while the case of p ≤ 1 was later
studied independently by Tang [12] and Lerner et al. [8]. The compactness of the
same commutators when b ∈ CMO(Rn) was obtained by Bényi and Torres in [1]
but only for p ≥ 1. Nonetheless, it was recently observed by Torres, Xue, and Yan
[13] that the result also holds for 1/2 < p < 1. The partial converse fact that the
boundedness of [b, T ]1 or [b, T ]2 for certain bilinear Calderón–Zygmund operators
forces b to be in BMO(Rn) was first proved by Chaffee [2] and was then also re-
visited by Li and Wick [9] using different techniques. In both cases the results are
also under the assumption p > 1. Finally, in a very recent manuscript posted to
the arXiv by Wang, Zhou, and Teng [15], the result of Chaffee [2] was extended to
1/2 < p ≤ 1.

We will show in Theorem 3.1 below that at least for the bilinear Riesz transforms,
the compactness of the commutators forces the symbol b to be in CMO(Rn). Our
work follows ideas of Uchiyama [14] and Chen, Ding, and Wang [4] in the linear
case, as well as modifications done in [3] for the bilinear operators. We note however
that the main difference with respect to the work in [3], and a difficulty we overcome
here, is that the operators in [3] are bilinear fractional integral operators which are
hence positively defined, which is a property heavily used in [3] but which certainly
completely fails for Calderón–Zygmund operators. We refer the reader to [3] and
the references therein for more on commutators of fractional singular operators in
both linear and multilinear settings.

2. Definitions

As mentioned in the introduction, the space CMO(Rn) is the closure in the
BMO(Rn) topology of the space of infinitely differentiable functions with compact
support, denoted here by C∞

c (Rn). For brevity, throughout the paper we denote
Lp(Rn) by Lp and similarly for BMO, CMO, and C∞

c . Also, for convenience, we
will use the BMO norm (modulo constants) defined for a locally integrable function
b by

‖b‖BMO := sup
Q

�
Q

|b(x)− bQ| dx < ∞,



CHARACTERIZATION OF COMPACTNESS OF BILINEAR COMMUTATORS 3945

with the supremum taken over all cubes Q ⊂ R
n with edges parallel to the coor-

dinate axes, and where for any locally integrable function f we use the standard
notation fQ = �Q f := 1

|Q|
∫
Q
f(x) dx for the average of f over Q. In addition, we

recall (see [14]) that b ∈ BMO is in CMO if and only if

lim
a→0

sup
|Q|=a

1

|Q|

∫
Q

|b(x)− bQ| dx = 0,(1)

lim
a→∞

sup
|Q|=a

1

|Q|

∫
Q

|b(x)− bQ| dx = 0, and(2)

lim
|y|→∞

1

|Q+ y|

∫
Q+y

|b(x)− bQ+y| dx = 0, for each Q.(3)

For x ∈ R
n we will use the notation x = (x1, . . . , xn) and consider the 2n bilinear

Riesz transform operators defined for k = 1, . . . , n by

Rk
1(f, g)(x) := p.v.

∫∫
R2n

xk − yk

(|x− y|2 + |x− z|2)n+1/2
f(y)g(z) dydz,

Rk
2(f, g)(x) := p.v.

∫∫
R2n

xk − zk

(|x− y|2 + |x− z|2)n+1/2
f(y)g(z) dydz.

The name of these operators is justified by the fact that they can be “obtained” by
considering the linear Riesz transforms in R

2n defined by

Rk(F )(u) := p.v.

∫
R2n

uk − vk

|u− v|2n+1
F (v) dv,

where u = (u1, . . . , u2n) and v = (v1, . . . , v2n), k = 1, . . . , 2n. Note that setting
u = (x, x), v = (y, z) with x, y, z ∈ R

n, and F (y, z) = f(y)g(z) leads, formally, to
the bilinear operators Rk

j , j = 1, 2. For k = 1, . . . , n, Rk
1(f, g)(x) = Rk(fg)(x, x),

while Rk
2(f, g)(x) = Rk+n(fg)(x, x).

The boundedness of the Rk
j operators from Lp1 × Lp2 to Lp, for 1 < p1 < ∞,

1 < p2 < ∞, and 1/p1 + 1/p2 = 1/p < 2, is by now well-known. See for example
[6] and the references therein.

For j = 1, 2 and k = 1, . . . , n, the (first-order) commutators of the Riesz trans-
form operators with a symbol b are given by

[b,Rk
j ]1(f, g) :=Rk

j (bf, g)− bRk
j (f, g),

[b,Rk
j ]2(f, g) :=Rk

j (f, bg)− bRk
j (f, g).

(4)

Notice that b ∈ BMO is consistent with the fact that, by linearity, for any complex
number C,

[b− C,Rk
j ]1(f, g) = [b,Rk

j ]1(f, g),

[b− C,Rk
j ]2(f, g) = [b,Rk

j ]2(f, g),

a fact that we will later use.
By the results mentioned in the introduction the boundedness of any of these

commutators from Lp1 × Lp2 to Lp, for the full range of exponents 1 < p1 < ∞,
1 < p2 < ∞, and 1/p1 + 1/p2 = 1/p < 2 is equivalent to b being in BMO. It is
also known that they are compact for the same range of exponents if in addition
b ∈ CMO. The new result we shall present is the converse of this last statement.
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3. Characterization of compactness

Theorem 3.1. Let 1 < p1 < ∞, 1 < p2 < ∞, and 1
p = 1

p1
+ 1

p2
< 2.1 Then each

of the commutators in (4) is a compact bilinear operator from Lp1 × Lp2 → Lp if
and only if b ∈ CMO.

Proof. We only need to establish the necessity of b ∈ CMO since the other direction
was proved in [1] and [13] as noted in the introduction. Moreover, by symmetry
and a change of variables it is enough to consider, for example, R1

1 and [b,R1
1]1. To

simplify notation we denote R1
1 by R.

Fix exponents p1, p2, p as in the statement of the theorem. Since bilinear compact
operators are bounded, if we assume R to be compact from Lp1×Lp2 → Lp we must
have that b ∈ BMO; see [2] for p > 1 and [15] for 1/2 < p ≤ 1. So for convenience,
by linearity, we may assume that b is real valued and with ‖b‖BMO = 1.

We will follow very closely some arguments in [4, 14] and [3] to show that if b
fails to satisfy one of the conditions (1)–(3), then one arrives at a contradiction
with the compactness of the operator. So b must be in CMO. We notice, however,
that a main difference in the arguments below, in particular with respect to [4] and
[3], is the fact alluded to in the introduction that the fractional integral operators
considered in those works are actually positive operators, while the singular inte-
grals studied here are not. This requires a modification in the lower estimate (8)
proved below.

Assume that {Qj}j is a sequence of cubes such that

(5)
1

|Qj |

∫
Qj

|b(x)− bQj
| dx ≥ ε,

for some ε > 0 and all j ∈ N. As in [4] and [3], define two sequences of functions
{fj} and {gj} associated with the cubes Qj in the following way. Let

c0 := |Qj |−1

∫
Qj

sgn(b(y)− bQj
) dy

and define

fj(y) := |Qj |−
1
p1

(
sgn(b(y)− bQj

)− c0
)
χQj

(y).

Here sgn denotes the usual signum function. Define also

gj(y) := |Qj |−
1
p2 χQj

(y).

These functions satisfy the following properties:

(a) supp fj ⊂ Qj and supp gj ⊂ Qj ,
(b) fj(y)(b(y)− bQj

) ≥ 0,

(c)
∫
fj(y) dy = 0,

(d)
∫
(b(y)− bQj

)fj(y) dy = |Qj |−
1
p1

∫
Qj

|b(y)− bQj
| dy,

(e) |fj(y)| ≤ 2|Qj |−
1
p1 and 0 ≤ gj(y) ≤ |Qj |−

1
p2 ,

1We note that in a first draft of this article we had stated Theorem 3.1 only for p > 1. Although
the computations in the proof (the same presented here) work for all 1/2 < p < ∞, it was not
known at the time whether the boundedness of the commutators when 1/2 < p ≤ 1 implies
b ∈ BMO, which is a condition needed to jump-start our arguments in the proof. Nothing else
in the proof depends on the value of p > 1/2. The recent result in [15] allows us now to state
Theorem 3.1 for the full range of exponents without altering its proof.
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(f) ‖fj‖Lp1 ≤ 2,
(g) ‖gj‖Lp2 = 1.

Let {yj} be the collection of centers of the cubes {Qj}. Then for all x ∈ (2
√
nQj)

c

the following standard pointwise estimates hold:

|R((b− bQj
)fj , gj)(x)| � |Qj |

1
p′
1
+ 1

p′
2 |x− yj |−2n,(6)

|R(fj , gj)(x)| � |Qj |
1
p′
1
+ 1

p′
2
+ 1

n |x− yj |−2n−1,(7)

where the constants involved are independent of j, b, fj , gj , and ε. Indeed, for all
such x and all y ∈ Qj we have |x− y| ≈ |x− yj | > 0, and hence by (a) and (e),

|R((b− bQj
)fj , gj)(x)| =

∣∣∣∣∣
∫∫

R2n

(x1 − y1)(b(y)− bQj
)fj(y)gj(z)

(|x− y|2 + |x− z|2)n+1/2
dydz

∣∣∣∣∣
� 1

|Qj |
1
p1

+ 1
p2

|x− yj |−2n

∫
Qj

∫
Qj

|b(y)− bQj
| dydz

� |Qj |
1
p′
1
+ 1

p′
2 |x− yj |−2n‖b‖BMO

� |Qj |
1
p′
1
+ 1

p′
2 |x− yj |−2n.

On the other hand, using (a), (e), the cancellation property (c) of fj , and the
regularity of the kernel of the operator R, we obtain

|R(fj , gj)(x)| =
∣∣∣∣∣
∫∫

R2n

(x1 − y1)fj(y)gj(z)

(|x− y|2 + |x− z|2)n+1/2
dydz

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rn

(∫
Rn

(
(x1 − y1)fj(y)gj(z)

(|x− y|2 + |x− z|2)n+1/2

−
(x1 − y1j )fj(y)gj(z)

(|x− yj |2 + |x− z|2)n+1/2

)
dy

)
dz

∣∣∣∣∣
�

∫
Qj

∫
Qj

|y − yj ||fj(y)|gj(z)
(|x− yj |2 + |x− z|2)n+1 dydz

� |Qj |
1
n

|x− yj |2n+1

∫
Qj

∫
Qj

|fj(y)|gj(z) dydz

� |Qj |
1
p′
1
+ 1

p′
2
+ 1

n |x− yj |−2n−1.

Next, we note that if dj is the side-length of Qj , then for all positive numbers

γ̃1, γ̃2, with γ̃2 = 8γ̃1 � 1 there always exists a cube Q̃j of side-length γ̃2

4
√
n
dj

contained in the annulus

A = {x ∈ R
n : γ̃1dj < |x− yj | < γ̃2dj}

and such that |x − y| ≈ |x − yj | ≈ x1 − y1j ≈ x1 − y1 > 0 for all x ∈ Q̃j and all
y ∈ Qj . We claim that for all such x,

(8) |R((b− bQj
)fj , gj)(x)| � ε|Qj |

1
p′
1
+ 1

p′
2 |x− yj |−2n,
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where again the constant involved is independent of j, b, fj , gj , and ε. To see (8),
we use properties (b) and (d) of fj to estimate

|R((b− bQj
)fj , gj)(x)| =

∣∣∣∣∣
∫∫

R2n

(x1 − y1)(b(y)− bQj
)fj(y)gj(z)

(|x− y|2 + |x− z|2)n+1/2
dydz

∣∣∣∣∣
� |Qj |1−

1
p2 |x− yj |−2n

∫
Qj

(b(y)− bQj
)fj(y) dy

= C1|Qj |1−
1
p2 |x− yj |−2n|Qj |1−

1
p1

1

|Qj |

∫
Qj

|(b(y)− bQj
)| dy

≥ C1|Qj |
1
p′
1
+ 1

p′
2 |x− yj |−2nε.

We continue to follow the computations in [14], [4], and [3] and want to establish
now that there exist constants γ1, γ2 with γ2 > γ1 > 0 and γ3 > 0, depending only
on p1, p2, n, and ε, such that the following estimates hold:(∫

γ1dj<|x−yj |<γ2dj

|[b,R]1(fj , gj)(x)|p dx
) 1

p

≥ γ3,(9)

(∫
|x−yj |>γ2dj

|[b,R]1(fj , gj)(x)|p dx
) 1

p

≤ γ3
4
.(10)

In order to prove (9) and (10), we first observe that for every large enough number
γ̃1 > ( 1

ln
√
2
)2, by properties (a) and (e) and the John–Nirenberg inequality,∫

|x−yj |>γ̃1dj

∣∣(b(x)− bQj
)R(fj , gj)(x)

∣∣p dx

� |Qj |
(

1
p′
1
+ 1

p′
2
+ 1

n

)
p

∞∑
s=�log2(γ̃1)�

∫
2sdj<|x−yj |<2s+1dj

|b(x)− bQj
|p

|x− yj |p(2n+1)
dx

� |Qj |
(

1
p′
1
+ 1

p′
2
+ 1

n

)
p

×
∞∑

s=�log2(γ̃1)�
2−s(2n+1)p|Qj |−(2+

1
n )p

∫
2sdj<|x−yj |<2s+1dj

|b(x)− bQj
|p dx

� |Qj |
(

1
p′
1
+ 1

p′
2
−2

)
p

∞∑
s=�log2(γ̃1)�

2−s(2n+1)psp2sn|Qj |

�
∞∑

s=�log2(γ̃1)�
2−s(2n−n

p + 1
2 )p,

and hence by 1/p < 2,

(11)

(∫
|x−yj |>γ̃1dj

∣∣(b(x)− bQj
)R(fj , gj)(x)

∣∣p dx

) 1
p

≤ C2γ̃
−(2n−n

p + 1
2 )

1 .
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Next, for γ̃2 = 8γ̃1, using (8) and (11), we obtain the following estimates: for p ≥ 1,

(∫
γ̃1dj<|x−yj |<γ̃2dj

|[b,R]1(fj , gj)(x)|p dx
) 1

p

≥
(∫

γ̃1dj<|x−yj |<γ̃2dj

|R ((b− bQ)fj , gj) (x)|p dx
) 1

p

−
(∫

γ̃1dj<|x−yj |
|(b(x)− bQ)R(fj , gj)(x)|p dx

) 1
p

≥ C1ε|Qj |
1
p′
1
+ 1

p′
2

(∫
Q̃j

|x− yj |−2np dx

) 1
p

− C2γ̃
−(2n−n

p + 1
2 )

1

≥ C1ε|Qj |
1
p′
1
+ 1

p′
2 |Q̃j |

1
p γ̃−2n

2 |Qj |−2 − C2γ̃
−(2n−n

p + 1
2 )

1

≥ C1ε(4
√
n)−

n
p γ̃

−2n+n
p

2 − C28
(2n−n

p + 1
2 )γ̃

−(2n−n
p + 1

2 )
2 ,(12)

and for 1/2 < p < 1,∫
γ̃1dj<|x−yj |<γ̃2dj

|[b,R]1(fj , gj)(x)|p dx

≥
∫
γ̃1dj<|x−yj |<γ̃2dj

|R ((b− bQ)fj , gj) (x)|p dx

−
∫
γ̃1dj<|x−yj |

|(b(x)− bQ)R(fj , gj)(x)|p dx

≥ C1ε
p|Qj |

(
1
p′
1
+ 1

p′
2

)
p
∫
Q̃j

|x− yj |−2np dx− C2γ̃
−(2n−n

p + 1
2 )p

1

≥ C1ε
p|Qj |

(
1
p′
1
+ 1

p′
2

)
p
|Q̃j |γ̃−2np

2 |Qj |−2p − C2γ̃
−(2n−n

p + 1
2 )p

1

≥ C1ε
p(4

√
n)−nγ̃−2np+n

2 − C28
(2n−n

p + 1
2 )pγ̃

−(2n−n
p + 1

2 )p
2 .(13)

We can now use (11) and (12) or (13) to replace γ̃1, γ̃2 with γ1 sufficiently large
and γ2 = 8γ1, so that (9) and (10) are verified for some γ3 > 0.

From here the arguments used in [3], which in turn followed the ones in [4], can
be repeated without any changes. Namely, it is possible to construct sequences of
cubes {Qj} and functions {fj}, {gj} in exactly the same way as in [3] so that if
any one of the conditions (1)–(3) were to be violated by b, then we would arrive at
a contradiction with the compactness of [b,R]1. The reader can easily follow the
argument in [3, pp. 491–493], simply replacing [b, Iα]1 therein by [b,R]1. To make
our paper more self-contained, we now sketch an outline of the argument.

Using (6) and (7) it can be shown that given γ1, γ2, and γ3 from (9) and (10),
there exists a β with 0 < β � γ2, depending on p1, p2, n, and ε, such that for each
measurable set

E ⊂ {x : γ1dj < |x− yj | < γ2dj}
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with |E|/|Qj | < βn, we get

‖[b,R]1(fj , gj)‖Lp(E) ≤
γ3
4
.(14)

This estimate relies on the fact that the result of Lemma 3.17(1) of [11], which
is stated there for p = 1, also holds for all p > 0 and hence also applies in our case,
where p > 1/2. In [4], the estimate corresponding to our (14) was obtained using
the case p ≥ 1 of this lemma.

With this in hand, if we suppose that any one of the conditions (1)–(3) on b fails,
we can construct a sequence of functions that will lead us to a contradiction with
the compactness of [b,R]1. For instance, if b does not satisfy (1), then there exist
some ε > 0 and a sequence {Qj} of cubes with |Qj | → 0 as j → ∞ such that

1

|Qj |

∫
Qj

|b(y)− bQj
| dy ≥ ε,

for every j. First, select a subsequence, denoted by {Q(i)
j }, so that the side-lengths

satisfy

d
(i)
j+1

d
(i)
j

<
β

2γ2
.

Next, let f
(i)
j and g

(i)
j , as defined before, be the functions associated to the selected

cubes Q
(i)
j . Finally, for each k, m ∈ N, consider the sets

G := {x : γ1d
(i)
k < |x− y

(i)
k | < γ2d

(i)
k },

G1 := G \ {x : |x− y
(i)
k+m| ≤ γ2d

(i)
k+m},

G2 := {x : |x− y
(i)
k+m| > γ2d

(i)
k+m}.

The choice of the Q
(i)
j s implies that

|Gc
2 ∩G|
|Q(i)

k |
≤ βn;

see again [4, p. 307]. For p ≥ 1, we can then estimate

‖[b,R]1(f
(i)
k , g

(i)
k )− [b,R]1(f

(i)
k+m, g

(i)
k+m)‖Lp

≥
(∫

G

∣∣∣[b,R]1(f
(i)
k , g

(i)
k )

∣∣∣p − ∫
Gc

2∩G

∣∣∣[b,R]1(f
(i)
k , g

(i)
k )

∣∣∣p) 1
p

(15)

−
(∫

G2

∣∣∣[b,R]1(f
(i)
k+m, g

(i)
k+m)

∣∣∣p) 1
p

.

Applying (9), (14), and (10) respectively to the three terms on the right-hand side
of (15), we conclude that

‖[b,R]1(f
(i)
k , g

(i)
k )− [b,R]1(f

(i)
k+m, g

(i)
k+m)‖Lp ≥

(
γp
3 − γp

3

4p

) 1
p

− γ3
4

≥ γ3
2
,

at least for p ≥ 1.
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In the case of 1/2 < p < 1, a similar argument using the reverse triangle in-
equality applied to the pth power of the left-hand side of (15) leads to the lower
bound

‖[b,R]1(f
(i)
k , g

(i)
k )− [b,R]1(f

(i)
k+m, g

(i)
k+m)‖pLp ≥

(
1− 2

4p

)
γp
3 .

This means that the image of the bounded set {(fj , gj)}j is not precompact,
which contradicts our assumption on [b,R]1. The cases where b does not satisfy
condition (2) or condition (3) are handled similarly, and we conclude our proof
here. �

Remark 3.2. We observe that the arguments used for the Riesz transforms Rk
j in

Theorem 3.1 also go through in more generality. In order to get the lower bound
(as in formulas (8) and (9) above), one usually uses the assumption that the kernel
of the operator is positive, if not in the whole space, then at least in a substantial
portion of the space. For the Riesz transforms Rk

j , although the kernel is not

positive, for each cube Qj we can find another cube Q̃j such that Q̃j lies in some

large annulus centered at the center yj of Qj , and for all x ∈ Q̃j and y, z ∈ Qj ,

K(x− y, x− z) > 0 and |x− y| ≈ |x− z| ≈ |x− yj |.
This condition together with the Calderón–Zygmund conditions on the size and
regularity of the kernel suffice to obtain the lower bound. This idea applies to
certain other bounded convolution-type singular operators, as we now discuss.

In the linear case, as is shown in Uchiyama’s paper [14], the Riesz transform can
be replaced by convolution-type singular integral operators with kernel of the form

K(x) =
Ω (x)

|x|n ,

where Ω is a homogeneous function of degree zero defined on the unit sphere in R
n

and is sufficiently smooth. Such a kernel is locally positive in the sense that there
is some spherical cap A in the unit sphere Sn−1 such that Ω (x) > c0 > 0 for all
x ∈ A.

Turning to the bilinear case, the arguments used for the bilinear Riesz trans-
forms Rk

j in Theorem 3.1 can be repeated for bounded convolution bilinear opera-
tors with kernel of the form

K(y, z) =
Ω

(
(y,z)
|(y,z)|

)
(|y|2 + |z|2)n ,

where Ω is a homogeneous function of degree zero defined on the unit sphere in R
n×

R
n and is sufficiently smooth. We need more assumptions on this kernel than in

the linear case.
First, we assume that 1/K has an absolutely convergent Fourier series in some

ball in R
2n. This assumption guarantees that the boundedness of the commutator

operator with a function b implies that b ∈ BMO, by the main result of [2].
Second, we assume that there is some spherical cap A on the unit sphere Sn−1

such that Ω
(

(y,z)
|(y,z)|

)
> c0 > 0 for all y, z ∈ A. This assumption enables us to get

the lower bound estimate (8). Indeed, given a cube Qj centered at yj , we can find

another cube Q̃j such that Q̃j lies in some large annulus centered at yj , and for

all x ∈ Q̃j and all y, z ∈ Qj , x − y and x − z lie in an infinite cone in R
n whose
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vertex is at the origin and which passes through the cap A. From our assumption,
it follows that

K(x− y, x− z) > 0 and |x− y| ≈ |x− z| ≈ |x− yj |

for all x ∈ Q̃j and y, z ∈ Qj . The computations in the proof of Theorem 3.1 can
now be repeated. We leave the details to the interested reader.

Acknowledgment

Part of the work leading to this article took place while the last two named au-
thors were visiting the Mathematical Sciences Research Institute (MSRI) at Berke-
ley in January 2017 during the Harmonic Analysis program. This stay at MSRI
gave them a chance to combine different previous efforts by all the colleagues in-
volved. The authors would like to thank the institute and the organizers of the
program for providing the resources for such a fruitful opportunity to carry out
this research.

References
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