THE CLASSIFICATION OF QUASI-ALTERNATING MONTESINOS LINKS

AHMAD ISSA
(Communicated by David Futer)

Abstract. In this paper, we complete the classification of quasi-alternating Montesinos links. We show that the quasi-alternating Montesinos links are precisely those identified independently by Qazaqzeh-Chbili-Qublan and Champanerkar-Ording. A consequence of our proof is that a Montesinos link L is quasi-alternating if and only if its double branched cover is an L-space, and bounds both a positive definite and a negative definite 4 -manifold with vanishing first homology.

1. Introduction

Quasi-alternating links were defined by Ozsváth-Szabó OS05, Definition 3.1] as a natural generalisation of the class of alternating links.
Definition 1. The set \mathcal{Q} of quasi-alternating links is the smallest set of links satisfying the following:

- The unknot U belongs to \mathcal{Q}.
- If L is a link with a diagram containing a crossing c such that
(1) both smoothings L_{0} and L_{1} of the link L at the crossing c, as in Figure 1. belong to \mathcal{Q},
(2) $\operatorname{det}\left(L_{0}\right), \operatorname{det}\left(L_{1}\right) \geq 1$, and
(3) $\operatorname{det}(L)=\operatorname{det}\left(L_{0}\right)+\operatorname{det}\left(L_{1}\right)$,
then L is in \mathcal{Q}. The crossing c is called a quasi-alternating crossing.

Figure 1. L and its two resolutions L_{0} and L_{1} in a neighbourhood of c

Ozsváth-Szabó showed that the class of nonsplit alternating links is contained in \mathcal{Q} OS05, Lemma 3.2]. Moreover, quasi-alternating links share a number of properties with alternating links; we list a few of these. For a quasi-alternating link L :

Received by the editors April 23, 2017, and, in revised form, October 13, 2017.
2010 Mathematics Subject Classification. Primary 57M25.
(i) L is homologically thin for both Khovanov homology and knot Floer homology MO08.
(ii) The double branched cover $\Sigma(L)$ of L is an L-space OS05, Proposition 3.3].
(iii) The 3-manifold $\Sigma(L)$ bounds a smooth negative definite 4-manifold W with $H_{1}(W)=0$ OS05, Proof of Lemma 3.6].
For some further properties see LO15, QC15, Ter15 and ORS13, Remark after Proposition 5.2].

Due to their recursive definition, it is difficult in general to determine whether or not a link is quasi-alternating. For example, there still remain examples of 12 -crossing knots with unknown quasi-alternating status Jab14. ChampanerkarKofman CK09 showed that the quasi-alternating property is preserved by replacing a quasi-alternating crossing with an alternating rational tangle. They used this to determine an infinite family of quasi-alternating pretzel links, which Greene later showed is the complete set of quasi-alternating pretzel links Gre10.

Qazaqzeh-Chbili-Qublan QCQ15 and Champanerkar-Ording CO15 independently generalised the sufficient conditions on pretzel links to obtain an infinite family of quasi-alternating Montesinos links. This family includes all examples of quasi-alternating Montesinos links found by Widmer Wid09. Furthermore, it was conjectured by Qazaqzeh-Chbili-Qublan that this family is the complete set of quasi-alternating Montesinos links. We mention that Watson Wat11 gave an iterative surgical construction for constructing all quasi-alternating Montesinos links.

Some necessary conditions to be quasi-alternating in terms of the rational parameters of a Montesinos link were obtained in QCQ15 and CO15 based on the fact that a quasi-alternating link is homologically thin. Further conditions are described in CO15 coming from the fact that the double branched cover of a quasi-alternating link is an L-space. Some additional restrictions were found in QC15.

Our main result is the following theorem which states that the quasi-alternating Montesinos links are precisely those found by Qazaqzeh-Chbili-Qublan QCQ15 and Champanerkar-Ording CO15.
Theorem 1. Let $L=M\left(e ; t_{1}, \ldots, t_{p}\right)$ be a Montesinos link in standard form, that is, where $t_{i}=\frac{\alpha_{i}}{\beta_{i}}>1$ and $\alpha_{i}, \beta_{i}>0$ are coprime for all $i=1, \ldots, p$. Then L is quasi-alternating if and only if
(1) $e<1$, or
(2) $e=1$ and $\frac{\alpha_{i}}{\alpha_{i}-\beta_{i}}>\frac{\alpha_{j}}{\beta_{j}}$ for some i, j with $i \neq j$, or
(3) $e>p-1$, or
(4) $e=p-1$ and $\frac{\alpha_{i}}{\alpha_{i}-\beta_{i}}<\frac{\alpha_{j}}{\beta_{j}}$ for some i, j with $i \neq j$.

As a corollary of our proof we obtain the following characterisation of the Montesinos links L which are quasi-alternating in terms of their double branched covers $\Sigma(L)$.

Corollary 1. A Montesinos link L is quasi-alternating if and only if
(1) $\Sigma(L)$ is an L-space, and
(2) there exist a smooth negative definite 4-manifold W_{1} and a smooth positive definite 4-manifold W_{2} with $\partial W_{i}=\Sigma(L)$ and $H_{1}\left(W_{i}\right)=0$ for $i=1,2$.

Note that in Corollary 1 and throughout, we assume all homology groups have \mathbb{Z} coefficients.

In light of this corollary, Theorem 2 can also be seen as a classification of the Lspace Seifert fibered spaces over S^{2} which bound both positive and negative definite 4 -manifolds with vanishing first homology. To what extent Corollary 1 generalises to non-Montesinos links remains an interesting question.

This work also gives a classification of the Seifert fibered space formal L-spaces. The notion of a formal L-space was defined by Greene and Levine GL16 as a 3manifold analogue of quasi-alternating links. In fact, the double branched cover of a quasi-alternating link is an example of a formal L-space. In LS17, Lidman and Sivek classified the quasi-alternating links of determinant at most 7. In fact, they showed that the formal L-spaces M^{3} with $\left|H_{1}(M)\right| \leq 7$ are precisely the double branched covers of quasi-alternating links with determinant at most 7. In this same direction, as a consequence of Corollary $\mathbb{1}$ we have the following.
Corollary 2. A Seifert fibered space over S^{2} is a formal L-space if and only if it is the double branched cover of a quasi-alternating link.

Corollary 1 also seems significant given the recent independent characterisations of alternating knots by Greene Gre17] and Howie How17. A nonsplit link is alternating if and only if it bounds negative definite and positive definite spanning surfaces (which are the checkerboard surfaces). The double branched cover of B^{4} over such a surface is a definite 4 -manifold of the appropriate sign. Generalising this, a quasi-alternating link has the property that it bounds a pair of surfaces in B^{4} with double branched covers a positive definite and a negative definite 4 manifold (these surfaces cannot be embedded in S^{3} in general). Corollary 1 shows that among Montesinos links with double branched covers which are L-spaces, this property characterises those which are quasi-alternating.

Our approach to proving Theorem 2 follows that of Greene Gre10 on the determination of quasi-alternating pretzel links. One of Greene's main strategies is as follows. Suppose L is a quasi-alternating Montesinos link such that $\Sigma(L)$ is the oriented boundary of the standard negative definite plumbing X^{4}. Since the property of being quasi-alternating is closed under reflection, by property (iiii) above, $-\Sigma(L)=\Sigma(\bar{L})$ bounds a negative definite 4-manifold W with $H_{1}(W)=0$. By Donaldson's theorem Don87, the smooth closed negative definite 4-manifold $X \cup W$ has diagonalisable intersection form. Hence, $H_{2}(X) /$ Tors $\hookrightarrow H_{2}(X \cup W) /$ Tors is an embedding of the intersection lattice of X into the standard negative diagonal lattice. Moreover, using the fact that $H_{1}(W)$ is torsion free, it is shown that if A is a matrix representing the lattice embedding, then A^{T} must be surjective.

When L is a pretzel link of a certain form, Greene analyses the possible embeddings of the intersection lattice of X into a negative diagonal lattice and shows that the aforementioned surjectivity condition cannot hold, and hence the link cannot be quasi-alternating. Our main contribution is to argue for more general Montesinos links L that there is no lattice embedding for which A^{T} is surjective. Key to our argument are some results on lattice embeddings by Lecuona-Lisca [L11]. The condition we obtain combined with an obstruction based on $\Sigma(L)$ being an L-space leads to the precise necessary conditions to complete the determination of quasi-alternating Montesinos links.

2. Preliminaries

We briefly recall some material on Montesinos links and plumbings. See CO15] or BZH14] for further detail on Montesinos links and [NR78] for more on plumbings.

The Montesinos link $M\left(e ; t_{1}, \ldots, t_{p}\right)$, where $t_{i}=\frac{\alpha_{i}}{\beta_{i}} \in \mathbb{Q}$ with $\alpha_{i}>1$ and β_{i} coprime integers, and e is an integer, is given by the diagram in Figure 2, In the figure, each box labelled t_{i} represents the corresponding rational tangle. The 0 rational tangle is shown in Figure 3. Introducing an additional positive (resp., negative) half-twist to the bottom of an a / b rational tangle produces a rational tangle represented by $a / b+1$ (resp., $a / b-1$); see Figure 3, Rotating (in either direction) a rational tangle represented by $t \in \mathbb{Q} \cup\{1 / 0\}$ by 90 degrees produces the rational tangle represented by $-1 / t$. The rational tangle represented by any $a / b \in \mathbb{Q} \cup\{1 / 0\}$ can be obtained from the 0 rational tangle by a sequence of these two operations. See [Cro04 for a more thorough treatment of rational links. Note, however, that an a / b rational tangle with our conventions corresponds to a b / a rational tangle in Cro04.

We also note that with our conventions for a Montesinos link $M\left(e ; t_{1}, \ldots, t_{p}\right)$, the integer e has opposite sign to that used by Champanerkar-Ording [CO15] and agrees with that of Qazaqzeh-Chbili-Qublan QCQ15 and Greene Gre10.

Figure 2. The Montesinos link $M\left(e ; t_{1}, \ldots, t_{p}\right)$, where a box labelled t_{i} represents a rational tangle corresponding to t_{i}. The crossing type of the $|e|$ crossings depends on the sign of e, with the two possibilities shown on the left.

Figure 3. From left to right: the 0 rational tangle, an abstract representation of a a / b rational tangle, the $\frac{a}{b}+1$ rational tangle, and the $-b / a$ rational tangle.

Montesinos link $M\left(e ; t_{1}, \ldots, t_{p}\right)$ is isotopic to $M\left(e+1 ; t_{1}, \ldots, t_{i-1}, t_{i}^{\prime}, t_{i+1}, \ldots, t_{p}\right)$, where $t_{i}^{\prime}=\frac{\alpha_{i}}{\beta_{i}+\alpha_{i}}$, and is also isotopic to $M\left(e-1 ; t_{1}, \ldots, t_{i-1}, t_{i}^{\prime}, t_{i+1}, \ldots, t_{p}\right)$, where
$t_{i}^{\prime}=\frac{\alpha_{i}}{\beta_{i}-\alpha_{i}}$. Hence, a Montesinos link is isotopic to one in standard form, that is, of the form $M\left(e ; t_{1}, \ldots, t_{p}\right)$ where $t_{i}>1$ for all i.

Let $L=M\left(e ; t_{1}, \ldots, t_{p}\right)$ where $t_{i}<-1$ for all i. Note that any Montesinos link can be put into this form. For each i, there is a unique continued fraction expansion

$$
t_{i}=\left[a_{1}^{i}, \ldots, a_{h_{i}}^{i}\right]:=a_{1}^{i}-\frac{1}{a_{2}^{i}-\frac{1}{\ddots} \quad},
$$

where $h_{i} \geq 1$ and $a_{j}^{i} \leq-2$ for all $j \in\left\{1, \ldots, h_{i}\right\}$.

Figure 4. The weighted star-shaped plumbing graph Γ

The double branched cover $\Sigma(L)$ of L is the oriented boundary of the 4-dimensional plumbing X_{Γ} of D^{2}-bundles over S^{2} described by the weighted star-shaped graph Γ shown in Figure (4) We call Γ the standard star-shaped plumbing graph for L. The i th leg of Γ corresponding to t_{i} is the linear subgraph generated by the vertices labelled with weights $a_{1}^{i}, \ldots, a_{h_{i}}^{i}$. The degree p vertex labelled with weight e is called the central vertex. Denote the vertices of Γ by $v_{1}, v_{2}, \ldots, v_{k}$. The zero-sections of the D^{2}-bundles over S^{2} corresponding to each of v_{1}, \ldots, v_{k} in the plumbing together form a natural spherical basis for $H_{2}\left(X_{\Gamma}\right)$. With respect to this basis, the intersection form of X_{Γ} is given by the weighted adjacency matrix Q_{Γ} with entries $Q_{i j}, 1 \leq i, j \leq k$, given by

$$
Q_{i j}= \begin{cases}\mathrm{w}\left(v_{i}\right), & \text { if } i=j, \\ 1, & \text { if } v_{i} \text { and } v_{j} \text { are connected by an edge } \\ 0, & \text { otherwise }\end{cases}
$$

where $\mathrm{w}\left(v_{i}\right)$ is the weight of vertex v_{i}. We call $\left(\mathbb{Z}^{k}, Q_{\Gamma}\right)$ the intersection lattice of $X_{\Gamma}($ or of $\Gamma)$.

3. Results

Equivalent sufficient conditions for a Montesinos link to be quasi-alternating were given in CO15, Theorem 5.3] and QCQ15. Theorem 3.5]. The goal of this section is to prove Theorem 2 which states that these sufficient conditions for a Montesinos link to be quasi-alternating are also necessary conditions.

Lemma 1. Let $L=M\left(e ; t_{1}, \ldots, t_{p}\right), p \geq 3$, be a Montesinos link in standard form, i.e., where $t_{i}=\frac{\alpha_{i}}{\beta_{i}}>1$ and $\alpha_{i}, \beta_{i}>0$ are coprime for all i. Suppose that $e \leq p-2$ and $e-\sum_{i=1}^{p} \frac{1}{t_{i}}>0$ (in particular $e \geq 1$). Then $\Sigma(L)$ is not an L-space, and therefore L is not quasi-alternating.
Proof. The reflection of L is given by $\bar{L}=M\left(e^{\prime} ; t_{1}^{\prime}, \ldots, t_{p}^{\prime}\right)=M\left(-e ;-t_{1}, \ldots,-t_{p}\right)$. The space $\Sigma(\bar{L})$ is the oriented boundary of a plumbing X_{Γ} corresponding to the standard star-shaped plumbing graph Γ for \bar{L}. Since $e^{\prime}-\sum_{i=1}^{p} \frac{1}{t_{i}^{\prime}}=-\left(e-\sum_{i=1}^{p} \frac{1}{t_{i}}\right)$ <0, by NR78, Theorem 5.2], X_{Γ} has negative definite intersection form.

Since X_{Γ} is negative definite and Γ is almost-rational, by Ném05, Theorem 6.3] we have that $\Sigma(\bar{L})$ is an L-space if and only if X_{Γ} is a rational surface singularity (more generally, see Ném15). Note that Γ is almost-rational since by sufficiently decreasing the weight of the central vertex we obtain a plumbing graph satisfying $-\mathrm{w}(v) \geq \operatorname{deg}(v)$ for all vertices v, where $\mathrm{w}(v)$ denotes the weight of v, and that such a graph is rational (for details see [Ném05, Example 8.2(3)]).

Laufer's algorithm Lau72, Section 4] can be used to determine whether the negative definite plumbing X_{Γ} is a rational surface singularity as follows. Let v_{1}, \ldots, v_{k} be the vertices of Γ, and for $i \in\{1, \ldots, k\}$ let $\left[\Sigma_{v_{i}}\right] \in H_{2}\left(X_{\Gamma}\right)$ be the spherical class naturally associated to v_{i}. The algorithm is as follows (see Sti08, Section 3] for a similar formulation):
(1) Let $K_{0}=\sum_{i=1}^{k}\left[\Sigma_{v_{i}}\right] \in H_{2}\left(X_{\Gamma}\right)$.
(2) In the i th step, consider the pairings $\left\langle P D\left[K_{i}\right],\left[\Sigma_{v_{j}}\right]\right\rangle$, for $j \in\{1, \ldots, k\}$. Note that these pairings may be evaluated using the adjacency matrix Q. If for some j the pairing is at least 2 , then the algorithm stops and X_{Γ} is not a rational surface singularity. If for some j the pairing is equal to 1 , then set $K_{i+1}=K_{i}+\left[\Sigma_{v_{j}}\right]$ and go to the next step. Otherwise all pairings are nonpositive, the algorithm stops, and X_{Γ} is a rational surface singularity.
Applying Laufer's algorithm to X_{Γ}, we claim that the algorithm terminates at the 0 th step. To see this, note that for v the central vertex of $\Gamma,\left\langle P D\left[K_{0}\right],\left[\Sigma_{v}\right]\right\rangle=p-e$ (each vertex adjacent to v contributes 1 and the central vertex contributes $-e$). By assumption $e \leq p-2$, so $\left\langle P D\left[K_{0}\right],\left[\Sigma_{v}\right]\right\rangle=p-e \geq 2$. Hence, the algorithm terminates, and we conclude that X_{Γ} is not a rational surface singularity and hence $\Sigma(\bar{L})$ is not an L-space. Therefore $\Sigma(L)$ is not an L-space.

The following lemma will provide an obstruction to a Montesinos link being quasi-alternating.

Lemma 2 ([Gre10, Lemma 2.1]). Suppose that X and W are a pair of 4-manifolds, $\partial X=-\partial W=Y$ is a rational homology sphere, and $H_{1}(W)$ is torsion-free. Express the map $H_{2}(X) /$ Tors $\rightarrow H_{2}(X \cup W) /$ Tors with respect to a pair of bases by the matrix A. This map is an inclusion, and A^{T} is surjective. In particular, if some k rows of A contain all the nonzero entries of some k of its columns, then the induced $k \times k$ minor has determinant ± 1.

The following two technical lemmas will be useful when we apply the obstruction to being quasi-alternating based on Lemma 2.

Lemma 3 (LL11 Lemma 3.1]). Suppose $-1 / r=\left[a_{1}, \ldots, a_{n}\right]$ and $-1 / s=\left[b_{1}, \ldots, b_{m}\right]$, where $r+s=1$. Consider a weighted linear graph Ψ having two connected components, Ψ_{1} and Ψ_{2}, where Ψ_{1} consists of n vertices v_{1}, \ldots, v_{n} with weights a_{1}, \ldots, a_{n} and Ψ_{2} of m vertices w_{1}, \ldots, w_{m} with weights b_{1}, \ldots, b_{m}. Moreover, suppose that there is an embedding of the lattice $\left(\mathbb{Z}^{n+m}, Q_{\Psi}\right)$ into $\left(\mathbb{Z}^{k},-I d\right)$, with basis e_{1}, \ldots, e_{k}. For S a subset of vertices of Ψ, define

$$
U_{S}=\left\{e_{i} \mid e_{i} \cdot v \neq 0 \text { for some } v \in S\right\} .
$$

Suppose further that $e_{1} \in U_{v_{1}} \cap U_{w_{1}}$ and $U_{\Psi}=\left\{e_{1}, \ldots, e_{k}\right\}$. Then $U_{\Psi_{1}}=U_{\Psi_{2}}$ and $k=n+m$.

Lemma 4 (LLL11, Lemma 3.2]). Let $-1 / r=\left[a_{1}, \ldots, a_{n}\right]$ and $-1 / s=\left[b_{1}, \ldots, b_{m}\right]$ be such that $r+s \geq 1$. Then there exists $n_{0} \leq n$ and $m_{0} \leq m$ such that $-1 / r_{0}=$ $\left[a_{1}, \ldots, a_{n_{0}}\right]$ and $-1 / s_{0}=\left[b_{1}, \ldots, b_{m_{0}}\right]$ satisfy $r_{0}+s_{0}=1$.
Theorem 2. Let $L=M\left(e ; t_{1}, \ldots, t_{p}\right)$ be a Montesinos link in standard form, that is, where $t_{i}=\frac{\alpha_{i}}{\beta_{i}}>1$ and $\alpha_{i}, \beta_{i}>0$ are coprime for all $i=1, \ldots, p$. Then L is quasi-alternating if and only if
(1) $e<1$, or
(2) $e=1$ and $\frac{\alpha_{i}}{\alpha_{i}-\beta_{i}}>\frac{\alpha_{j}}{\beta_{j}}$ for some i, j with $i \neq j$, or
(3) $e>p-1$, or
(4) $e=p-1$ and $\frac{\alpha_{i}}{\alpha_{i}-\beta_{i}}<\frac{\alpha_{j}}{\beta_{j}}$ for some i, j with $i \neq j$.

Proof. If one of the conditions (1)-(4) is satisfied, then L is quasi-alternating by either of [CO15, Theorem 5.3] or QCQ15, Theorem 3.5]. Thus it suffices to show that if none of the conditions are satisfied, then L is not quasi-alternating. Thus, assume none of the conditions are satisfied, in particular $p \geq 2$.

By [Sav02, Section 1.2.3] (see also [CO15, Proposition 4.1]), we have that

$$
\operatorname{det}(L)=\left|\alpha_{1} \ldots \alpha_{p}\left(e-\sum_{i=1}^{p} \frac{\beta_{i}}{\alpha_{i}}\right)\right| .
$$

If $p=2$, since none of the conditions are satisfied we must have $e=1$ and $\frac{\alpha_{1}}{\alpha_{1}-\beta_{1}}=$ $\frac{\alpha_{2}}{\beta_{2}}$. Hence, $\operatorname{det}(L)=\left|\alpha_{1} \alpha_{2}\left(1-\frac{\beta_{1}}{\alpha_{1}}-\frac{\beta_{2}}{\alpha_{2}}\right)\right|=0$, and so L is not quasi-alternating (in fact L must be the two component unlink). For the remainder of the argument we assume that $p \geq 3$, and $\operatorname{det}(L) \neq 0$, that is, $e-\sum_{i=1}^{p} \frac{\beta_{i}}{\alpha_{i}} \neq 0$.

First consider the case $1<e<p-1$. The reflection of L is given by

$$
\bar{L}=M\left(-e,-\frac{\alpha_{1}}{\beta_{1}}, \ldots,-\frac{\alpha_{p}}{\beta_{p}}\right)=M\left(p-e, \frac{\alpha_{1}}{\alpha_{1}-\beta_{1}}, \ldots, \frac{\alpha_{p}}{\alpha_{p}-\beta_{p}}\right),
$$

where the latter is written in standard form and $1<p-e<p-1$. Moreover, we see that a reflection reverses the sign of $e-\sum_{i=1}^{p} \frac{\beta_{i}}{\alpha_{i}}$, and thus by a reflection if necessary we may assume that $e-\sum_{i=1}^{p} \frac{\beta_{i}}{\alpha_{i}}>0$. Then by Lemma 1, $\Sigma(L)$ is not an L-space, so L is not quasi-alternating.

It remains to consider the cases $e=1$ and $e=p-1$. By a reflection if necessary we may assume that $e=1$. Note that conditions (2) and (4) are equivalent under a reflection. We assume that condition (2) is not satisfied. We need to prove that
this implies that L is not quasi-alternating. If $e-\sum_{i=1}^{p} \frac{\beta_{i}}{\alpha_{i}}>0$, then by Lemma $\Sigma(L)$ is not an L-space, and therefore L is not quasi-alternating.

Otherwise $e-\sum_{i=1}^{p} \frac{\beta_{i}}{\alpha_{i}}<0$. We have that

$$
L=M\left(1 ; \frac{\alpha_{1}}{\beta_{1}}, \ldots, \frac{\alpha_{p}}{\beta_{p}}\right)=M\left(1-p ; \frac{\alpha_{1}}{\beta_{1}-\alpha_{1}}, \ldots, \frac{\alpha_{p}}{\beta_{p}-\alpha_{p}}\right),
$$

where $\frac{\alpha_{i}}{\beta_{i}-\alpha_{i}}<-1$ for all i.
The double branched cover $\Sigma(L)$ of L is therefore the boundary of a plumbing 4-manifold X_{Γ} on the standard star-shaped planar graph Γ with central vertex of weight $-(p-1)$ and legs corresponding to the fractions $\frac{\alpha_{i}}{\beta_{i}-\alpha_{i}}, i \in\{1, \ldots, p\}$. Our assumption that $e-\sum_{i=1}^{p} \frac{\beta_{i}}{\alpha_{i}}<0$ implies that X_{Γ} is negative definite NR78, Theorem 5.2]. Suppose for the sake of contradiction that L is quasi-alternating. Then \bar{L} is quasi-alternating and $-\Sigma(L)=\Sigma(\bar{L})$ bounds a negative definite 4-manifold W with $H_{1}(W)=0$ OS05, Proof of Lemma 3.6]. By Donaldson's theorem Don87, the smooth closed negative definite 4-manifold $X_{\Gamma} \cup W$ has diagonalisable intersection form. Thus, the map $H_{2}\left(X_{\Gamma}\right) /$ Tors $\hookrightarrow H_{2}\left(X_{\Gamma} \cup W\right) /$ Tors induced by the inclusion map is an embedding of the intersection lattice $\left(\mathbb{Z}^{k}, Q_{\Gamma}\right)$ of X_{Γ} into the standard negative diagonal lattice $\left(\mathbb{Z}^{n},-\mathrm{Id}\right)$ for some n. Denote by e_{1}, \ldots, e_{n} a basis for $\left(\mathbb{Z}^{n},-\operatorname{Id}\right)$.

We use the lattice embedding to identify elements of $\left(\mathbb{Z}^{k}, Q_{\Gamma}\right)$ with their image in $\left(\mathbb{Z}^{n},-I d\right)$. For convenience, we will not distinguish between a vertex of Γ and the vector it corresponds to in the lattice. The central vertex v of Γ has weight $-(p-1)$, and so $v \cdot e_{i} \neq 0$ for at most $p-1$ values of $i \in\{1, \ldots, n\}$. Thus, by applying an automorphism if necessary, we may assume that v pairs nontrivially with precisely e_{1}, \ldots, e_{m}, where $m \leq p-1$. Since there are p legs, by the pigeonhole principle there must exist some e_{j}, where $j \in\{1, \ldots, m\}$, and two distinct vertices v_{1}, v_{2} adjacent to v with $v_{1} \cdot e_{j} \neq 0$ and $v_{2} \cdot e_{j} \neq 0$. Without loss of generality we assume that $j=1$ and that for $i \in\{1,2\}$, the vertex v_{i} belongs to the i th leg of Γ, i.e., corresponding to the fraction $\frac{\alpha_{i}}{\beta_{i}-\alpha_{i}}$.

Since we are assuming condition (2) does not hold, we have that $\frac{\alpha_{i}}{\alpha_{i}-\beta_{i}} \leq \frac{\alpha_{j}}{\beta_{j}}$ for all i, j with $i \neq j$. In particular, we have $\frac{\alpha_{1}}{\alpha_{1}-\beta_{1}} \leq \frac{\alpha_{2}}{\beta_{2}}$. Rearranging this gives $\frac{\beta_{1}}{\alpha_{1}}+\frac{\beta_{2}}{\alpha_{2}} \leq 1$. Note that the two legs correspond to the fractions $-1 / r:=-\frac{\alpha_{1}}{\alpha_{1}-\beta_{1}}=$ $\left[a_{1}^{1}, \ldots, a_{h_{1}}^{1}\right]$ and $-1 / s:=-\frac{\alpha_{2}}{\alpha_{2}-\beta_{2}}=\left[a_{1}^{2}, \ldots, a_{h_{2}}^{2}\right]$, where $r, s \in \mathbb{Q}$, and where our notation is as in Section 2. Thus, we have that $r+s=2-\frac{\beta_{1}}{\alpha_{1}}-\frac{\beta_{2}}{\alpha_{2}} \geq 1$. Since $r+s \geq$ 1, by Lemma 4 there exist $h_{1}^{\prime} \leq h_{1}$ and $h_{2}^{\prime} \leq h_{2}$ such that $-1 / r_{0}=\left[a_{1}^{1}, \ldots, a_{h_{1}^{\prime}}^{1}\right]$ and $-1 / s_{0}=\left[a_{1}^{2}, \ldots, a_{h_{2}^{\prime}}^{2}\right]$ with $r_{0}+s_{0}=1$.

Let Ψ be the union of the linear graph containing the first h_{1}^{\prime} vertices of the first leg (where we count vertices in a leg starting away from the central vertex) and the linear graph containing the first h_{2}^{\prime} vertices of the second leg. By restricting our embedding of ($\mathbb{Z}^{k}, Q_{\Gamma}$), we have an embedding of the sublattice corresponding to Ψ into $\left(\mathbb{Z}^{n},-\mathrm{Id}\right)$. The image of this embedding is contained in a sublattice $\left(\mathbb{Z}^{d},-\mathrm{Id}\right)$ of $\left(\mathbb{Z}^{n},-\mathrm{Id}\right)$ spanned by $\left\{e_{i} \in \mathbb{Z}^{n} \mid e_{i} \cdot v \neq 0\right.$ for some vertex v of $\left.\Psi\right\}$. Hence U_{Ψ} consists of d elements (see Lemma 3 for definition of U_{Ψ}). Let v_{1}, w_{1} be the two vertices of Ψ adjacent to the central vertex in Γ. By our choice of the two legs of Γ which contain the vertices of Ψ, we know that $e_{j} \in U_{v_{1}} \cap U_{w_{1}}$ for some
$j \in\{1, \ldots, n\}$. This shows that the hypotheses of Lemma 3 are satisfied, hence we conclude that $d=h_{1}^{\prime}+h_{2}^{\prime}$.

Let A be the matrix representing the embedding $\left(\mathbb{Z}^{k}, Q_{\Gamma}\right)$ into $\left(\mathbb{Z}^{n},-\mathrm{Id}\right)$. Then the $h_{1}^{\prime}+h_{2}^{\prime}$ columns of A corresponding to the vertices of Ψ are supported in $d=h_{1}^{\prime}+h_{2}^{\prime}$ rows of A corresponding to the d-dimensional sublattice of $\left(\mathbb{Z}^{n},-\mathrm{Id}\right)$. Denote this $d \times d$ minor by B. Then $-B^{T} B$ is a matrix for the intersection form of the plumbing corresponding to Ψ. Hence $-B^{T} B$ is a presentation matrix for $H_{1}(Y)$, where Y is the boundary of the (disconnected) plumbing corresponding to Ψ. The 3-manifold Y is the disjoint union of two lens spaces, each given by surgery on the unknot with framings $-1 / r_{0}<-1$ and $-1 / s_{0}<-1$, respectively. Therefore $|\operatorname{det}(B)|^{2}=\left|H_{1}(Y)\right|>1$, contradicting Lemma 2. Thus, L is not quasialternating.

Corollary 1. A Montesinos link L is quasi-alternating if and only if
(1) $\Sigma(L)$ is an L-space, and
(2) there exist a smooth negative definite 4-manifold W_{1} and a smooth positive definite 4-manifold W_{2} with $\partial W_{1}=\Sigma(L)$ and $H_{1}\left(W_{i}\right)=0$ for $i=1,2$.

Proof. This is a corollary of the proof of Theorem 22 Suppose first that L is quasialternating. By OS05, Proposition 3.3], $\Sigma(L)$ is an L-space. Furthermore, $\Sigma(L)$ must bound a negative definite 4-manifold W_{1} with $H_{1}\left(W_{1}\right)=0$ OS05, Proof of Lemma 3.6]. Applying this to the reflection of L which is also quasi-alternating, we get that $\Sigma(L)$ also bounds a positive definite 4 -manifold W_{2} with $H_{1}\left(W_{2}\right)=0$. For the converse, note that these two necessary conditions are the only conditions used to obstruct a Montesinos link from being quasi-alternating in the proof of Theorem 2

As a consequence, we obtain a classification of the Seifert fibered spaces which are formal L-spaces. Before stating it, we recall the definition of a formal L-space. We say that a triple (Y_{1}, Y_{2}, Y_{3}) of closed, oriented 3-manifolds forms a triad if there is a 3-manifold M with torus boundary, and three oriented curves $\gamma_{1}, \gamma_{2}, \gamma_{3} \subset \partial M$ at pairwise distance 1, such that Y_{i} is the result of Dehn filling M along γ_{i}, for $i=1,2,3$.

Definition 2. The set \mathcal{F} of formal L-spaces is the smallest set of rational homology 3 -spheres such that
(1) $S^{3} \in \mathcal{F}$ and
(2) if $\left(Y, Y_{0}, Y_{1}\right)$ is a triad with $Y_{0}, Y_{1} \in \mathcal{F}$ and

$$
\left|H_{1}(Y)\right|=\left|H_{1}\left(Y_{0}\right)\right|+\left|H_{1}\left(Y_{1}\right)\right|
$$

then $Y \in \mathcal{F}$.
Corollary 2. A Seifert fibered space over S^{2} is a formal L-space if and only if it is the double branched cover of a quasi-alternating link.

Proof. Let L be a quasi-alternating Montesinos link. Then the double branched cover of L is a Seifert fibered space over S^{2}. Ozsváth and Szabó show that the double branched cover of a quasi-alternating link is an L-space OS05, Proposition 3.3]. Their proof in fact shows that the double branched cover of a quasi-alternating link is a formal L-space. Hence $\Sigma(L)$ is a formal L-space Seifert fibered space over S^{2}.

Now let M be a formal L-space Seifert fibered space over S^{2}. Then M is the double branched cover of a Montesinos link L. Ozsváth and Szabó in OS05, Proof of Lemma 3.6] show that the double branched cover of a quasi-alternating link bounds both a positive definite and a negative definite 4 -manifold with vanishing first homology. However, their proof in fact shows this for all formal L-spaces. Hence $M=\Sigma(L)$ is a formal L-space bounding positive and negative definite 4manifolds with vanishing first homology. Thus, Corollary 1 implies that L is quasialternating.

Acknowledgments

I would like to thank Cameron Gordon for his support and helpful conversations, and Duncan McCoy for his suggestions and many helpful comments. I would also like to thank the referee for useful feedback.

References

[BZH14] Gerhard Burde, Heiner Zieschang, and Michael Heusener, Knots, Third, fully revised and extended edition, De Gruyter Studies in Mathematics, vol. 5, De Gruyter, Berlin, 2014. MR3156509
[CK09] Abhijit Champanerkar and Ilya Kofman, Twisting quasi-alternating links, Proc. Amer. Math. Soc. 137 (2009), no. 7, 2451-2458. MR2495282
[CO15] Abhijit Champanerkar and Philip Ording, A note on quasi-alternating Montesinos links, J. Knot Theory Ramifications 24 (2015), no. 9, 1550048, 15. MR3403210
[Cro04] Peter R. Cromwell, Knots and links, Cambridge University Press, Cambridge, 2004. MR2107964
[Don87] S. K. Donaldson, The orientation of Yang-Mills moduli spaces and 4-manifold topology, J. Differential Geom. 26 (1987), no. 3, 397-428. MR 910015
[GL16] Joshua Evan Greene and Adam Simon Levine, Strong Heegaard diagrams and strong L-spaces, Algebr. Geom. Topol. 16 (2016), no. 6, 3167-3208. MR3584256
[Gre10] Joshua Greene, Homologically thin, non-quasi-alternating links, Math. Res. Lett. 17 (2010), no. 1, 39-49. MR2592726
[Gre17] Joshua Evan Greene, Alternating links and definite surfaces, with an appendix by András Juhász and Marc Lackenby, Duke Math. J. 166 (2017), no. 11, 2133-2151. MR3694566
[How17] Joshua A. Howie, A characterisation of alternating knot exteriors, Geom. Topol. 21 (2017), no. 4, 2353-2371. MR3654110
[Jab14] Slavik V. Jablan, New knot tables, Filomat 15 (2001), 141-152. MR2105106
[Lau72] Henry B. Laufer, On rational singularities, Amer. J. Math. 94 (1972), 597-608. MR.0330500
[LL11] Ana G. Lecuona and Paolo Lisca, Stein fillable Seifert fibered 3-manifolds, Algebr. Geom. Topol. 11 (2011), no. 2, 625-642. MR 2782538
[LO15] Paolo Lisca and Brendan Owens, Signatures, Heegaard Floer correction terms and quasialternating links, Proc. Amer. Math. Soc. 143 (2015), no. 2, 907-914. MR3283677
[LS17] Tye Lidman and Steven Sivek, Quasi-alternating links with small determinant, Math. Proc. Cambridge Philos. Soc. 162 (2017), no. 2, 319-336. MR 3604917
[MO08] Ciprian Manolescu and Peter Ozsváth, On the Khovanov and knot Floer homologies of quasi-alternating links, Proceedings of Gökova Geometry-Topology Conference 2007, Gökova Geometry/Topology Conference (GGT), Gökova, 2008, pp. 60-81. MR2509750
[Ném05] András Némethi, On the Ozsváth-Szabó invariant of negative definite plumbed 3manifolds, Geom. Topol. 9 (2005), 991-1042. MR2140997
[Ném15] András Némethi, Links of rational singularities, L-spaces and LO fundamental groups, Invent. Math. 210 (2017), no. 1, 69-83. MR3698339
[NR78] Walter D. Neumann and Frank Raymond, Seifert manifolds, plumbing, μ-invariant and orientation reversing maps, Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977), Lecture Notes in Math., vol. 664, Springer, Berlin, 1978, pp. 163-196. MR 518415
[ORS13] Peter S. Ozsváth, Jacob Rasmussen, and Zoltán Szabó, Odd Khovanov homology, Algebr. Geom. Topol. 13 (2013), no. 3, 1465-1488. MR3071132
[OS05] Peter Ozsváth and Zoltán Szabó, On the Heegaard Floer homology of branched doublecovers, Adv. Math. 194 (2005), no. 1, 1-33. MR2141852
[QC15] Khaled Qazaqzeh and Nafaa Chbili, A new obstruction of quasialternating links, Algebr. Geom. Topol. 15 (2015), no. 3, 1847-1862. MR3361152
[QCQ15] K. Qazaqzeh, N. Chbili, and B. Qublan, Characterization of quasi-alternating Montesinos links, J. Knot Theory Ramifications 24 (2015), no. 1, 1550002, 13. MR3319679
[Sav02] Nikolai Saveliev, Invariants for homology 3-spheres, Low-Dimensional Topology, I, Encyclopaedia of Mathematical Sciences, vol. 140, Springer-Verlag, Berlin, 2002. MR 1941324
[Sti08] András I. Stipsicz, On the $\bar{\mu}$-invariant of rational surface singularities, Proc. Amer. Math. Soc. 136 (2008), no. 11, 3815-3823. MR2425720
[Ter15] Masakazu Teragaito, Quasi-alternating links and Kauffman polynomials, J. Knot Theory Ramifications 24 (2015), no. 7, 1550038, 17. MR 3361803
[Wat11] Liam Watson, A surgical perspective on quasi-alternating links, Low-dimensional and symplectic topology, Proc. Sympos. Pure Math., vol. 82, Amer. Math. Soc., Providence, RI, 2011, pp. 39-51. MR2768652
[Wid09] Tamara Widmer, Quasi-alternating Montesinos links, J. Knot Theory Ramifications 18 (2009), no. 10, 1459-1469. MR2583805

Department of Mathematics, The University of Texas at Austin, Austin, Texas 78712
Email address: aissa@math.utexas.edu

