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GRADIENT FLOWS FOR SEMICONVEX FUNCTIONS

ON METRIC MEASURE SPACES – EXISTENCE, UNIQUENESS,

AND LIPSCHITZ CONTINUITY

KARL-THEODOR STURM

(Communicated by Guofang Wei)

Abstract. Given any continuous, lower bounded, and κ-convex function V
on a metric measure space (X, d,m) which is infinitesimally Hilbertian and
satisfies some synthetic lower bound for the Ricci curvature in the sense of
Lott-Sturm-Villani, we prove existence and uniqueness for the (downward)
gradient flow for V . Moreover, we prove Lipschitz continuity of the flow w.r.t.
the starting point

d(xt, x
′
t) ≤ e−κ td(x0, x

′
0).

Throughout this paper, let (X, d) be a locally compact geodesic space and let m
be a locally finite Borel measure with full topological support. We always assume
that the metric measure space (X, d,m) satisfies the RCD(K,∞)-condition for some
finite number K ∈ R. Recall that this means that Ent(.|m), the Boltzmann entropy
w.r.t. m, is weakly K-convex on the geodesic spaces (P2(X),W2) and that E , the
Cheeger energy on (X, d,m), is a quadratic functional on L2(X,m), [9], [10], [5], [3],

[4]. Among many others, it implies that
∫
X
e−C′ d2(x,x′) m(dx) < ∞ for some C ′ ∈

R, x′ ∈ X. Note that the latter in turn implies Ent(μ|m) ≥ −C ′′ − C ′W 2
2 (μ, δx′)

for each μ ∈ P2(X).
Here and henceforth W2 will denote the 2-Kantorovich–Wasserstein distance

and P2(X) the 2-Wasserstein space consisting of those Borel probability measures
μ on X which satisfy W2(μ, δx′) < ∞ (for some, hence all, x′ ∈ X). Recall
that Ent(μ|m) =

∫
ρ log ρ dm provided μ = ρm is absolutely continuous w.r.t. m

and
∫
ρ(log ρ)+ dm < ∞. Otherwise Ent(μ|m) = +∞. Also recall that E(u) =

lim inf
{ ∫

X
|Dun|2 dm : un ∈ Lip(X), un → u in L2(X,m)

}
with |Du|(x) =

lim supy→x
|u(x)−u(y)|

d(x,y) .

Moreover, let a function V : X → (−∞,+∞] be given which is continuous (w.r.t.
the topology of the extended real line) and bounded from below by −C0−C1d

2(., x0)
for some C0, C1 ∈ R, x0 ∈ X. Put X0 = {V < ∞} and X ′ = X0.
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Definition.

(i) Given a number κ ∈ R, we say that V is weakly κ-convex if for each
x0, x1 ∈ X there exists a geodesic γ : [0, 1] → X connecting them (i.e.,
γ0 = x0, γ1 = x1) such that

(1) V (γt) ≤ (1− t)V (γ0) + tV (γ1)− κt(1− t)|γ̇|2/2

for each t ∈ [0, 1]. If (1) holds for all geodesics γ in X and all t ∈ [0, 1],
then V is called strongly κ-convex.

(ii) Given x0 ∈ X, an EVIκ-gradient flow for V starting in x0 is an absolutely
continuous curve (xt)t≥0 in X emanating in x0 such that for all z ∈ X0 and
a.e. t > 0,

(2)
d

dt

1

2
d2(xt, z) + κ d2(xt, z) ≤ V (z)− V (xt).

Note that here and in the sequel—as common in metric geometry—a geodesic is
always minimizing and parametrized by arc length.

The main result of this paper is the following.

Theorem. If V is weakly κ-convex, then for each x0 ∈ X ′ there exists a unique
EVIκ-gradient flow for V starting in x0.

It is well known—and easy to see—that the existence of an EVIκ-gradient flow
for V starting in x0 implies its uniqueness and the “contraction” property (or
“expansion” bound)

(3) d(xt, x
′
t) ≤ e−κ td(x0, x

′
0)

for each pair of points x0, x
′
0 ∈ X ′ and associated flows (xt)t≥0 and (x′

t)t≥0. More-
over, every EVIκ-gradient flow is also a gradient flow in the sense of energy dissi-
pation

(4) V (xt) = V (xs)−
1

2

∫ t

s

(
|ẋr|2 + |∇−V |2(xr)

)
dr

for all 0 ≤ s ≤ t, where as usual |∇−V |(x) := lim supy→x
[V (x)−V (y)]+

d(x,y) . In particu-

lar, t �→ V (xt) is nonincreasing.

Corollary 1. For each x0 ∈ X ′ there exists a unique curve (xt)t≥0 such that
μt = δxt

is the EVIκ-gradient flow for S starting in μ0 = δx0
.

The curve (xt)t≥0 is the unique EVIκ-gradient flow for V starting in x0.

Proof. Put μ0 = δx0
. Then Var2(μ0) = 0 and thus, according to the previous

lemma, also Var2(μt) = 0. This implies that each of the measures μt is supported
by a single point, say xt.

Moreover, the fact that the curve (δxt
)t≥0 in P2(X

′) is the EVIκ-gradient flow
for S starting in μ0 = δx0

immediately implies that the curve (xt)t≥0 in X ′ is the
(unique) EVIκ-gradient flow for V starting in x0. (To verify (2), just apply (7) to
Diracs ν = δz.) �

Corollary 2. The following properties are equivalent:

(i) V is weakly κ-convex;
(ii) V is strongly κ-convex;



GRADIENT FLOWS FOR SEMICONVEX FUNCTIONS 3987

(iii) V is κ-convex in EVI-sense, i.e., for each x0 ∈ X ′ there exists a curve
(xt)t≥0 in X ′ such that for all z ∈ X0 and all t > 0,

d

dt

1

2
d2(xt, z) + κd2(xt, z) ≤ V (z)− V (xt).

Note that the implications (iii)⇒(ii)⇒(i) hold true in any geodesic space; see [4].

Remark. Our main result extends previous results in various respects.
In the setting of Alexandrov spaces (i.e., metric spaces with synthetic lower

bounds for the sectional curvature), the existence, uniqueness, and Lipschitz conti-
nuity of gradient flows for semiconvex functions has been derived in an unpublished
manuscript by Perelman and Petrunin [7]. The proof has been worked out and pub-
lished by Plaut [8] and Lytchak [6]. This result requires no local compactness of
the state space. The function V , however, is always required to be bounded and
Lipschitz continuous.

In the setting of Hilbert spaces (and to some extent also for metric spaces),
a far reaching theory of gradient flows for lower semicontinuous functions (with
suitable lower growth bounds and compact sublevel sets) has been developed by
Brezis as well as by De Giorgi and his school; see in particular the monograph [1]
by Ambrosio-Gigli-Savaré. In this context, however, the state space X has to be
flat (or of nonpositive curvature).

In the setting of metric measure spaces with synthetic Ricci bounds, currently
no direct proof—without passing to the Wasserstein space but instead using more
detailed properties of the Hessian of V ; cf. [11]—is known to the author.

The Theorem will be proven according to the following line of argumentation in
the subsequent lemmata:

• There exists an EVIκn
-gradient flow for the functional Sn(μ)=

1
nEnt(μ|m)+∫

V dμ on P2(X
′) with κn = 1

nK + κ.
• In the limit n → ∞ this yields an EVIκ-gradient flow for the functional
S(μ) =

∫
V dμ on P2(X

′).
• The EVIκ-gradient flow for S is nondiffusive. In particular, the flow starting
in a Dirac mass will not spread out: it is a Dirac mass in a moving point.

Lemma 1. There exists an EVIκn
-gradient flow for the functional Sn(μ) =

1
nEnt(μ|m) +

∫
V dμ on P2(X

′) with κn = 1
nK + κ.

Proof. (i) Let us begin with some general remarks. Since X is geodesic and locally
compact, it is “proper” in the sense that all closed balls are compact. By means of
Prokhorov’s theorem this implies that W2-bounded subsets of P2(X) are relatively
compact (w.r.t. the usual topology of weak convergence of measures).

(ii) As a first step, we replace the space X by X ′ and the measure m by m′ :=
1X0

m. Weak κ-convexity of the function V implies weak convexity of the set X0,
i.e., for each pair of points x0, x1 ∈ X0 there exists a connecting geodesic which
stays in X0 (and minimizes the distance in X).

Together with the fact that RCD(K,∞) implies strong K-convexity of the Boltz-
mann entropy Ent(.|m) on P2(X) ([3], Prop. 2.23), it yields weak K-convexity
of the Boltzmann entropy Ent(.|m′) on P2(X

′). Moreover, the Cheeger energy
for (X ′, d,m′) is still quadratic. (The relaxed gradients w.r.t. m and m′, resp.,
are local operators; they coincide on X0.) Thus (X ′, d,m′) satisfies the condition
RCD(K,∞); cf. [3], Thm. 4.19 (iii).
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(iii) Next we consider the weighted mms (X ′, d,m′
1) with m′

1 = e−V m′. Since
V is continuous and bounded from below by −C0 − C1d

2(., x0), it follows that the
functional S : μ �→

∫
V dμ on P2(X

′) is lower semicontinuous and bounded from
below by −C0 − C1W

2
2 (., δx0

). Indeed, if μn → μ in P2(X
′), then W2(μn, δx0

) →
W2(μ, δx0

) and

lim inf
n→∞

∫
Ṽ dμn ≥ lim inf

n→∞

∫
Ṽidμn =

∫
Ṽidμ

for each i ∈ N, where Ṽ := V +C1 · d2(., x0) and Ṽi := Ṽ ∧ i (which is bounded and

continuous). Therefore, lim infn→∞
∫
Ṽ dμn ≥

∫
Ṽ dμ, and thus in turn

lim infn→∞
∫
V dμn ≥

∫
V dμ.

The weak κ-convexity of V on X implies that S is weakly κ-convex on P2(X
′).

Indeed, if μ0 =
∑∞

i=1 λi · δxi
and μ1 =

∑∞
i=1 λi · δyi

for some λi ≥ 0 and xi, yi ∈ X ′

are given in such a way that q =
∑∞

i=1 λi ·δ(xi,yi) is an optimal coupling of them and

if zi is an t-intermediate point of xi, yi (i.e., 1
t d(xi, zi) = 1

1−td(yi, zi) = d(xi, yi))

with V (zi) ≤ (1 − t)V (xi) + tV (yi) − κ
2 t(1 − t)d2(xi, yi) for each i ∈ N, then

μt :=
∑∞

i=1 λi · δzi is a t-intermediate point of μ0, μ1 and

S(μt) ≤ (1− t)S(μ0) + tS(μ1)−
κ

2
t(1− t)W 2

2 (μ0, μ1).

For arbitrary discrete measures μ0 =
∑∞

i=1 αi · δxi
and μ1 =

∑∞
j=1 βj · δyj

, each

optimal coupling of them can be written as q =
∑∞

i,j=1 λij · δ(xi,yj) for suitable

λij ≥ 0 with
∑∞

k=1 λik = αi and
∑∞

k=1 λkj = βj . Replacing αiδxi
and βjδyj

by∑∞
k=1 λikδxi

and
∑∞

k=1 λkjδyj
, resp., and relabeling the indices, we may assume

without restriction that μ0, μ1 and q are always given as above.
Given general μ0, μ1 ∈ P2(X

′), choose μn
s ∈ P2(X

′) for s ∈ {0, 1} of the above
type with μn

s → μs and
∫
V dμn

s →
∫
V dμs as n → ∞. One way to achieve this is

to fix for each n ∈ N a partition X ′ =
⋃

i X
n
i by sets of diameter less than 1/n, to

select points xn
i ∈ X

n

i with V (xn
i ) = infy∈X

n
i
V (y), and to put μn

s =
∑

i μs(X
n
i )δxn

i
.

Then obviously W2(μ
n
s , μs) ≤ 1/n and

∫
V dμn

s ≤
∫
V dμs. Thus the claim follows

by lower semicontinuity of
∫
V dμ.

Then for given t ∈ (0, 1) choose t-intermediate points μn
t of μn

0 , μ
n
1 satisfying the

above inequality for κ-convexity. Properness of X and W 2
2 -boundedness of (μ

n
t )n∈N

implies that for each t ∈ (0, 1) there exists a converging subsequence, again denoted
by μn

t , n ∈ N, of t-intermediate points of μn
0 , μ

n
1 with limit point μt which then must

be a t-intermediate point of μ0, μ1. Lower semicontinuity of S implies

S(μt) ≤ lim inf
n→∞

S(μn
t )

≤ lim inf
n→∞

[
(1− t)S(μn

0 ) + tS(μn
1 )−

κ

2
t(1− t)W 2

2 (μ
n
0 , μ

n
1 )
]

=
[
(1− t)S(μ0) + tS(μ1)−

κ

2
t(1− t)W 2

2 (μ0, μ1)
]
.

This is the weak κ-convexity of S on P2(X
′).

Since Ent(μ|m′) +
∫
V dμ = Ent(μ|e−V m′) and since Ent(μ|m′) is strongly K-

convex on P2(X
′), this also yields the weak (K +κ)-convexity of Ent(μ|e−V m′) on

P2(X
′) or, in other words, the CD(K + κ,∞)-condition for (X ′, d,m′

1).
(iv) The next step will be to prove that the Cheeger energy for (X ′, d,m′

1) is
quadratic or, equivalently, that the relaxed gradients in (X ′, d,m′

1) are quadratic.
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The assumption on the quadratic lower bound for V guarantees the requested inte-
grability condition for m′

1. Moreover, the local boundedness of V guarantees that
on each closed ball in X0, the measures m′ and m′

1 are equivalent with Radon–
Nikodym density bounded from above and below (away from 0). Thus according to
[2], Lemma 4.11, the relaxed gradients w.r.t. m′ and w.r.t. m′

1 coincide. Since the
former already was proven to be quadratic, this finally proves the RCD(K+κ,∞)-
condition for (X ′, d,m′

1).
(v) These observations will now be applied with n · V in the place of V , which

then yields that the space (X ′, d, e−nV m′) satisfies the RCD(κ̃n,∞)-condition with
κ̃n = K+nκ, [3], Prop. 6.19. The latter in turn implies the existence of an EVIκ̃n

-

gradient flow for the functional S̃n(μ) = Ent(μ|e−nV m′) = Ent(μ|m′)+n
∫
V dμ on

P2(X
′). Replacing S̃n by Sn = 1

n S̃n and rescaling time by the factor n yields the
claim. �

Lemma 2. There exists an EVIκ-gradient flow for the functional S(μ) =
∫
V dμ

on P2(X
′).

Proof. (i) Let (μn
t )t>0 denote the EVIκn

-gradient flow for the functional Sn(μ) =
1
nEnt(μ|m) +

∫
V dμ on P2(X

′) with κn = 1
nK + κ. It is unique and well defined

for each starting point μ0 ∈ P2(X
′). Property (2) (∀t > 0)—with Sn and W2 in

place of V and d—is obviously equivalent to the property

(5)
1

2
W 2

2 (μ
n
t , ν)e

2κnt − 1

2
W 2

2 (μ
n
s , ν)e

2κns ≤ 1

2κn
(e2κnt − e2κns)[Sn(ν)− Sn(μ

n
t )]

(∀0 ≤ s < t). In the case κ = 0, the prefactor 1
2κ (e

2κt − e2κs) has to replaced by
(t− s).

(ii) Note that our assumptions on m and V imply that Sn(ν) ≤ S1(ν) + C ′′ +
C ′W 2

2 (ν, δx′) ≤ C∗ whenever S1(ν) < ∞ and that−Sn(μ
n
t ) ≤ C ′′+C ′ W 2

2 (μ
n
t , δx′)+

C0 + C1W
2
2 (μ

n
t , δx0

). The differential version of (5) (or, in other words, (2) with
Sn and W2) allows us to estimate uniformly in n

d

dt

1

2
W 2

2 (μ
n
t , ν) ≤ −κW 2

2 (μ
n
t , ν) + Sn(ν)− Sn(μ

n
t )

≤ C + c · 1
2
W 2

2 (μ
n
t , ν),

which leads to the uniform growth bound

1

2
W 2

2 (μ
n
t , ν) ≤ ect · 1

2
W 2

2 (μ0, ν) + (ect − 1) · C/c

with constants C and c which may depend on ν but not on n. Thus for each
t ∈ (0, 1), the sequence (μn

t )n∈N is W2-bounded. Local compactness of W2-bounded
subsets of P2(X

′) implies that there exists some limit point μt such that μn
t → μt

weakly—at least after passing to a subsequence. A diagonal argument allows us to
choose this subsequence in such a way that convergence holds for all rational t ≥ 0.

(iii) The quadratic lower bound (in terms of W2) for μ �→ Ent(μ|m) and the
lower semicontinuity μ �→

∫
V dμ imply that lim infn→∞ Sn(μ

n
t ) ≥ S(μt). Moreover,

limn→∞ Sn(ν) = S(ν) provided Ent(ν) < ∞. Thus for all such ν and for all rational
0 ≤ s < t,

(6)
1

2
W 2

2 (μt, ν)e
2κt − 1

2
W 2

2 (μs, ν)e
2κs ≤ 1

2κ
(e2κt − e2κs)[S(ν)− S(μt)].
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Applying this estimate with ν = μs we obtain local Lipschitz continuity in t ∈
(0,∞)∩Q of the flow (μt)t which allows us to extend it to all t, still satisfying the
previous estimate. Thus, in particular,

(7)
d

dt

1

2
W 2

2 (μt, ν) + κW 2
2 (μt, ν) ≤ S(ν)− S(μt)

for a.e. t ≥ 0.
(iv) The next step is to extend (6) (and in turn therefore also (7)) to all

ν ∈ P2(X
′), i.e., to get rid of the constraint Ent(ν|m) < ∞. That is, given

ν ∈ P2(X
′) we have to find a sequence of νn ∈ P2(X

′) with Ent(νn|m′) < ∞ such
that W2(νn, ν) → 0 and

∫
V dνn →

∫
V dν as n → ∞.

One easily verifies that it suffices to prove this approximation result for functions
V which are uniformly bounded from below. Indeed, assume that for each i ∈ N

there exists a sequence of measures νi,n ∈ P2(X
′) with Ent(νi,n|m′) < ∞ such that

W2(νi,n, ν) ≤ 1
n and

∫
Vidνi,n ≤

∫
Vidν + 1

n for all n, where Vi := max{V,−i}.
Then the sequence νn,n will do the job for V :

lim inf
n→∞

∫
V dνn,n ≤ lim inf

n→∞

[∫
Vndνn,n

]
≤ lim inf

n→∞

[∫
Vndν +

1

n

]
=

∫
V dν.

Similarly, a simple monotone convergence argument shows that it suffices to prove
the approximation results for measures ν which are compactly supported in X0

since the assertions (6) and (7) are void if ν is not supported in X0.
Thus, let us now assume that ν has compact support K in X0 and that V ≥ 0.

Fix ε > 0 such that K ′ := Bε(K) is compact in X0. Let νt, t > 0, be the gradient
flow in P2(X

′) for the entropy Ent(.|m′) starting in ν or, in other words, the heat
distribution onX ′ after time t for the initial distribution ν. Put νt(.) =

1
αt
νt(K

′∩.),
where αt = νt(K

′). Then continuity of t �→ νt in P2(X
′) implies αt → 1 as t → 0.

Thus

lim sup
t→0

∫
V dνt = lim sup

t→0

1

αt

∫
K′

V dνt ≤
∫
K′

V dν =

∫
V dν

since νt → ν weakly and since V is bounded and continuous on K ′. Moreover,
obviously Ent(νt|m′) < ∞ for all t > 0 and W2(νt, ν) → 0 as t → 0.

(v) Assume that the accumulation points of (μn
t )n∈N are not unique, say μ̃t is

another accumulation point (again for simplicity along one fixed subsequence for
all rational t). Applying the previous estimate (6) twice (first with μ̃s in place of
ν, then with μt in place of ν and μ̃s, μ̃t in place of μs, μt) yields

1

2
W 2

2 (μ̃t, μt)e
2κt +

1

2
W 2

2 (μ̃s, μt)[e
2κt − e2κs]− 1

2
W 2

2 (μs, μ̃s)e
2κs

≤ 1

2κ
(e2κt − e2κs)[S(μ̃s)− S(μ̃t)],

and thus in the limit t− s → 0,

d

dt

1

2
W 2

2 (μt, μ̃t) + κW 2
2 (μt, μ̃t) ≤ 0

for a.e. t. This finally implies W2(μt, μ
′
t) = 0 and hence proves the uniqueness of

the accumulation points.
(vi) Now let us consider two flows starting in different points, say μ0, μ

′
0 ∈

P2(X
′). Again from (7) we may deduce d

dt
1
2W

2
2 (μt, μ

′
t) + κW 2

2 (μt, μ
′
t) ≤ 0 which



GRADIENT FLOWS FOR SEMICONVEX FUNCTIONS 3991

immediately yields the W2-expansion bound

(8) W2(μt, μ
′
t) ≤ e−κtW2(μ0, μ

′
0).

�

Lemma 3. For each μ0 ∈ P2(X
′) the EVIκ-flow for S satisfies

Var2(μt) ≤ e−2κ t Var2(μ0)

for all t > 0, where Var2(ν) :=
∫∫

d2(x, y) ν(dx)ν(dy).

Proof. The EVIκ-property (6) for (μt)t≥0 applied to ν = δy states
(9)
1

2

∫
d2(x, y) dμt(x)e

2κt − 1

2

∫
d2(x, y) dμs(x)e

2κs ≤ 1

2κ
(e2κt − e2κs)[V (y)− S(μt)].

Integrating this w.r.t. μt(dy) or μs(dy), resp., yields

(10)
1

2
Var2(μt)e

2κt − 1

2

∫∫
d2(x, y) dμs(x)dμt(x)e

2κs ≤ 0

and
(11)
1

2

∫∫
d2(x, y) dμs(x)dμt(x)e

2κt − 1

2
Var2(μs)e

2κs ≤ 1

2κ
(e2κt − e2κs)[S(μs)− S(μt)].

Adding up these two inequalities and letting s → t, we obtain

d

dt

1

2
Var2(μt)e

2κt ≤ 0

since S(μs) → S(μt). This proves the claim. �

Appendix 1

Let us finally add some observations which are not directly related to our main
result but which might be of independent interest.

Denote the unique EVIκ-flow for V starting in x0 ∈ X ′ by xt = Φt(x0), t > 0.
Then for each t > 0 the map Φt : X

′ → X ′ is Lipschitz continuous (with Lipschitz
constant e−κt). The family of maps Φt, t > 0, is a semigroup w.r.t. composition:
Φt ◦ Φs = Φt+s.

Corollary 3. For each μ0 ∈ P2(X
′) the (unique) EVIκ-flow for S starting in μ0

is obtained via push forward as

(12) μt = (Φt)∗μ0.

That is,
∫
f(x)dμt(x) =

∫
f(Φt(x)dμ0(x) for each bounded Borel function f on X.

This is a straightforward consequence of the following lemma which states that
the EVIκ-flow for S is σ-additive in μ.

Lemma 4. Assume that μ0 =
∑n

i=1 λiμ
i
0 for some probability measures μi

0 and
positive numbers λi with

∑
i λi = 1, where n ∈ N or n = ∞. For each i, let (μi

t)t>0

be the EVIκ-flow for S starting in μi
0. Then

(13) μt =

n∑
i=1

λiμ
i
t

is the EVIκ-flow starting in μ0.
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Proof. Let us define μt as in (13), and for fixed t let qt be an optimal coupling of
μt and ν. Observe that μi

t = f i
tμt for suitable bounded nonnegative functions f i

t

on X. Put dqit(x, y) = f i
t (x)dqt(x, y) and νit(.) = qit(X, .). Then ν and qt can be

represented as

ν =

n∑
i=1

λiν
i, qt =

n∑
i=1

λiq
i
t,

where for each i the probability measure qit is an optimal coupling of μi
t and νi

(since subcouplings of optimal couplings are optimal). Thus

(14) W 2
2 (μt, ν) =

∑
i

λiW
2
2 (μ

i
t, ν

i
t).

On the other hand, for each s > t,

(15) W 2
2 (μs, ν) ≤

∑
i

λiW
2
2 (μ

i
s, ν

i
t).

(One should not expect equality since in general the optimal decomposition of ν
induced by the decomposition μt =

∑n
i=1 λiμ

i
t will not be optimal for the coupling

with μs =
∑n

i=1 λiμ
i
s.) The EVIκ-property for (μi

s)s>t (with observation point νit)
implies

(16) lim
s↘t

1

2(s− t)

[
W 2

2 (μ
i
s, ν

i
t)−W 2

2 (μ
i
t, ν

i
t)
]
+ κW 2

2 (μ
i
t, ν

i
t) ≤ S(νit)− S(μi

t).

Adding up the last three inequalities yields

lim sup
s↘t

1

2(s− t)

[
W 2

2 (μs, ν)−W 2
2 (μt, ν)

]
+ κW 2

2 (μt, ν)

≤
∑
i

λi

[
lim
s↘t

1

2(s− t)

(
W 2

2 (μ
i
s, ν

i
t)−W 2

2 (μ
i
t, ν

i
t)
)
+ κW 2

2 (μ
i
t, ν

i
t)
]

≤
∑
i

λi

[
S(νit)− S(μi

t)
]

=
[
S(νt)− S(μt)

]
.

For the last equality, we made use of the additivity of S. �

Appendix 2

Finally, let us consider EVI-gradient flows in a more general setting. Let (X, d)
be an arbitrary complete geodesic space and let V : X → (−∞,+∞] be a continuous
function, finite on a dense subset X0 of X, and let a family of maps Φt : X → X be
given such that for each x ∈ X the curve (Φt(x))t≥0 is the unique EVIκ-gradient
flow for V (for some fixed κ ∈ R). This gradient flow comes with the “natural”
parametrization

d

dt
V (Φt) = −

∣∣∇−V (Φt)
∣∣2 = −|Φ̇t|2.

We will now have a closer look at a reparametization (Ψa(x))a∈R of this flow with
∂
∂aV (Ψa) = 1. For a ∈ R and x ∈ X we put

Ta(x) = inf {t ≥ 0 : V (Φt(x)) ≤ a}
(with inf ∅ := ∞), and if Ta(x) < ∞,

Ψa(x) = ΦTa(x)(x).
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The continuity of x �→ V (x) and t �→ Φt(x) for t > 0 implies that V (Ψa(x)) = a
provided 0 < Ta(x) < ∞.

Proposition. For all x, x′ ∈ X and all a ∈ R with Ta(x), Ta(x
′) < ∞,

(17) d
(
Ψa(x),Ψa(x

′)
)
≤ exp

(
−κ

Ta(x) + Ta(x
′)

2

)
· d

(
x, x′).

Proof. Given x, x′ ∈ X and a ∈ R put T = Ta(x)∧Ta(x
′) and S = |Ta(x)−Ta(x

′)|.
Assume without restriction that Ta(x) ≤ Ta(x

′). Then Ta(x) = T , Ta(x
′) = T + S

and Ψa(x) = ΦT (x), Ψa(x
′) = ΦT+S(x

′). Applying the basic contraction property
(3) with t = T yields

(18) d(ΦT (x),ΦT (x
′)) ≤ e−κT d(x, x′).

Next we apply (2) to the flow (ΦT+t(x
′))t>0 with observation point z = ΦT (x). It

states that
d

dt

1

2
d2(ΦT (x),ΦT+t(x

′)) + κ d2(ΦT (x),ΦT+t(x
′)) ≤ V (ΦT (x))− V (ΦT+t(x

′)) ≤ 0

for t ∈ [0, S], which immediately yields

d(ΦT (x),ΦT+S(x
′)) ≤ e−κS/2d(ΦT (x),ΦT (x

′)).

Together with (18) we thus obtain

d(ΦT (x),ΦT+S(x
′)) ≤ e−κ (T+S/2)d(x, x′) = exp

(
−κ

2
(Ta(x) + Ta(x

′))
)
· d(x, x′).

This is the claim. �
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