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DENSITIES OF HYPERBOLIC CUSP INVARIANTS

OF KNOTS AND LINKS
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SHRUTHI SRIDHAR, AND JOSHUA WAKEFIELD

(Communicated by Kenneth Bromberg)

Abstract. We find that cusp densities of hyperbolic knots in S3 include a
dense subset of [0, 0.6826 . . . ] and those of links are a dense subset of
[0, 0.853 . . . ]. We define a new invariant associated with cusp volume, the
cusp crossing density, as the ratio between the cusp volume and the crossing
number of a link, and show that cusp crossing density for links is bounded
above by 3.1263 . . . . Moreover, there is a sequence of links with cusp cross-
ing density approaching 3. For two-component hyperbolic links, cusp crossing
density is shown to include a dense subset of the interval [0, 1.6923 . . . ] and for
all hyperbolic links, cusp crossing density is shown to include a dense subset
of [0, 2.120 . . . ].

1. Introduction

In order to study hyperbolic knots and links, one considers their complements
and the invariants that are associated to them. Two such invariants are volume
and cusp volume. The volume of hyperbolic manifolds has been the focus of much
study. This paper considers certain invariants related to the cusps.

A cusp of a non-compact finite volume hyperbolic 3-manifold is a submanifold
homeomorphic to T × [0, 1) that lifts to a collection of horoballs in hyperbolic 3-
space. In the case of knots and links, a cusp is topologically a tubular neighborhood
of the link intersected with the link complement. A cusp is maximal if there is no
larger cusp containing it, which occurs exactly when the cusp is tangent to itself at
one or more points.

The cusp volume cv(K) of a knot K is the volume of its maximal cusp. The
maximal cusp volume of a link L, cv(L), is the sum of the volumes of the individual
cusps that are not overlapping in their interiors and that yields the largest possible
total. Note that for a two-component link, the maximal cusp volume is realized
when one of the two cusps is maximized first and the other is maximized relative
to it.

It is natural then to consider the relationship between cusp volume and volume,
which motivates the study of their ratio, cusp density.

Received by the editors July 5, 2017, and, in revised form, November 27, 2017.
2010 Mathematics Subject Classification. Primary 57M50.
Key words and phrases. Hyperbolic knot, cusp density.
This research was supported in part by NSF grant DMS-1347804.

c©2018 American Mathematical Society

4073

http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/14068


4074 COLIN ADAMS ET AL.

Definition 1.1. The cusp density of a knot or link L, cd(L), is defined as the ratio
of the maximal cusp volume cv(L) to the volume of the complement vol(L):

cd(L) :=
cv(L)

vol(L)
.

Let vtet = 1.01494 . . . be the volume of an ideal regular tetrahedron in hyperbolic
3-space and let voct = 3.6638 . . . be the volume of an ideal regular octahedron in
hyperbolic 3-space. In [7], Böröczky proved that the densest packing of horoballs

in hyperbolic space gives a ratio of
√
3

2vtet
≈ 0.853 . . . , which in turn provides an

upper bound on cusp density (cf. [14]). This value for cusp density is achieved by
the figure-eight knot. By results of [16], this is the only knot that achieves this
highest possible cusp density. The first published examples of a family of knots
with cusp density approaching 0 appeared in [12]. In [3], it was proved that cusp
densities for all cusped finite volume hyperbolic 3-manifolds are dense in the interval
[0, 0.853 . . . ].

In Section 2, we first outline the construction from [3] for general cusped hyper-
bolic 3-manifolds and then show that it in fact proves that cusp densities of link
complements in S3 are a dense subset of [0, 0.853 . . . ].

In Section 3, we construct intervals in which subsets of cusp densities of knots are
dense, given a knot with a particular cusp density. We then use explicit examples
to obtain the following theorem:

Theorem 1.2. Cusp densities of knots in S3 include a subset that is dense in
[0, 0.6826 . . . ].

A crucial construction for our proof is belted sums of links as shown in Figure 1.
In [1], it was proved that because incompressible twice-punctured disks are totally
geodesic with a unique hyperbolic structure, the hyperbolic structures of the two
link complements are preserved when they are glued together along the cut open
twice-punctured disks bounded by the trivial component. Thus, the volume of the
belted sum is the sum of the two respective volumes, as in Figure 1. In this paper,
we study the effect of belted sums on cusp volume and use these results to prove
the main lemma we need. For this purpose, the following definition will be useful.

Definition 1.3. Let A be a subset of components of a link L. The restricted cusp
density of A in L, cdR(L,A), is defined to be the ratio of the maximal cusp volume
in A, denoted cvR(L,A), to the volume of the complement:

cdR(L,A) :=
cvR(L,A)

vol(L)
.

The results on cusp volumes for belted sums rely on finding two links L1 and L2,
one having high restricted cusp density of a single cusp and the other having low
restricted cusp density. Unfortunately, finding suitable links with restricted cusp
density greater than .6826 . . . has so far been unsuccessful. It is the only obstacle to
showing that cusp densities of knots are dense in a larger interval than [0, .6826 . . . ].
It remains an open question as to whether there exists a sequence of knots with
cusp densities approaching 0.853 . . . .

In Section 4 we define and study a new link invariant which we call cusp crossing
density. The invariant volume density, dvol(L), which is the ratio of the volume to
the crossing number, has been considered in [6], [8], [9], and [10]. Volume densities of
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Figure 1. A belted sum of two links.

all hyperbolic knot and link complements lie in [0, 3.6638 . . . ] and are dense in that
interval. One crucial motivation for studying volume density has been to explore
interesting relations with the determinant density for knots, which is defined to be

ddet(K) =
2π ln(det(K))

c(K)
.

This is a combinatorial invariant of knots that is dense in the same interval
[0, 3.6638 . . . ].

We define cusp crossing density analogously to volume density.

Definition 1.4. Let L be a hyperbolic link in S3 and let c(L) denote its crossing
number. The cusp crossing density, dcc(L), is defined as

dcc(L) :=
cv(L)

c(L)
.

We look at bounds for cusp crossing density. Previously, in [4], it was proved
that for any knot K, cv(K) ≤ 9c

2 (1− 1/c)2. Hence dcc(K) < 4.5.
We show that in fact cusp crossing densities for hyperbolic knots and links are

bounded above by 3.1263 . . . . We then obtain several families of links with cusp
crossing density approaching 3 from below. We find sequences of hyperbolic knots
with cusp crossing density as high as 1.706. We also show that the cusp crossing
densities for hyperbolic two-component links contain a subset dense in the interval
[0, 1.6923 . . . ] and cusp crossing density for all hyperbolic links contains a subset
dense in the interval [0, 2.120 . . . ]. We suspect that the actual upper bound on cusp
crossing density for links is 3 and that cusp crossing densities of links are dense in
the interval [0, 3].

The results in this paper would not have been possible without the opportunity
to experiment afforded by the computer program SnapPy [11]. We are very grateful
to the creators of that program.

2. Cusp density of links

Let L be a link and let A be a trivial component of L bounding an incompressible
n-punctured disk. Consider a projection of L such that n strands pass through the
disk bounded by A (see Figure 2).
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Figure 2. (1,1)-Dehn filling on trivial component.

Remark 2.1. A (1, p)-Dehn filling on component A gives the complement of the link
L′ obtained from L by removing A and adding p full twists to the n strands that
passed through it, as shown in Figure 2.

Definition 2.2. LetA be a subset of components of link L such that all components
of A are trivial and any pair of components in A forms either the Hopf link or the
unlink. Define the graph G with the components in A as vertices and edges between
pairs of components that are linked. We will call A a chain of shape G in L.

Lemma 2.3. Let L be a link in S3 of at least m+1 components containing a chain
A = {A1, A2, . . . , Am} of shape G. If G has no cycles, then the manifold obtained
by (1, pi)-Dehn filling each of the components Ai in L remains a link complement.

Proof. If G has no cycles, then it can be considered as a union of finitely many
disconnected trees. If G consists of finitely many trees, each with n or fewer edges,
then induction on n will show that (1, p)-Dehn filling the components in A yields
a link complement.

If n = 0, then G has only isolated vertices, so none of the components of A are
linked with each other. This implies that they can then be filled one by one to
get a link complement, and the twists from each filling in the resulting link will be
isolated and not affect each other.

Now assume the lemma holds when all trees have less than or equal to n − 1
edges, and let the trees of G have n or fewer edges. For each non-trivial tree in
G, choose a leaf vertex of the tree. The corresponding component is only linked
with the component that is its parent in its tree and possibly some components of
L that are not in A.

As shown in Figure 2, (1, pi)-Dehn filling on one of the leaf components Ai gives
pi full twists to the strands passing through the disk it bounds, but its parent
component Aj , which only passes through the disk once, remains trivial and all
other components inA are unaffected. The Dehn filling for Aj becomes a (1, pj+pi)-
Dehn filling. By induction, filling on the remaining components will result in a link
complement. �

Theorem 2.4. The set of all cusp densities for hyperbolic link complements in S3

is dense in the interval [0, 0.853 . . . ].

Proof. In [3], it was proved that the set of cusp densities of hyperbolic manifolds is
dense in the interval [0, 0.853 . . . ] by constructing manifolds with cusp density ar-
bitrarily close to any value in the interval. A manifold with cusp density arbitrarily
close to x ∈ [0, 0.853 . . . ] is constructed by first finding a link complement Fk,n,m

with restricted cusp density arbitrarily close to x, where restricted cusp density is
as defined in Definition 1.3. When all components of the link except for those in
C are (1, p)-Dehn filled, where p can be chosen to be arbitrarily large, the volume
and cusp volume of the resulting manifold approach the volume and restricted cusp



DENSITIES OF HYPERBOLIC CUSP INVARIANTS 4077

volume of the original manifold, respectively. The resulting manifold then has cusp
density arbitrarily close to x.

It remains to be shown that the manifolds obtained by this construction are in
fact link complements. Let Dn be the n-component alternating daisy chain with
even n > 4, and let C0 = {C1, C2, C3, C4} be a set of four cusps in Dn such that
C1, C2, C3 are adjacent and C4 is opposite C2. Let Dn,m be the link obtained by
taking an m-fold cyclic cover of Dn around C4, and let C1 be the set of cusps in
Dn,m that cover those in C0. The link Dn,m appears in Figure 3, where the central
three components in each horizontal chain and the bottom horizontal component
make up the components in C1. The link Fk,n,m is the belted sum of Dn,m and Lk,
a k-fold cover of a link obtained by taking covers of the minimally twisted 5-chain,
where the belt in Dn,m is the component covering C2 that is at the center of the
top horizontal chain. Let C be the set of cusps in Lk,n,m that are the union of C1
and the set of all cusps in Lk.

Figure 3. The link Dn,m.

The components of Fk,n,m that are in the complement of C are the complement
of C1 in Dn,m and thus form a chain of shape G, where G consists of two disjoint
trees which contain no cycles. By Lemma 2.3, the manifold obtained by (1, p)-Dehn
filling on the components not in C is a link complement. �

3. Cusp density of knots

Definition 3.1. Consider a link with two components, the first containing a tangle
T which does not create additional components, and the second a trivial component
that wraps around two strands of the component containing T , as shown in Figure
4. We call such a link an augmented tangle link. When the tangle specifically has
an X in it in the sense that the two strands labeled a are connected to one another
through the tangle and the two strands labeled b are connected to one another
through the tangle, then we say that the link is an augmented cross tangle link.

Note the twice-punctured disk bounded by cusp 2 in the complement of an
augmented tangle link. A thrice-punctured sphere (or twice-punctured disk) is
known to be totally geodesic and to have a unique hyperbolic structure (see for
instance [1]). The disk appears in Figure 5(A) with certain edges marked. In
Figure 5(B), we look at the cusp diagram, centering the horoball of cusp 2 at
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Figure 4. Augmented cross tangle link.

(A) Cross section along cusp 2
(B) Horoball Diagram

Figure 5. Twice punctured disk.

infinity. The following description of the twice punctured disk in the cusp diagram
is crucial to our proofs.

We center the fundamental domain such that an endpoint of the longitude is
directly above the horoball of cusp 1 that corresponds to the puncture P . There
will be an identical ball on the ‘other’ end since they are identified. We have
a second puncture Q in the twice-punctured disk, and this would correspond to
another horoball of cusp 1 between the two horoballs at the ends of the longitude.
This will be equidistant from the two horoballs centered at P since the geodesic 2
corresponding to PQ should be the same when constructed from either ideal vertex
corresponding to P . The edge 1 in Figure 5(B) appears as a geodesic connecting P
and infinity.

On the leftmost horoball, the distance along the boundary cut off by the geodesics
1 and 2 is half the meridian (the other half is on the rightmost horoball). We also
see the meridian as the distance cut off by the two geodesics labeled 2 along the
boundary of the middle horoball. Since the meridian is constant along the whole
length of cusp 1, all three horoballs are the same size.

In order to find the interval in which cusp density is dense for knots we must
first discuss poking and its implications for our constructions.

Definition 3.2. Given a thrice-punctured sphere S in a hyperbolic 3-manifold M ,
we say that a cusp C pokes S if, in the universal cover H

3, there is a horoball H
corresponding to C and a geodesic plane P that covers S such that the center of
H is not on ∂P , but H intersects P . See Figure 6.
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Figure 6. Horoball Diagram: Poking across twice-punctured disk.

We say an augmented tangle link has poking if the cusp containing the tangle
pokes the twice-punctured disk corresponding to the trivial component.

Remark 3.3. Poking has not been encountered in any augmented tangle link we
have considered. We wonder whether poking ever occurs for augmented tangle
links. For the following constructions we assume its absence.

Lemma 3.4. Let L1 and L2 be two augmented cross tangle links, both without
poking, and let L3 be their belted sum. Let C1, C2, and C3 be the tangle components
of each link. Choose m1, m2, and m3 to be the meridian lengths of C1, C2, and
C3 when they are maximized first in their respective link complements and let VC1

,
VC2

, and VC3
be their volumes. Then if m1 ≤ m2, it must be that m3 = m1 and

furthermore that VC3
= VC1

+
(

m1

m2

)2

VC2
.

Proof. As in [1], a fundamental domain for the hyperbolic structure on L3 in H
3

is obtained by gluing together fundamental domains for L1 and L2 along geodesic
faces corresponding to the twice-punctured disks bounded by the trivial component
in each. These disks are totally geodesic. Let P be a geodesic plane in H

3 corre-
sponding to the twice-punctured disks, once glued together. The relative positions
of the centers of horoballs in the fundamental domains for L1 and L2 are preserved.
The cusp C3 and the horoballs corresponding to it will come from the cusps C1 and
C2 and the horoballs corresponding to them, but the sizes of the horoballs from C1

and C2 may need to be adjusted to match accordingly.
Both C1 and C2 are maximal cusps in L1 and L2. Because there is no poking,

there are no pairs of horoballs with centers on opposite sides of P that touch one
another.

The centers of horoballs that are on the boundary of P are now shared between
the fundamental domains of L1 and L2, as they come from C1 being glued to C2 on
the twice-punctured disk. The cusps are glued to each other in a way that takes a
meridian on the twice-punctured disk in C1 to a meridian on the twice-punctured
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disk of C2. Note that neither m1 nor m2 can be made any larger when they appear
in L3 since horoballs that do not poke across the twice-punctured disk touch one
another in the fundamental domains for L1 and L2 that we are using to construct
the fundamental domain for L3. It follows that the meridian m3 of C3 cannot be
larger than either m1 or m2. As we assumed that m1 ≤ m2, we must shrink the
cusp C2 back until its meridian matches with m1, and this means that m3 = m1.

This implies that the part of C3 that corresponds to C2 from before is the
same except with the meridian scaled down by a factor of m1

m2
. Since the cusp

shape is similar to before, the longitude is also scaled down by a factor of m1

m2
.

Therefore, as the cusp volume is directly proportional to cusp area, the new cusp

volume corresponding to the C2 part of C3 is scaled down by
(
m1

m2

)2
and so is

equal to
(
m1

m2

)2
VC2

. As the meridian of C1 is unchanged under the gluing, the
cusp volume of the part of C3 corresponding to C1 remains the same. Therefore,
as C3 is just the union of the parts corresponding to C1 and C2, we have that

VC3
= VC1

+
(
m1

m2

)2
VC2

. �

Lemma 3.5. Let L1 and L2 be augmented cross tangle links with no poking and
tangle components C1 and C2 of respective restricted cusp density cd1 and cd2 and
meridians of lengths m1 and m2 where m1 ≤ m2. Then the cusp densities of knot

complements are dense in [cd1,
(
m1

m2

)2
cd2] if cd1 ≤

(
m1

m2

)2
cd2 or in [

(
m1

m2

)2
cd2, cd1]

if
(
m1

m2

)2
cd2 < cd1.

Proof. Let Lk,p be the link that results from taking a belted sum of k copies of
L1 and p copies of L2. Let Ck,p be its tangle component and let cdCk,p

be its
restricted cusp density. Note that when k+ p is odd then Lk,p is a two-component
link where one of the components bounds the twice-punctured disk. Then there
exists a knot with cusp density arbitrarily close to cdCk,p

that is obtained by doing
high (1, p)-Dehn filling on the trivial component of Lk,p.

We will assume to begin that cd1 ≤
(
m1

m2

)2
cd2. Now, for k, p ≥ 1, Lk,p will

have mk,p = m1 since m1 is the smallest of all the meridians of the belted sum
components. Therefore, all p of the L2 components of the belted sum will add

volume
(
m1

m2

)2
VC2

to VCk,p
. Additionally, all k copies of L1 will add volume VC1

to

VCk,p
. Thus, VCk,p

= kVC1
+ p

(
m1

m2

)2
VC2

. As volumes add under belted sums, the
restricted cusp density is given by

cdCk,p
=

kVC1
+ p

(
m1

m2

)2
VC2

k · vol(L1) + p · vol(L2)
.

Divide by k in the numerator and denominator, and let t = p
k to obtain

f(t) =
VC1

+ t
(
m1

m2

)2
VC2

vol(L1) + t · vol(L2)
.

Then lim
t→∞

f(t) =

(
m1
m2

)2
VC1

vol(L2)
=

(
m1

m2

)2
cd2, and lim

t→0
f(t) =

VC1

vol(L1)
= cd1. Addition-

ally as f(t) is a continuous function of t, it takes on all values in [c1,
(
m1

m2

)2
c2]. As

k and p are integers, for any value of t we can find a k and a p such that k
p is

arbitrarily close to t, and furthermore we can do so such that k + p is odd. As
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a knot can approach any of these values, the cusp densities of knots are dense in

[c1,
(
m1

m2

)2
c2].

When
(
m1

m2

)2
c2 < c1, a similar argument holds to show that knot cusp densities

are dense in the interval [
(
m1

m2

)2
c2, c1]. �

Now we would like to find two links satisfying the conditions of Lemma 3.5 that
give the largest interval in which cusp densities are dense. Just as good for our
purposes, we will instead find two families of augmented cross tangle links with no
poking that each have meridians of the tangle component approaching 2 and have
restricted cusp densities approaching 0 and .6826 . . . respectively.

Lemma 3.6. There exists a family of augmented cross tangle links with no poking
and with meridian lengths approaching 2 such that the restricted cusp densities
approach 0.

Proof. In order to describe the family, we utilize the alternating daisy chains Dn.
Let Mn denote a choice of a single cusp, individually maximized in the comple-
ment of Dn. As shown in [3], as n approaches infinity, Mn approaches the max-
imized cusp of the Borromean rings in structure. This means that the meridian
mn of Mn approaches 2 and the restricted maximized cusp volume cvR(Dn,Mn)
approaches 4. Additionally, as n approaches infinity, vol(Dn) approaches infinity,
and so cdR(Dn,Mn) approaches 0. Additionally, as the structure of Mn approaches
the structure of the Borromean rings maximized cusp, and as the Borromean rings
have no poking, for sufficiently large n, neither will Mn.

Now, let Dn,p be the manifold obtained from performing (1, p)-Dehn filling on
every component of Dn except for Mn and the two components of Dn that are
adjacent to and linked with Mn. Let Mn,p be the component of the new manifold
corresponding to Mn. As p approaches infinity, Dn,p will approach the complement
of Dn in volume, and the three cusps Mn,p and the two surrounding cusps will
approach their previous volumes and structures before filling. By Lemma 2.3, we
know that Dn,p is a link complement. Specifically Dn,p will have three cusps, and
since the component Mn,p is not Dehn filled and neither are the surrounding two
components, Mn,p will remain a trivial component that bounds a twice-punctured
disk in Dn,p.

Now for sufficiently large n and p, Mn,p will have no poking as its structure
approaches the structure of Mn. Therefore we can insert a half-twist through the
twice-punctured disk bounded by Mn,p that connects the other two cusps but oth-
erwise does not change any cusp structure but to unify the previous two cusps. Call
this new two-component link Ln,p, and note that now Ln,p is in augmented cross
tangle form. Additionally, it still remains such as n and p approach infinity. The
restricted cusp density of Ln,p for both components approaches 0, and additionally,
for sufficiently high n and p, Ln,p has no poking. Discard all Ln,p that possibly
have poking. This remaining family of augmented cross tangles has restricted cusp
density approaching 0. �
Lemma 3.7. There exists a family of augmented cross tangle links with no poking
and with meridian lengths approaching 2 such that the restricted cusp densities
approach .6826 . . . .

Proof. To construct the family with high cusp density, start with the alternating
four chain. The complement of the alternating four chain is composed of ten ideal
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regular tetrahedra and so it has volume 10.149 · · · = 10vtet. Depending on the

order of maximization, opposite cusps have volumes of 2
√
3 and

√
3
2 respectively.

Additionally the meridian of the first maximized components is exactly 2. Then,
insert a half-twist through one of the twice-punctured disks in order to connect the
two cusps that each have a volume of 2

√
3. The resulting link complement will

still be made out of ten ideal regular tetrahedron, and the cusps will be unchanged
except that the two previous opposite cusps are joined so that they are a single cusp
with volume 2

√
3 + 2

√
3 = 4

√
3, and this larger component still has a meridian of

2. Therefore the restricted cusp density of the largest component after inserting a

half-twist is equal to 4
√
3

10vtet
= .6826 . . . .

Now perform (1, p)-Dehn filling on the trivial component opposite the one we
put a half-twist through in order to obtain links that have restricted cusp densities
approaching .6826 . . . and meridians of the tangle component approaching 2. Note
that all such Dehn fillings are exactly the family of augmented cross tangle links
that we desire. Additionally, for a high enough p, all links in the family that come
from (1, p)-Dehn filling will have no poking as they approach a manifold having a
perfect wall of full-sized balls along the twice-punctured disk component, because
the limiting manifold is made only from ideal regular tetrahedra with the maximum
ball packing allowed in hyperbolic space. �
Theorem 3.8. Cusp densities of knots are dense in [0, 0.6826 . . . ].

Proof. There exist families of knots F1 and F2 as in Lemmas 3.6 and 3.7 respectively.
There exist links l1 ∈ F1 and l2 ∈ F2 arbitrarily close in cusp density to 0 and
0.6826 . . . respectively, and both families consist of links that satisfy the conditions
of Lemma 3.5. Therefore cusp densities of knots are dense in [0, 0.6826 . . . ]. �

4. Cusp crossing density

In this section we consider cusp crossing density of hyperbolic links, given as the
ratio of maximum cusp volume to crossing number.

Lemma 4.1. The cusp crossing densities of hyperbolic knots and links are bounded

above by
√
3voct
2vtet

≈ 3.1263 . . . , and there exist families of knots with cusp crossing
density approaching 0.

Proof. By definition 0 < dcc(L). We find a family of knots with cusp crossing den-
sity approaching 0. Consider the Whitehead link. Performing (1, q)-Dehn filling on
one component results in the twist knot family Twq, where the crossing number is
2q+2. By Thurston’s Hyperbolic Dehn Filling Theorem (cf. [17]), as q becomes suf-
ficiently large, the cusp volumes of the twist knots approach that of one component

of the Whitehead link. See Figure 7. Thus lim
q→∞

dcc(Twq) = lim
q→∞

cv(Twq)
c(Twq)

= 0.

We obtain our upper bound from previous results about packing and cusp den-
sity.

Recall that the densest packing of horoballs in hyperbolic space is
√
3

2vtet
≈ .853.

Thus cv(L)
vol(L) ≤ .853 . . . . Since volume density is bounded above by voct (which fol-

lows from a result of Thurston; see [5] for an explanation), vol(L)
c(L) ≤ voct. Therefore,

for any hyperbolic link L,

dcc(L) =
cv(L)vol(L)

c(L)vol(L)
≤ cv(L)

vol(L)
voct ≤ (.853 . . . )(voct) ≈ 3.1263.
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Figure 7. The Whitehead link Dehn fills to become the twist
knot family.

A A

k

n

k

n

Figure 8. Link families with cusp crossing density approaching 3
from below.

�

Lemma 4.2. There exist families of links with cusp crossing density approaching
3 from below.

Proof. Consider the two link families L(n, k) and L′(n, k) appearing in Figure 8.
Ignoring component A, the link diagrams are to be alternating. If not for the pres-
ence of the component labelled A, the link complements L(n, k) and L′(n, k) could
be decomposed, using face-centered bipyramids as in [5], into 2n(k − 1) octahedra
and two 2n-bipyramids for the innermost and outermost faces. All of these bipyra-
mids have two finite vertices at top and bottom while all the vertices around their
equators are ideal. The finite vertices are identified into two vertex classes: one we
call U , which is the up vertex above the projection plane, and one we call D, which
is the down vertex below the projection plane. At crossings that do not involve
bigons, there are three edge classes: one from D to the bottom of the lower strand,
one from the top of the lower strand to the bottom of the upper strand, and one
from the top of the upper strand to U .

For crossings that do not touch a bigon, there are four edges in each of the
three edge classes corresponding to the crossing, one on each of the four octahedra
meeting at this crossing.
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Figure 9. Component A collapses the 2n-bipyramids and identi-
fies edge classes to have four edges in each.

We now consider crossings that do touch a bigon. The edges spanning the two
crossings on the bigon are isotopic to one another, and so they occur in the same
edge class. This edge class appears twice on adjacent edges on the equator of the
octahedron coming from the square that shares an edge with the bigon and once
each on the adjacent octahedra (appearing as edge class 1 in Figure 9). However,
there are currently other edge classes that do not contain four edges.

As in [5], the addition of the A component, which passes through both D and
U , skewers the inner and outer bipyramids and collapses them down to polygons.
It also makes all of the finite vertices of the octahedra into ideal vertices. The
identification of the edges on the top of the two collapsed bipyramids with the
edges on the bottom (edge class 4 with 6, 5 with 2, and 3 with 7 in Figure 9)
ensures that all edge classes now consist of four edges each. For instance, after
these identifications, edge class 2 appears twice on the middle octahedron and once
each on the other two octahedra. Edge class 4 will appear twice on the upper
left octahedron, once on the middle octahedron and once more on an octahedron
further to the upper left and not appearing in this figure.

Thus, by taking all ideal regular octahedra, all of which have all dihedral angles
of π/2, we satisfy all of the gluing equations of Thurston, including the completeness
equations, since the boundary of the cusps are made up of equal sized squares. We
therefore obtain the unique hyperbolic structure on the complement, with a volume
of 2n(k − 1)voct.

If we choose the standard packing of horoballs for this collection of octahedra,
meaning the three horoballs that correspond to the vertices of a triangular face
are all pairwise tangent, then they together form a valid set of cusps since the
gluings on the faces respect this packing. (See Figure 10.) They produce a volume
of 3 in each octahedron, 1/2 from each vertex. If the maximal cusp volume of
the manifold corresponds to this packing, then the maximal cusp volume will be
3(2n(k − 1)) = 6n(k − 1).
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1

1

Figure 10. Standard packing of horoballs for an ideal regular
octahedron seen from the side and from above.

Momentarily ignoring component A, the crossing number for such a link must
be 2nk since this is an alternating link. Since the component A must link each of k
or k + 1 of the components, we have that c(L(n, k)) = 2nk + 2k and c(L′(n, k)) =
2nk + 2k + 2. Therefore

dcc(L(n, k)) =
6n(k − 1)

2nk + 2k
and dcc(L

′(n, k)) =
6n(k − 1)

2nk + 2k + 2
.

As k and n approach ∞, these both approach 3 from below, as we wanted to show.
So, to complete the proof, we must show that there is no other choice of cusps

that could generate a higher cusp volume than the choice that yields the standard
packing. Any other choice can be obtained by increasing the size of certain cusps
and decreasing sizes of cusps that touch them, starting from the standard packing.
Note that if there are n cusps, a maximal cusp volume must achieve at least n
points of tangency (cf. [15]). In order to obtain a higher volume in the set of cusps,
at least one of the cusps must be expanded. There are three cases.

Suppose a cusp has two horoballs with centers that are adjacent vertices on one
of the octahedra. Then it cannot be expanded as it is already touching itself in
the standard packing. Suppose a cusp has two horoballs in one octahedron such
that they are at opposite vertices. Then expanding this cusp forces all of the cusps
corresponding to the other vertices to shrink, and it shrinks total volume until the
horoballs at the opposite vertices touch at the center of the octahedron. There the
volume in the octahedron is 1 for each of these horoballs, while the remaining four
horoballs have been shrunk down to size 1/4. However, the total cusp volume has
bottomed out and come up again to 3. See pp. 40-42 of [13] for details.

In the last case, there is a cusp C such that in each octahedron, at most one
vertex corresponds to it. However, in the case of our link complements, if we take
one of the octahedra H1 to have vertex at ∞ corresponding to C, there is a second
octahedron glued to one of the bottom faces of the octahedron, placing a C vertex
directly beneath the center of a vertical face of H1. In other words, there are two
faces on two octahedra such that those faces share an edge, they are in a totally
geodesic plane, and their opposite vertices both correspond to C.

So when we expand C, the horoballs at these vertices will bump into one another
along that shared edge. This will prevent the horizontal horosphere corresponding
to the C vertex at ∞ from expanding down past the equatorial edges of H1. In
fact, when it reaches those edges, it will be tangent to all of them. Since these
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edges peak at a height of 1/2, the volume in this horoball in H1 will be 2. Each
of the four vertices on the equator will have horoballs with volume 1/8, and the
horoball at the center vertex in the boundary plane will have volume 1/2. So once
again, the cusp volume in this octahedron is at most 3. So there is no gain in total
cusp volume. See pp. 40-42 of [13] for details in this case as well.

Thus, in all cases, there cannot be a choice of cusps that generates more total
volume in the cusps than the standard packing. �
Remark 4.3. A family of knots with notably high cusp crossing densities is the
weaving knots described by Champanerkar, Kofman, and Purcell [9]. They define
the weaving knots as alternating versions of the standard projections of the (p, q)-
torus knot or link and denote them W (p, q). Up through knots of 14 crossings, they
have the highest cusp crossing density. These knots are useful because, as described
in [10], as p and q go to infinity, their volume densities limit to the volume density
of the infinite square weave, which is the maximum possible, voct = 3.6638 . . . . Uti-
lizing the Thurston decomposition of link complements via one octahedron at each
crossing, in the case of the weaving knots, these octahedra limit to regular octahedra
as the weaving knots grow towards the infinite square weave. This raises volume
density. Since dcc(K) ≤ dvol(K)voct, this suggests the possibility of higher cusp
crossing density values. Figure 11 shows weaving knot W (10, 11). Although the
largest weaving knot that we have input that does not crash SnapPy is W (10, 11),
one can do the following to get higher cusp crossing densities for knots. Take weav-
ing knot W (p, q), and construct a 2-component link W ′(p, q) with first component
C1 corresponding to W (p, q) and second component C2 obtained by adding a trivial
component through the center hole linking around the entire projection. Then the
cusp crossing density of C1 in W ′(p, q) is equal to the limit of the cusp crossing
density of W (n, q) as n → ∞. Moreover, since W ′(p, q) is a p-fold cover of the link
W ′(1, q), its first cusp has the same cusp crossing density as does the first cusp of
W ′(p, q). Hence, we can find the cusp crossing density of W (′1, q), and there will
be knots of the form W (n, q) with cusp crossing densities approaching this number.
Using SnapPy, we have found that dcc(W (n, 26)) approaches 1.706 as n → ∞. So
there do exist knots with cusp crossing density approaching this number.

Question 4.4. Do the weaving knots have the highest cusp crossing density of all
knots; i.e., for any knot, is there a weaving knot that has a higher cusp crossing
density?

Consider an augmented cross tangle link L as in Figure 4 such that the tangle
is alternating. Let d = V1+V2

c−4 , where V1 is the restricted cusp volume of the cusp
containing the tangle, which has been maximized first, V2 is the cusp volume of
the cusp containing the trivial component maximized relative to the cusp of the
component containing T , and c is the crossing number of L.

Lemma 4.5. Cusp crossing densities of two-component links are dense in the in-
terval [0, d].

Proof. Let L be the augmented cross tangle link as above. We take an n-fold cyclic
cover (where n is odd) with respect to the trivial component. Since n is odd, the
resulting link is still an augmented knot. The initial cusp volume V is the sum of
V1 and V2. The n-fold cover results in a link with cusp volume n(V1 + V2), and
the crossing number becomes n(c− 4)+ 4. Cutting along the twice-punctured disk



DENSITIES OF HYPERBOLIC CUSP INVARIANTS 4087

Figure 11. Weaving knot W (10, 11) (SnapPy).

T T T

m-twists

n-copies

Figure 12. n-fold cover followed by (1,m)-surgery.

bounded by the trivial component and twisting m full twists increase the crossing
number by 2m, while the link complement remains homeomorphic to that of before.
The resulting link J(n,m) has cusp crossing density

dcc(J(n,m)) =
n(V1 + V2)

n(c− 4) + 4 + 2m
=

n
m (V1 + V2)

n
m(c− 4) + 4

m + 2
.

As m becomes arbitrarily large with respect to n, the cusp crossing density
approaches 0. If n becomes arbitrarily large relative to m, the cusp crossing density
approaches d.

Define

f(t) =
t(V1 + V2)

t(c− 4) + 2
.

Then since f is continuous and can approach both 0 and d, for every y ∈ (0, d),
there exists a t such that f(t) = y.

We can choose n
m to be arbitrarily close to t in such a way that n is odd and m is

arbitrarily large, thereby giving cusp crossing density arbitrarily close to y = f(t)
for the resulting link. Therefore the cusp crossing densities of two-component links
are dense in the interval [0, d]. �
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We may now find links suitable for the lemma above in order to give specific
bounds for intervals of density of cusp crossing density.

Theorem 4.6. Cusp crossing density for two-component links is dense in the in-
terval [0, 1.6923 . . . ].

Proof. Consider the weaving knot W (10, 11) with an added trivial component
wrapped around its two outermost strands. The result is hyperbolic by [2]. Using
the program SnapPy [11] to calculate V1 and V2 we find that d = V1+V2

c−4 = 1.6923.
We may then apply Lemma 4.4 to obtain the result. �

Theorem 4.7. Cusp crossing density for links is dense in the interval [0, 2.120 . . . ].

Proof. Take the left link L(7, 8) from Figure 8. Add a trivial component that forms
the boundary of a twice-punctured disk that is punctured by the two outermost con-
centric components. According to SnapPy, the resulting link has volume 356.69 . . .
and cusp volume of 267.1551, not including the cusp volume of the added compo-
nent. Excluding the added component, the number of crossings is 126. Then, as in
the proof of Lemma 4.5, by taking covers and surgeries on the added component,
we can show that cusp densities of links are dense in the interval [0,2.120. . . ]. �
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