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EXPLICIT FORMULAS FOR C1,1 GLAESER-WHITNEY

EXTENSIONS OF 1-TAYLOR FIELDS IN HILBERT SPACES

ARIS DANIILIDIS, MOUNIR HADDOU, ERWAN LE GRUYER, AND OLIVIER LEY

(Communicated by Yuan Xu)

Abstract. We give a simple alternative proof for the C1,1–convex extension
problem which has been introduced and studied by D. Azagra and C. Mu-
darra (2017). As an application, we obtain an easy constructive proof for
the Glaeser-Whitney problem of C1,1 extensions on a Hilbert space. In both
cases we provide explicit formulae for the extensions. For the Glaeser-Whitney
problem the obtained extension is almost minimal, that is, minimal up to a
multiplicative factor in the sense of Le Gruyer (2009).

1. Introduction

Determining a function (or a class of functions) of a certain regularity fitting to a
prescribed set of data is one of the most challenging problems in modern mathemat-
ics. The origin of this problem is very old, since this general framework encompasses
classical problems of applied analysis. Depending on the requested regularity, it
goes from the Tietze extension theorem in normal topological spaces, where the re-
quired regularity is minimal (continuity), to results where the requested regularity
is progressively increasing: McShane results on uniformly continuous, Hölder, or
Lipschitz extensions [19], Lipschitz extensions for vector-valued functions (Valen-
tine [20]), differentiable and Ck-extensions (Whitney [22], Glaeser [12], and more
recently Brudnyi-Shvartsman [7], Zobin [23], Fefferman [9]), monotone multivalued
extensions (Bauschke-Wang [5]), and definable (in some o-minimal structure) Lips-
chitz extensions (Aschenbrenner-Fischer [1]). In this work we are interested in the
Glaeser-Whitney C1,1-extension problem, which we describe below.

Let S be a nonempty subset of a Hilbert space (H, 〈·, ·〉, |·|) and assume α : S → R

and v : S → H satisfy the so-called Glaeser-Whitney conditions:

⎧⎪⎪⎨
⎪⎪⎩

sup
s1,s2∈S,s1 �=s2

|α(s2)− α(s1)− 〈v(s1), s2 − s1〉|
|s1 − s2|2

:= K1 < +∞,

sup
s1,s2∈S,s1 �=s2

|v(s1)− v(s2)|
|s1 − s2|

:= K2 < +∞.
(1.1)
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In [12, 22] it has been shown that under the above conditions, in case H = R
n,

there exists a C1,1-smooth function F : Rn → R such that the prescribed 1-Taylor
field (α(s), v(s)) coincides, at every s ∈ S, with the 1-Taylor field (F (s),∇F (s))
of F . The above result has been extended to Hilbert spaces in Wells [21] and
Le Gruyer [15]. In particular, in [15] the following constant has been introduced:

Γ1(S, (α, v)) := sup
s1,s2∈S,s1 �=s2

(√
A2

s1s2 +B2
s1s2 + |As1s2 |

)
,(1.2)

where

As1s2 =
2(α(s1)− α(s2)) + 〈v(s1) + v(s2), s2 − s1〉

|s1 − s2|2
, Bs1s2 =

v(s1)− v(s2)

|s1 − s2|
.

It has been shown in [15] that Γ1(S, (α, v)) < +∞ if and only if conditions (1.1)
hold. Moreover, in this case, the existence of a C1,1 function F : H → R such that
F |S = α, ∇F |S = v and

(1.3) Γ1(H, (F,∇F )) = Γ1(S, (α, v))

has been established. Henceforth, every C1,1-extension of (α, v) satisfying (1.3) will
be called a minimal Glaeser-Whitney extension. The terminology is justified by the
fact that, for every C1,1 function G : H → R, we have Γ1(H, (G,∇G)) = Lip(∇G)
(see [15, Proposition 2.4]). Thus Lip(∇F ) ≤ Lip(∇G) for any C1,1-extension G
of the prescribed 1-Taylor field (α(s), v(s)). If for some universal constant K ≥ 1
(not depending on the data) we have Γ1(H, (G,∇G)) ≤ K Γ1(S, (α, v)), then the
extension G will be called almost minimal.

Recently, several authors have been interested in extensions that are subject to
additional constraints: extensions which preserve positivity [10,11] or convexity [2,
3]. In [2], D. Azagra and C. Mudarra considered the problem of finding a convex
C1,1-smooth extention over a prescribed Taylor polynomial (α(s), v(s))s∈S in a
Hilbert space H and established that the condition

(1.4) α(s2) ≥ α(s1) + 〈v(s1), s2 − s1〉+
1

2M
|v(s1)− v(s2)|2 ∀s1, s2 ∈ S

is necessary and sufficient for the existence of such extension.
Inspired by the recent work [2] concerning C1,1-convex extensions, we revisit the

classical Glaeser-Whitney problem. We first provide an alternative shorter proof
of the result of [2] concerning C1,1-convex extensions in Hilbert spaces by giving a
simple explicit formula. This formula is heavily based on the regularization via sup-
inf convolution in the spirit of Lasry-Lions [14] and can be efficiently computed; see
Remark 2.2. As an easy consequence, we obtain a direct proof for the classical C1,1-
Glaeser-Whitney problem in Hilbert spaces, which goes together with an explicit
formula of the same type as for the convex extension problem. Let us mention that
the previous proofs are quite involved both in finite dimension [12, 22] and Hilbert
spaces [15, 21]. In the finite dimensional case, a construction of the extension is
proposed in [21] and some explicit formulae can be found in [16] but both are not
tractable (see, however, the work [13] for concrete computations). Our approach
also compares favorably to the result of [15], in which the existence of minimal
extensions is established. On the other hand, the extension given by our explicit
formula may fail to be minimal —though it is almost minimal up to a universal
multiplicative factor.
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Before we proceed, we recall that a function f : H → R is called C∗-semiconvex
(resp., C∗-semiconcave) when, for all x, y ∈ H,

f(y)− f(x)− 〈∇f(x), y − x〉 ≥ −C∗
2
|x− y|2 (resp., ≤ C∗

2
|x− y|2).

This is equivalent to assert that f + C∗
2 |x|2 is convex (respectively, f − C∗

2 |x|2 is

concave). When f is both C-semiconvex and C-semiconcave, then f is C1,1 in H
with Lip(∇f) ≤ C (for a proof of this latter result in finite dimension, see [8] and
use the arguments of [14] to extend the result to Hilbert spaces).

2. Convex C1,1
-extension of 1-fields

For any f : H → R and ε > 0, we define, respectively, the sup and the inf-
convolution of f by

fε(x) = sup
y∈H

{f(y)− |y − x|2
2ε

}, fε(x) = inf
y∈H

{f(y) + |y − x|2
2ε

}.

Theorem 2.1 (C1,1-convex extension). Let S be any nonempty subset of the Hilbert
space H and let (α(s), v(s))s∈S be a 1-Taylor field on S satisfying (1.4) for some
constant M > 0. Then

(2.1) f(x) = sup
s∈S

{α(s) + 〈v(s), x− s〉}

is the smallest continuous convex extension of (α, v) in H and

(2.2) F (x) = lim
ε↗ 1

M

(fε)ε(x) = lim
ε↗ 1

M

inf
z∈H

sup
y∈H

{f(y)− |y − z|2
2ε

+
|z − x|2

2ε
}

is a C1,1-convex extension of (α, v) in H. Moreover, Lip(∇F ) ≤ M.

Remark 2.2. (i) The function f given by (2.1) is the smallest convex continuous
extension of (α, v) in the following sense: if g is a continuous convex function in
H, differentiable on S, satisfying g(s) = α(s) and ∇g(s) = v(s) for all s ∈ S, then
f ≤ g.

(ii) As we shall see in the forthcoming proof, ε �→ (fε)ε is nondecreasing. There-
fore, “limε↗ 1

M
” can be replaced by “supε∈(0, 1

M )” in formula (2.2).

(iii) The inf-convolution corresponds to the well-known Moreau-Yosida regula-
rization in convex analysis. It is also related to the Legendre-Fenchel transform
(convex conjugate). A discussion on theoretical and practical properties of this
regularization can be found in [17] and the references therein. In practice, fε, f

ε

and, therefore, the formula (2.2) can be very efficiently computed using different
techniques and algorithms such as [6] or [18].

Proof of Theorem 2.1. For all x ∈ H and s1, s2 ∈ S, by (1.4), we have

α(s1) + 〈v(s1), x− s1〉

≤ α(s2) + 〈v(s2), x− s2〉+ 〈v(s1)− v(s2), x− s2〉 −
1

2M
|v(s1)− v(s2)|2

≤ α(s2) + 〈v(s2), x− s2〉+ sup
ξ∈H

{〈ξ, x− s2〉 −
1

2M
|ξ|2}

= α(s2) + 〈v(s2), x− s2〉+
M

2
|x− s2|2.
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It follows that for all x ∈ H and s ∈ S

(2.3) α(s) + 〈v(s), x− s〉 ≤ f(x) ≤ α(s) + 〈v(s), x− s〉+ M

2
|x− s|2.

In particular, the function f defined by (2.1) is convex, finite in H, and trapped
between affine hyperplanes and quadratics with equality on S. Therefore, it is
differentiable on S with f(s) = α(s), ∇f(s) = v(s) and it is clearly the smallest
continuous convex extension of the field.

Setting q(x) = α(s)+ 〈v(s), x− s〉+ M
2 |x− s|2, for ε ∈ (0,M−1) straightforward

computations lead to the formulae:

qε(x) = α(s) +
1

1− εM

(
M

2
|x− s|2 + 〈v(s), x− s〉+ ε

2
|v(s)|2

)
,(2.4)

qε(x) = α(s) +
1

1 + εM

(
M

2
|x− s|2 + 〈v(s), x− s〉 − ε

2
|v(s)|2

)
.

In particular, after a new short computation, we deduce that

(2.5) (qε)ε = q,

and from (2.3), since the sup and inf-convolution are order-preserving operators,
we obtain that for every ε ∈ (0,M−1), x ∈ H and s ∈ S,

(2.6) α(s) + 〈v(s), x− s〉 ≤ (fε)ε(x) ≤ α(s) + 〈v(s), x− s〉+ M

2
|x− s|2.

It follows that (fε)ε is well defined on H. Notice also that

(2.7) f ≤ (fε)ε in H
and that (fε)ε is differentiable on S with (fε)ε(s) = α(s) and ∇(fε)ε(s) = v(s) for
every s ∈ S.

Notice that since f is defined as the supremum of the affine functions �s(x) =
α(s) + 〈v(s), x− s〉 and �εs(x) = �s(x) +

ε
2 |v(s)|2 by (2.4), we have

fε(x) = sup
s∈S

{�εs(x)},

which proves that fε is convex. Therefore, (fε)ε is still convex, being the infimum
with respect to y of the jointly convex functions

fε(y) +
1

2ε
|y − x|2, (x, y) ∈ H ×H.

It is well known [14] that the sup and inf-convolution satisfy some semigroup prop-
erties,

fε+ε′ = (fε)ε
′
and fε+ε′ = (fε)ε′ for all ε, ε

′ > 0.

Therefore, for 0 < ε < ε′, fε′ = (fε)ε
′−ε. By (2.7), we infer ((fε)ε

′−ε)ε′−ε ≥ fε. It
follows

((fε′)ε′−ε)ε = (fε′)ε′ ≥ (fε)ε for all 0 < ε < ε′.

We conclude that ε �→ (fε)ε is nondecreasing on (0,M−1) so F is well defined,
convex and still satisfies (2.6). Therefore, F is an extension of (α(s), v(s))s∈S in H
and is differentiable on S.

It remains to prove that F is C1,1 in H and to estimate Lip(∇F ). From [14], we
know that the inf-convolution (fε)ε of fε is ε−1-semiconcave. Since (fε)ε is also
convex, it means that (fε)ε is both ε−1-semiconcave and ε−1-semiconvex. There-
fore, (fε)ε is C1,1 in H with Lip(∇(fε)ε) ≤ ε−1. Since (fε)ε − 1

2ε |x|2 is concave
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for every 0 < ε < M−1, sending ε ↗ M−1, we conclude that F is M -semiconcave.
Since F is also convex, the previous arguments allow us to conclude that F is C1,1

in H with Lip(∇F ) ≤ M. �

Remark 2.3. In [14], the C1,1-regularization result is stated for (fε)δ with 0 < δ < ε.
To obtain an extension in our framework, we need to take δ = ε. The fact that we
have been able to increase the value of δ and take it equal to ε without losing the
C1,1-regularity relies strongly on the convexity of f . Since convexity is preserved
under the sup and inf-convolution operations, the inf-convolution does not affect
the semiconvexity property of fε even for δ = ε. For the same reason, one cannot
reverse the above operations: more precisely, the function (fε)

ε = f would not be
semiconcave.

3. C1,1
-extension of 1-fields: Explicit formulae

Let us now apply the previous result to obtain a general C1,1-extension in the
Glaeser-Whitney problem.

Theorem 3.1 (C1,1-Glaeser-Whitney almost minimal extension). Let S be a non-
empty subset of a Hilbert space H and let (α(s), v(s))s∈S be a 1-Taylor field on S
satisfying (1.1). Then, the function

G(x) = F (x)− 1

2
μ̄|x|2

is an explicit C1,1-extension of the 1-Taylor field (α, v), provided that F is the
convex extension of the 1-Taylor field (α̃, ṽ) where for all s ∈ S

α̃(s) := α(s) +
1

2
μ̄|s|2 and ṽ(s) := v(s) + μ̄s,

and

μ̄ := 2K1 +K2 +
√
(2K1 +K2)2 +K2

2 K1,K2 given by (1.1).

Moreover, the extension G is almost minimal, i.e.

Γ1(S, (α, v)) ≤ Γ1(H, (G,∇G)) = Lip(∇G) ≤
(
5 +

√
29

2

)
Γ1(S, (α, v)).

Proof of Theorem 3.1. We check that for every μ > 2K1 the 1-Taylor field

(α̃(s), ṽ(s)) := (α(s) +
μ

2
|s|2, v(s) + μs)

satisfies (1.4) with M = (μ + K2)
2(μ − 2K1)

−1. Indeed, for any s1, s2 ∈ S we
obtain, using (1.1),

α̃(s2)− α̃(s1)− 〈ṽ(s1), s2 − s1〉
= α(s2)− α(s1)− 〈v(s1), s2 − s1〉+

μ

2

(
|s2|2 − |s1|2 − 2〈s1, s2 − s1〉

)
≥

(
μ− 2K1

2

)
|s1 − s2|2 ≥ 1

2
(
μ− 2K1

(μ+K2)2
) |ṽ(s1)− ṽ(s2)|2.

Thus, the function F given by Theorem 2.1 is a C1,1-convex extension of (α̃(s), ṽ(s))
satisfying F |S = α̃, ∇F |S = ṽ, and Lip(∇F ) ≤ (μ+K2)

2(μ − 2K1)
−1. Therefore,
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G(x) = F (x)− μ
2 |x|2 satisfies G|S = α, ∇G|S = v. Moreover, G is

(
(μ+K2)

2

μ−2K1
− μ

)
-

semiconcave and μ-semiconvex (since F is convex). We deduce that

Lip(∇G) ≤ max

{
μ,

(μ+K2)
2

μ− 2K1
− μ

}
.

Minimizing the above quantity on μ ∈ (2K1,+∞) yields

Lip(∇G) ≤ min
μ∈(2K1,∞)

max

{
μ,

(μ+K2)
2

μ− 2K1
− μ

}

= μ̄ := 2K1 +K2 +
√
(2K1 +K2)2 +K2

2 .

From the definition (1.2) of Γ1(S, (α, v)) we see easily that

max{K2, 4K1 − 2K2} ≤ Γ1(S, (α, v)).

It follows that Lip(∇G) ≤
(

5+
√
29

2

)
Γ1(S, (α, v)).

By [15, Proposition 2.4], we have Lip(∇G)=Γ1(H, (G,∇G)). The result follows.
�

4. Limitations of the sup-inf approach

The main result (Theorem 3.1) is heavily based on the explicit construction of
a C1,1-convex extension of a 1-Taylor field (α, v) satisfying (1.4), which in turn, is
based on the sup-inf convolution approach. The reader might wonder whether our
approach can be adapted to include cases where less regularity is required, as for
instance C1,θ-extensions, that is, extensions to a C1-function whose derivative has a
Hölder modulus of continuity with exponent θ ∈ (0, 1). The existence of such convex
extensions (and even C1,ω-convex extensions with a general modulus of continuity
ω) was established in finite dimensions in Azagra-Mudarra [3] by means of involved
arguments. Indeed, it would be natural to endeavor an adaptation of formula (2.2)
to treat the problem of C1,θ-convex extensions, for 0 < θ < 1. According to [3], the
adequate condition, analogous to (1.4), is that the 1-Taylor field has to satisfy, for
some M > 0,

α(s2) ≥ α(s1) + 〈v(s1), s2 − s1〉+
θ

(1 + θ)M1/θ
|v(s1)− v(s2)|1+

1
θ .(4.1)

Unfortunately, the technique developed in Section 2 is specific to the C1,1-regularity
and cannot be easily adapted to this more general case. Let us briefly explain the
reason.

Considering the suitable sup and inf-convolutions

fε(x) = sup
y∈H

{
f(y)− |y − x|1+θ

(1 + θ)εθ

}
, fε(x) = inf

y∈H

{
f(y) +

|y − x|1+θ

(1 + θ)εθ

}
,

all arguments of the proof of Theorem 2.1 go through except (2.5), which fails to
hold in this general case. More precisely, the convex extension f defined by (2.1)
satisfies

l(x) ≤ f(x) ≤ q(x) for all x ∈ H and s ∈ S,(4.2)
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with equalities for x = s, where

l(x) := α(s) + 〈v(s), x− s〉,(4.3)

q(x) := α(s) + 〈v(s), x− s〉+ M

1 + θ
|x− s|1+θ.(4.4)

Therefore, for every ε > 0 such that Mεθ < 1, we have

l(x) ≤ (fε)ε(x) ≤ (qε)ε(x) .

Nonetheless, we may now possibly have

(qε)ε(s) �= q(s),(4.5)

yielding that (fε)ε is a C1,θ-convex function but may differ from f on S, hence it
is not an extension of the latter. Let us underline that the problem arises even in
dimension 1 and even for small ε. In particular, the sup-convolution qε may develop
singularities for arbitrary small ε so that qε is not anymore in the same class as q,
contrary to the quadratic case (see (2.4)).

Remark 4.1. Recalling [14] that u(x, t) := qt(x) is a viscosity solution to the

Hamilton-Jacobi equation ∂tu − θ
1+θ |∇u|1+ 1

θ = 0 in H × (0, ε), we obtain an ex-
plicit example where the solutions develop singularities instantaneously, even when
starting with a C1,θ-initial condition u(x, 0) = q(x). See [4] for related comments.

Sketch of the proof of (4.5). Without loss of generality we may assume that α(s) =
0 and s = 0 in (4.3)–(4.4). Fix v �= 0. Assume by contradiction that (qε)ε(0) =
q(0) = l(0) = 0. Then, since q is a C1,θ-function, necessarily, ∇(qε)ε(0) = ∇l(0) =

v. Using that y �→ qε(y) + |y|1+θ

(1+θ)εθ
is a strictly convex function achieving a unique

minimum y in H, we obtain that

(qε)ε(0) = qε(y) +
|y|1+θ

(1 + θ)εθ
= sup

y∈H

{
q(y)− |y − y|1+θ

(1 + θ)εθ

}
+

|y|1+θ

(1 + θ)εθ
= 0,

∇(qε)ε(0) = −y|y|θ−1

εθ
= v,

yielding y = −εv|v| 1θ−1 �= 0. To prove the claim, it is enough to find some y ∈ H
such that

ϕ(y) := q(y)− |y − y|1+θ

(1 + θ)εθ
+

|y|1+θ

(1 + θ)εθ
> 0.

In particular, let us seek for y = λȳ where λ ∈ R is small. (Notice that this
guarantees that the computation would also hold when H is one dimensional.) We
have

(qε)ε(0) ≥ ϕ(y) =
|y|1+θ

(1 + θ)εθ
(
Mεθ|λ|1+θ − (1 + θ)λ− |λ− 1|1+θ + 1

)
=

|y|1+θ

(1 + θ)εθ

(
Mεθ|λ|1+θ − 1

2
(1 + θ)θλ2 + o(λ2)

)
> 0 = q(0),

at least for small λ > 0. �
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