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Abstract. Scott showed that for every countable structure A, there is a sen-
tence of the infinitary logic Lω1ω , called a Scott sentence for A, whose count-
able models are exactly the isomorphic copies of A. Thus, the least quantifier
complexity of a Scott sentence of a structure is an invariant that measures the
complexity “describing” the structure. Knight et al. have studied the Scott
sentences of many structures. In particular, Knight and Saraph showed that a
finitely generated structure always has a Σ0

3 Scott sentence. We give a charac-

terization of the finitely generated structures for which the Σ0
3 Scott sentence

is optimal. One application of this result is to give a construction of a finitely
generated group where the Σ0

3 Scott sentence is optimal.

1. Introduction

Given a countable structure M, we can describe M, up to isomorphism, by a
sentence of the infinitary logic Lω1ω which allows countable conjunctions and dis-
junctions. (See Section 1.1 for the formal description of this logic; in this brief
introduction, we will write sentences in an informal way.) To measure the complex-
ity of M, we want to write the simplest possible description of M. For example,
one can describe the countably infinite-dimensional Q-vector space by the vector
space axioms together with the sentence

for all n, there are x1, . . . , xn such that for all r1, . . . , rn ∈ Q, if
r1x1 + · · ·+ rnxn = 0, then some ri = 0.

This sentence has a universal quantifier, followed by an existential quantifier, fol-
lowed by a universal quantifier. There is a hierarchy of sentences depending on the
number of quantifier alternations. The Σ0

n sentences have n alternations of quan-
tifiers, beginning with existential quantifiers; the Π0

n sentences have n alternations
of quantifiers, beginning with universal quantifiers; and the d-Σ0

n sentences are the
conjunction of a Σ0

n and a Π0
n sentence. The hierarchy is ordered as follows, from

the simplest formulas on the left, to the most complicated formulas on the right:
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We use this hierarchy to measure the complexity of a sentence. The sentence given
above describing the infinite-dimensional Q-vector space is a Π0

3 sentence, and it
turns out that this is the best possible; there is no d-Σ0

2 description of this vector
space. There is a d-Σ0

2 description of any finite-dimensional Q-vector space, and so
these structures are “simpler” than the infinite-dimensional vector space.

In this paper, we consider descriptions of finitely generated structures, and par-
ticularly of finitely generated groups. Any finitely generated structure M, with
generating tuple ā, has a Σ0

3 description of the form:

there is a tuple x̄, satisfying the same atomic formulas as ā (i.e.,
for all atomic formulas and negations of atomic formulas true of ā,
the formula is true of x̄) such that every element is generated by x̄
(i.e., for all y, there is a term t in the language such that y = t(x̄)).

However, many finitely generated groups have a simpler description which is d-Σ0
2.

For the group Z, for example, the Π0
2 axioms of torsion-free abelian groups, together

with the following two sentences, which are Π0
2 and Σ0

2, respectively, form a d-Σ0
2

description:

for all x and y, there are n,m ∈ Z, not both zero, such that nx = my

and

there is x �= 0 which has no proper divisors.

Indeed, all previously known examples of finitely generated groups had d-Σ0
2 Scott

sentences, including all polycyclic (including nilpotent) groups and many finitely
generated solvable groups [5]. The main result of this paper is an example of a
computable finitely generated group that has no d-Σ0

2 Scott sentence. Our group
has a Σ0

3 m-complete index set.
This paper is divided into two main sets of results. The first is a general investi-

gation of conditions for a finitely generated structure to have (or not have) a d-Σ0
2

Scott sentence. The second is an application of these general results to construct-
ing the group mentioned above. We also include some results on finitely generated
fields and rings.

1.1. Scott sentences. The infinitary logic Lω1ω is the logic which allows count-
ably infinite conjunctions and disjunctions but only finite quantification. If the
conjunctions and disjunctions of a formula ϕ are all over computable sets of indices
for formulas, then we say that ϕ is computable.

We use the following recursive definition to define the complexity of classes:

• An Lω1ω formula is both Σ0
0 and Π0

0 if it is quantifier free and does not
contain any infinite disjunction or conjunction.

• An Lω1ω formula is Σ0
α if it is a countable disjunction of formulas of the

form ∃x̄φ, where each φ is Π0
β for some β < α.

• An Lω1ω formula is Π0
α if it is a countable disjunction of formulas of the

form ∀x̄φ, where each φ is Σ0
β for some β < α.

We say a formula is d-Σ0
α if it is a conjunction of a Σ0

α formula and a Π0
α formula.

Scott [10] showed that if A is a countable structure in a countable language, then
there is a sentence ϕ of Lω1ω whose countable models are exactly the isomorphic
copies of A. Such a sentence is called a Scott sentence for A. We remark that
because α ∧ ¬(β ∧ ¬γ) is equivalent to (α ∧ ¬β) ∨ (α ∧ γ), the complexity classes
n-Σ0

α of Scott sentences collapse for n ≥ 2.
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We can measure the complexity of a countable structure by looking for a Scott
sentence of minimal complexity, as measured by the quantifier complexity hierarchy
of computable formulas described above. [9] showed that if A has a Π0

α Scott
sentence and a Σ0

α Scott sentence, then it must have a d-Σ0
β Scott sentence for

some β < α. So for a given structure, the optimal Scott sentence is Σ0
α, Π

0
α, or

d-Σ0
α for some α.
We refer the interested readers to Chapter 6 of [2] for a more complete description

of Lω1ω formulas and Scott sentences.

1.2. Index set complexity. Given a structure A and a Scott sentence ϕ for A,
we want to determine whether ϕ is an optimal Scott sentence for A or whether
there is a simpler Scott sentence which we have not yet found. We can use index
set calculations to resolve this problem.

Definition 1.1. Let A be a structure. The index set I(A) is the set of all indices
e such that the eth Turing machine Φe gives the atomic diagram of a structure B
isomorphic to A. We can also relativize this to any set X: IX(A) is the set of
all indices e such that the eth Turing machine ΦX

e with oracle X gives the atomic
diagram of a structure B isomorphic to A.

There is a connection between index sets and Scott sentences; as shown below.

Proposition 1.2. If a countable structure A has an X-computable Σ0
α (respectively,

Π0
α or d-Σ0

α) Scott sentence, then the index set IX(A) is in Σ0
α(X) (respectively,

Π0
α(X) or d-Σ0

α(X)).

So if, for example, we have a computable Σ0
3 Scott sentence for a structure A,

we will try to show that the index set I(A) is Σ0
3 m-complete. If we can do this,

then we know that our Scott sentence is optimal. In general, any Lω1ω sentence is
X-computable for some X.

1.3. Summary of prior results. There are many results using the strategy above
to find the complexities of optimal Scott sentences of structures. For example,
Knight et al. [3], [4] determined the complexities of optimal Scott sentences for
finitely generated free abelian groups, reduced abelian groups, free groups, and
many other structures.

However, this strategy does not work when the complexity of the optimal Scott
sentence is strictly higher than the complexity of the index set. Indeed, Knight and
McCoy gave the first such example in [6], showing there is a subgroup G of Q such
that I(G) is d-Σ0

2, but it has no computable d-Σ0
2 Scott sentence.

It was observed in [7] that any computable finitely generated group, and indeed
any computable finitely generated structure, has a computable Σ0

3 Scott sentence.
In [5], it was shown that many classes of “nice” groups in the sense of geomet-
ric group theory, including polycyclic groups (which includes nilpotent groups and
abelian groups) and certain solvable groups; all have computable d-Σ0

2 Scott sen-
tences. However, none of these examples achieves the Σ0

3 bound that was given in
[7].

1.4. New results. In this paper, we give an example of a finitely generated group
which has no d-Σ0

2 Scott sentence. As mentioned above, we do this by showing that
the index set is Σ0

3 m-complete.
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Theorem 1.3. There is a finitely generated computable group G whose index set
is Σ0

3 m-complete.

The proof is in two parts. First, in Section 2, we develop some general results on
when a finitely generated structure of any kind has a d-Σ0

2 Scott sentence. These
results are of interest beyond the application to groups.

Definition 1.4. Let A be a finitely generated structure. Then A is self-reflective
if it contains a proper Σ0

1-elementary substructure isomorphic to itself. (B is a Σ0
1-

elementary substructure of A, and we write B 
1 A, if, for each existential formula
ϕ(x̄) and b̄ ∈ B, A |= ϕ(b̄) if and only if B |= ϕ(b̄).)

We prove, using an index-set calculation, the equivalence of (1) and (2) in the
following characterization of finitely generated structures with no d-Σ0

2 Scott sen-
tence.

Theorem 1.5. Let M be a finitely generated structure. The following are equiva-
lent:

(1) M has a d-Σ0
2 Scott sentence,

(2) M is not self-reflective,
(3) for all (or some) generating tuples of M, the orbit is defined by a Π0

1 for-
mula.

The equivalence of (3) to (1) has been proved by Alvir, Knight, and McCoy [1].
Second, in Section 4, we apply this characterization to finitely generated groups.

Using small cancellation theory and HNN extensions, we produce a computable
group G which is self-reflective. Thus—using Theorem 1.5—this group has no d-Σ0

2

Scott sentence. Using the group ring construction, we generalize this in Section 5
to produce a ring which is self-reflective.

We also apply our results to finitely generated fields in Section 3. A simple
argument shows that no finitely generated field is self-reflective. Thus we have the
following.

Theorem 1.6. Every finitely generated field has a d-Σ0
2 Scott sentence.

1.5. Open questions. Here we leave several open questions. First, a special class
of finitely generated groups are the finitely presented groups. Is there a (com-
putable) finitely presented group with no d-Σ0

2 Scott sentence?

Question 1.7. Does every finitely presented group with solvable word problem
have a d-Σ0

2 Scott sentence?

Second, one can consider structures other than fields and groups. A natural class
to consider is rings. Using the group ring construction, we get a self-reflective ring.
However, if we insist that the ring be commutative, then such a construction no
longer works.

Question 1.8. Does every commutative ring have a d-Σ0
2 Scott sentence?

One can also place further restrictions on the ring. A natural restriction is that
there be no zero-divisors.

Question 1.9. Does every integral domain have a d-Σ0
2 Scott sentence?

We expect the answer to be yes, as integral domains have a good dimension
theory.
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2. General theory

Our goal in this section is to prove Theorem 1.5. The proof is in two parts.
First we will show that if A is not self-reflective, then it has a d-Σ0

2 Scott sentence.
Second, we will show that if A is self-reflective, then its index set is as complicated
as possible.

Theorem 2.1. Let A be a finitely generated structure. If A is not self-reflective,
then A has a d-Σ0

2 Scott sentence.

Proof. Let ḡ be a generating tuple for A. Let p be the atomic type of ḡ. For any
tuple ḡ′ satisfying p, the substructure generated by ḡ is isomorphic to A. Since
A is not self-reflective, if ḡ′ does not generate A, then there is a tuple ā and a
quantifier-free formula ψ(x̄, ȳ) with A |= ψ(ḡ′, ā) such that there is no b̄ ∈ A such
that A |= ψ(ḡ, b̄). Let S be the set of formulas ψ(x̄, ȳ) such that for some tuple ḡ′

satisfying the atomic type p but not generating A, and some ā, A |= ψ(ḡ′, ā), there
is no b̄ ∈ A such that A |= ψ(ḡ, b̄).

Using the set S, we can now define the Scott sentence for A. The Scott sentence
for A is the conjunction of the Σ0

2 sentence which says:

there exists a tuple x̄ satisfying p and such that for all z̄ and ψ ∈ S,
x̄z̄ does not satisfy ψ,

and the Π0
2 sentence which says:

for all tuples x̄ which satisfy p, either for all y, y ∈ 〈x̄〉, or there is
a formula ψ ∈ S and a tuple z̄ such that x̄, z̄ satisfies ψ.

This latter sentence is of the form (∀x̄) [θ → (α ∨ β)], where θ is Π0
1, α is Π0

2, and
β is Σ0

1.
It is easy to see that A models this sentence. Now suppose that M is any

structure which satisfies this sentence. SinceM satisfies the Σ0
2 part of the sentence,

there is a tuple h̄ ∈ M which satisfies the atomic type p and such that for all c̄ ∈ M
and ψ ∈ S, M � ψ(h̄, c̄). We claim that h̄ generates M; since h̄ satisfies the atomic
type p, this would imply that M is isomorphic to A. Indeed, by the Π0

2 part of the
sentence, either h̄ generates M or there is a formula ψ ∈ S and a tuple c̄ such that
M |= ψ(h̄, c̄). The latter cannot happen, and so h̄ generates M. �

We will now show that if A is self-reflective, then (relativizing everything to A)
its index set is Σ0

3 m-complete.

Theorem 2.2. Let A be X-computable and self-reflective. Then IX(A) is Σ0
3(X)

m-complete (relative to X).

Proof. We will assume that A is computable; the general result can be obtained by
relativizing. Fix a Σ0

3 set S. We may assume that S is of the form

n ∈ S ⇐⇒ (∃e)Wf(e,n) is infinite

for some computable function f . We will define, uniformly in n, a computable
structure Bn such that if n ∈ S, then Bn

∼= A, and if n /∈ S, then Bn is not finitely
generated. We may assume that at each stage s, there is at most one e for which
an element is enumerated into Wf(e,n).

For convenience, we will suppress n, writing B for Bn and f(e) for f(e, n). We
will build B with domain ω as a union of finite substructures (in a finite sublan-
guage) B[s], viewing the language as a relation language as is usual for this kind of
construction.
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Since A sits properly inside itself as a Σ0
1-elementary substructure, we can create

an infinite chain
A0 ≺1 A1 ≺1 A2 ≺1 · · · ≺1 A∗,

where each Ai is (effectively) isomorphic to A and Ai is a c.e. (but not necessarily
computable) subset of Ai+1. The structure A∗ is the union of all of the Ai’s and
is not finitely generated (and hence not isomorphic to A).

At each stage s, the domain of B[s] will be the union of finitely many unary
relations R0[s] ⊆ · · · ⊆ Rks

[s]. We will also have computable partial embeddings
j[s] : B[s] → A∗ such that j[s](Rk[s]) ⊆ Ak.

We will build R0 isomorphic to A0, R1 isomorphic to A1, and so on, via j. While
Wf(e) does not have any elements enumerated into it, we will keep building Re to
copy Ae. However, when an element is enumerated into Wf(e), we will collapse
each Rj , j > e, into Re. If e is least such that Wf(e) is infinite, then B will consist
just of the domain Re, as each Rj , j > e, will be collapsed infinitely many times,
and B will be isomorphic to A. On the other hand, if each Wf(e) is finite, then B
will be isomorphic to A∗, and hence B will not be isomorphic to A.

Construction. Begin at stage 0 with B[0] empty and k0 = 0, with R0[0] empty.

Action at stage s + 1 = 3t + 1. Set k = ks. We will have ks+1 = k. For each n =
0, . . . , k, let an be the first element of An not in j[s](Rn[s]). Define B[s+ 1] ⊇ B[s]
so that j[s+1]: B[s+1] → A∗ is a partial embedding, extending j[s], whose range
also contains a0, . . . , ak. Given x ∈ B[s + 1], set Rn[s + 1] to be Rn[s] plus the
elements x such that j(x) is among the first s elements of An.

Action at stage s+ 1 = 3t+ 2. Set ks+1 = ks + 1 and j[s+ 1] = j[s]. Let Rks+1
be

empty. For each n = 0, . . . , ks, let Rn[s+ 1] = Rn[s].

Action at stage s + 1 = 3t + 3. If for some e < ks, an element entered Wf(e) at
stage t, do the following. Otherwise, do nothing. Let ks+1 = e. Let ū be the
elements of Re[s] and let v̄ be the other elements of B[s] which are not in Re[s].
Let ψ(x̄, ȳ) be the conjunction of the atomic diagram of B[s] so that B[s] |= ψ(ū, v̄).
Then Aks

|= ψ(j[s](ū), j[s](v̄)). Since j[s](ū) ∈ Ae ≺1 Aks
, there is a tuple ā ∈ Ae

such that Ae |= ψ(j[s](ū), ā). Then define Re[s + 1] = Re[s] ∪ {v̄} and define
j[s+ 1] ⊇ j[s] �Re[s] to map v̄ to ā. For n < e, define Rn[s+ 1] = Rn[s].

Note that at every stage s, j[s](Rn) ⊆ An.

End construction.

Let k = lim infs ks. If n ∈ S, then k is the least e such that Wf(e) is infinite.
Otherwise, if n /∈ S, then k = ∞.

Claim 2.3. Fix n ≤ k. Let s be a stage such that ks ≥ n and after which no element
is ever enumerated into Wf(e) for any e < n. Then:

(1) for all t2 > t1 ≥ s, Rn[t1] ⊆ Rn[t2] and j[t1] � Rn[t1] ⊆ j[t2].
(2) Rn =

⋃
t≥s Rn[t] is a substructure (in the relational language) of B.

(3) jn =
⋃

t≥s j[t] � Rn[t] is an isomorphism between Rn and An.

Given m ≤ n ≤ k, Rm ⊆ Rn.

Proof. (1) is easy to see from the construction. (2) is also clear. For (3) it remains
to see that jn is surjective onto An. If a ∈ An is the least element which is not in
the image of j, then there is some stage t ≥ s at which each lesser element of An
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is already in the image of j[t], and a is among the first t elements of An. For each
lesser element a′ of An, a

′ = j[3t + 1](b′) for some b′, and b′ ∈ Rn[3t + 1]; hence
j[t′](b′) = a′ at each later stage t′ ≥ 3t + 1. Then at some stage, say 3t + 4, we
put a into the image of j, say with j(b) = a, and we have b ∈ Rn[3t + 4] so that
j[t′](b) = a at each later stage t′ ≥ 3t+ 4. This is a contradiction; thus j contains
all of An in its image. �
Claim 2.4. B =

⋃
n≤k Rn.

Proof. If an element enters Wf(e) at stage t and no element ever enters Wf(e′), for
e′ < e, after stage t, then B[3t + 3] = Re[3t + 3] ⊆ Re. If k < ∞, then there are
infinitely many stages 3t+3 at which B[3t+3] = Rk[3t+3], and so B = Rk. If k = ∞,
then there is a sequence (e1, t1), (e2, t2), (e3, t3), . . ., with e1 < e2 < e3 < · · · and
t1 < t2 < t3 < · · · , at which B[3ti+3] ⊆ Rei [3ti+3] ⊆ Rei . Then B =

⋃
n≤k Rn. �

Claim 2.5. If m ∈ S, then Bm
∼= A.

Proof. We have k < ∞. Then Bm =
⋃

n≤k Rn = Rk, and Rk is isomorphic to A
via jk. �
Claim 2.6. If m /∈ S, then Bm is not finitely generated.

Proof. Fix a tuple ḡ ∈ Bm. Then ḡ ∈ Rn for some n. Pick a ∈ An+1 \ An. Since
a /∈ An, a /∈ j(Rn). Thus there is h ∈ Rn+1 \ Rn with j(h) = a. Thus Rn is a
proper substructure of B. Since ḡ ∈ Rn, ḡ cannot generate B. �

This completes the proof of the theorem. �
Proof of (1) ⇒ (2) in Theorem 1.5. Let A be a finitely generated self-reflective
structure which has a d-Σ0

2 Scott sentence. Let X ≥T A be such that this Scott
sentence is X-computable. Then by Theorem 2.2, the index set IX(A) is Σ0

3(X)
m-complete relative to X, contradicting that IX(A) is in d-Σ0

2(X). �

3. Finitely generated fields

It is not hard to show that no finitely generated field is self-reflective, and hence
every finitely generated field has a d-Σ0

2 Scott sentence.

Proof of Theorem 1.6. Let F be a finitely generated field of characteristic p which
is possibly zero. We claim that F is not self-reflective, and hence by Theorem 2.1,
F has a d-Σ0

2 Scott sentence.
Let Fp be the prime field of characteristic p. Write F = Fp(a1, . . . , am, b1, . . . , bn),

with a1, . . . , am a transcendence basis for F over Fp, and let ϕ : F → E � F be an
isomorphism between F and a proper subfield E of F . We claim that E is not a
Σ0

1-elementary substructure of F .
Let a′1, . . . , a

′
m be the images of a1, . . . , am under ϕ, and let b′1, . . . , b

′
n be the

images of b1, . . . , bn under ϕ. Since F and E = Fp(ā
′, b̄′) are isomorphic, a′1, . . . , a

′
m

are a transcendence base for E, and so ā, b̄ are algebraic over Fp(ā
′, b̄′). Thus the

atomic type tpat(ā, b̄/Fp(ā
′, b̄′)) is isolated by a formula ψ(ā′, b̄′, x̄, ȳ). We claim

that there is no tuple c̄, d̄ ∈ E with E |= ψ(ā′, b̄′, c̄, d̄). Suppose to the contrary
that there was such a tuple c̄, d̄; then E(c, d) would be isomorphic to F over E.
But since c̄, d̄ ∈ E, E(c, d) = E, and so E is isomorphic to F over E. This cannot
happen, as E is a proper subfield of F . This is a contradiction; thus E is not a
Σ0

1-elementary substructure of F , proving the theorem. �
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4. Finitely generated groups

In this section, we first introduce some group theory background on HNN ex-
tensions (Section 4.1) and small cancellation theory (Section 4.2). Then we will
use this machinery to construct a self-reflective group in Section 4.3. We refer the
interested reader to [8, §IV, V] for more details on the group theoretic tools we are
using here.

4.1. HNN extensions.

Definition 4.1. For a group G with presentation G = 〈S | R〉 and an isomorphism
α : H → K between two subgroups H,K ⊆ G, we define the HNN extension of G
by α to be

G∗α = 〈S, t | R, {tht−1 = α(h)}h∈H〉.

The key lemma about HNN extensions we will need is the following, which
says that every trivial word in the HNN extension is either already trivial in G or
“reducible” by a conjugation of t or t−1.

Lemma 4.2 (Britton’s Lemma). With the notation above, let

w = g0t
e1g1t

e2 · · · tengn ∈ G∗α
with gi ∈ G and ei = ±1. Suppose w = 1; then one of the following is true:

(1) n = 0 and g0 = 1 in G,
(2) there is k such that ek = 1, ek+1 = −1, and gk ∈ H, or
(3) there is k such that ek = −1, ek+1 = 1, and gk ∈ K.

One can show using Britton’s Lemma that the natural homomorphism from G
to G∗α is an embedding, so we can think of G as a subgroup of G∗α.

4.2. Small cancellation.

Definition 4.3. We say a presentation 〈S | R〉 is symmetrized if every relation is
cyclically reduced and the relation set R is closed under inverse and cyclic permu-
tation.

Let 〈S | R〉 be a symmetrized presentation. We say a word u ∈ F (S) is a piece
if there are two r1 �= r2 ∈ R such that u is an initial subword of both r1 and r2.
We also say the presentation satisfies the C ′(λ) small cancellation hypothesis if for
every relation r and every piece u with r = uv, we have |u| < λ|r|.

Furthermore, we shall say a nonsymmetrized presentation satisfies the small can-
cellation hypothesis if it does once we replace the relation set with its symmetrized
closure. We shall also refer to a group as a small cancellation group when it is clear
which presentation we are using.

The key lemma we will need for small cancellation groups is the following, which
says that every presentation of the trivial word must contain a long common sub-
word with a relator.

Lemma 4.4 (Greendlinger’s Lemma). Let G = 〈S | R〉 be a C ′(λ) small cancella-
tion group with 0 ≤ λ ≤ 1

6 . Let w be a nontrivial freely reduced word representing
the trivial element of G. Then there is a cyclic permutation r of a relation in R or
its inverse with r = uv such that u is a subword of w, and |u| > (1− 3λ)|r|.
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Figure 1. The tree T

We say that a word w is Dehn-minimal if it does not contain any subword v
that is also a subword of a relator r = vu such that |v| > |r|/2. Greendlinger’s
Lemma implies that, given a C ′(1/6) presentation of a group, we can solve the
word problem using the following observation: a Dehn-minimal word is equivalent
to the identity if and only if it is the trivial word. Given a word w, we replace w
by equivalent words of shorter length until we have replaced w by a Dehn-minimal
word w′. Then w is equivalent to the identity if and only if w′ is the trivial word.
This is Dehn’s algorithm.

4.3. A self-reflective group. Let T be the tree (directed acyclic graph) with
vertex set V (T ) = {(n, τ ) | n ∈ ω and τ ∈ Z<ω}. The parent (n, τ )− of (n, τ ) is
(n, τ−) if τ �= 〈〉, and (n+ 1, 〈〉) otherwise. See Figure 1.

Let u(x, y) = xyx2y · · ·x100y be a word in F (x, y). Let K be the group on
generators V (T ) ∪ {a} ∪B (where B = {bi | i ∈ Z}) with relations:

• u((n, τ ), a) = (n, τ )− for every (n, τ ) ∈ T .
• u((n, τ ), bi) = (n, τˆ〈i〉) for every (n, τ ) ∈ T and i ∈ Z.

Note that K is generated by (0, 〈〉), a, and B: we can generate any vertex (n, 〈〉) by
(1, 〈〉) = u((0, 〈〉), a), (2, 〈〉) = u((1, 〈〉), a), and so on, and then we can generate, for
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example, (2, 〈5, 3〉), as (2, 〈5, 3〉) = u(u((2, 〈〉), b5), b3). Also note that K is a C ′( 1
10 )

small cancellation group. Noting that any reduced word in B is Dehn-minimal, we
see that B freely generates a free subgroup of K.

Claim 4.5. Let v be a word in V (T ), a, and B such that v is Dehn-minimal. Then
v is in the subgroup F (B) of K generated by B if and only if v is a word in B.

Proof. The “if” direction is obvious. For the “only if” direction, assume we have
a word v, in V (T ), a, and B, which is equal to a reduced word v′ in B. If v′ was
the trivial word, then since v is Dehn-minimal, v would also be the trivial word.
So we may assume that v′ is not the trivial word. Also, we may assume without
loss of generality that v and v′ have no common prefix, so v−1v′ is a reduced word.
Then, by applying Greendlinger’s Lemma to v−1v′, we get a subword u of v−1v′

which is also a subword of a relator r, with |u| > ( 7
10 )|r|. Noting that none of the

relators of K have two consecutive bi’s, we see that the subword u of v−1v′ given by
Greendlinger’s Lemma has to be contained in v−1, except possibly the last letter
of u. If u′ is the part of u which is contained in v−1, we have |u′| ≥ |u| − 1 > 1

2 |r|
as |r| > 100. This contradicts the Dehn-minimality of v. �

Now let G be the HNN extension 〈K, t | tbit−1 = α(bi) = bi+1〉 of K by the
partial isomorphism α(bi) = bi+1. G is then finitely generated by (0, 〈〉), a, b0, and
t.

Lemma 4.6. G is self-reflective.

Proof. Let H ⊆ G be the subgroup generated by (1, 〈〉), a, b0, and t. We claim that
H is a proper Σ0

1-elementary subgroup of G which is isomorphic to G.

Claim 4.7. H is isomorphic to G.

Proof. Define the homomorphism ι : G → H ⊆ G given by sending (n, τ ) to
(n + 1, τ ) and fixing a, bi, and t. We must check that this does indeed define a
homomorphism:

• u(ι(n, τ ), ι(a)) = u((n+1, τ ), a) = (n+1, τ )− = ι((n, τ )−) for every (n, τ ) ∈
T .

• u(ι(n, τ ), ι(bi)) = u((n+ 1, τ ), bi) = (n+ 1, τˆ〈i〉) = ι((n, τˆ〈i〉)).
• ι(t)ι(bi)ι(t)

−1 = tbit
−1 = bi+1 = ι(bi+1).

Since ι maps relators of G to relators of G, it defines a homomorphism.
Now we will check that ι is an embedding. Suppose ι(v) = 1 for some word v in

V (T ), a, B, and t. Without loss, we may assume v �= 1 is a word of minimum length
among the words representing the same group element. By abusing notation, we
will use ι(v) to denote the word obtained by replacing each (n, σ) in v by (n+1, σ);
this is a word that represents the group element ι(v).

Now since ι(v) = 1, by Britton’s Lemma, either ι(v) does not contain t, t−1 or
it contains a subword tut−1 or t−1ut with u ∈ F (B). We claim that we must be
in the first case, where ι(v) (and hence v) does not contain t or t−1. In the second
case, if ι(v) does contain a subword tut−1 or t−1ut with u ∈ F (B), we can write
u = ι(u′), where tu′t−1 or t−1u′t appears as a subword of v as ι leaves t unchanged.
If we can show that u is Dehn-minimal and so, by Lemma 4.5, u is actually a word
in B, then, as ι leaves B unchanged, u′ would also be a word in B. By conjugating
each bi in u′ by t (or t−1) to get bi+1 (or bi−1), we get a shorter word representing
the same element, contradicting the minimality of v. We will now argue that u is
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Dehn-minimal. If u was not Dehn-minimal, this would be witnessed by a subword
w of a relator r, with |w| > 1

2 |v|. Then looking at all of the relators of K, we
see that w = ι(w′) and r = ι(r′), where w′ is a subword of a relator r′ of K, and
also a subword of u′. Thus v is not of minimal length, a contradiction. So u is
Dehn-minimal, and thus ι(v) does not contain t, t−1.

Since ι(v) = 1 and contains only V (T ), a, and B, by Greendlinger’s Lemma, ι(v)
is not Dehn-minimal. However, since any relator r that holds on ι(V (T )), a, and
B is the image, under ι, of a relator that holds on V (T ), a, and B, this shows that
v is also not Dehn-minimal, a contradiction. �

Claim 4.8. H is a proper subgroup of G.

Proof. We will show that (0, 〈〉) /∈ H. Suppose (0, 〈〉) ∈ H. Choose a short-
est spelling v of (0, 〈〉) in ι(V (T )), a, B, and t. By applying Britton’s Lemma to
(0, 〈〉)−1v and using the same argument as above, we see that v does not contain
t. Thus, we may apply Greendlinger’s Lemma on (0, 〈〉)−1v to get a subword that
is also a subword of some relator r with length more than half of the length of
r. However, this subword cannot contain (0, 〈〉)−1, as the only relation containing
(0, 〈〉)−1 but not (0, σ) for any σ �= 〈〉 is u((0, 〈〉), a) = (1, 〈〉), but any long subword
of it will contain more than one instance of (0, 〈〉). Thus, the subword must be
strictly in v and contradict the minimality of v. �

Claim 4.9. H is a Σ0
1-elementary subgroup of G.

Proof. We only need to show that for every tuple g ∈ G and every quantifier-free
formula ψ(x, y) such that G |= ψ((1, 〈〉), a, b0, t, g), there is a tuple h ∈ H such
that H |= ψ((1, 〈〉), a, b0, t, h). It suffices to show the (stronger) statement that
for every finite subset 1 /∈ S ⊂ G, there is a (retraction) κ : G → G such that
κ|H = idH , κ(G) = H, and 1 /∈ κ(S). Fixing a shortest spelling in V (T ), a, B,
and t for each element in S, we define κ by fixing the generators of H and sending
(0, 〈〉) to (1, 〈n〉) for n sufficiently large relative to the (length and subscripts of
the) spelling of elements of S.

Suppose there is s ∈ S with κ(s) = 1. Write s in the shortest spelling fixed above.
We spell κ(s) by replacing every (0, τ ) in the shortest spelling of s by (1, nˆτ ). By
Britton’s Lemma, either there is no t in κ(s) or there is a subword tvt−1 or t−1vt
with v ∈ F (B). In the second case, by minimality of s and Claim 4.5, we see that
v only contains letters bi, and thus we can reduce the length of s by replacing each
bi by bi+1 (or bi−1) to get a shorter spelling of s, a contradiction. Thus, s does not
have any t in it.

Now, applying Greendlinger’s Lemma to κ(s), we get a subword of κ(s) that can
be replaced by a shorter string. We will argue that a corresponding replacement
can also be carried out for s, possibly with a different relator, contradicting the
minimality of s. We divide into three cases, depending on which relator is used.
First, note that the replacement cannot be given by any relator involving bm for
|m| ≥ n since n � 1 implies s does not contain the letter bm in it; thus the following
three cases exhaust the possibilities.

Case 1. The relator is u((1, 〈i〉ˆσ), a) = (1, 〈i〉ˆσ)− for |i| ≥ n.

Since n � 1, each instance of (1, 〈i〉ˆσ) in κ(s) comes from an instance of (0, σ)
in s, and each instance of (1, 〈i〉ˆσ)− comes from an instance of (0, σ)− in s.
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(It is important here that (0, 〈〉)− = (1, 〈〉) = (1, 〈i〉)−.) Thus we can perform
a replacement in s using the relator u((0, σ), a) = (0, σ)−.

Case 2. The relator is w((1, 〈i〉ˆσ), bk) = (1, 〈i〉ˆσˆ〈k〉) for |i| ≥ n.

Since i � 1, each instance of (1, 〈i〉ˆσ) in κ(s) comes from an instance of (0, σ)
in s, and each instance of (1, 〈i〉ˆσˆ〈k〉) in κ(s) comes form an instance of (0, σˆ〈k〉)
in s. Thus we can perform a replacement in s using w((0, σ), bk) = (0, σˆ〈k〉).
Case 3. The relator does not involve any letters (1, 〈i〉ˆσ) with |i| ≥ n.

In this case, we can apply exactly the same relator to s. �
Thus we have shown that G contains a copy H of itself as a Σ0

1-elementary
subgroup, and hence is self-reflective. �
Proposition 4.10. G is computable.

Proof. We use the following algorithm to solve the word problem inG: for any string
in V (T ), a, B, and t, we search and replace the following three types of subwords:

(1) tvt−1 with v containing only bi’s. Replace such subwords by deleting t and
t−1 and replacing each bi by bi−1.

(2) t−1vt with v containing only bi’s. Replace such subwords by deleting t−1

and t and replacing each bi by bi+1.
(3) Subword v such that v is also a subword of a relator r and |v| > 1

2 |r|.
Replace such subwords by the rest of the relator r after deleting v.

Since any word can only mention finitely many letters, there are only finitely many
possible relators for case (3). Thus, even though we have infinitely many relators,
the search in (3) is still finite. Since these replacements shorten the length of the
word, for any input word, sequences of such replacements terminate. If the resulting
word is trivial, we output “The input word is equal to the identity”, otherwise we
output “The input word does not equal the identity”.

To verify that this algorithm is valid, consider a word that represents the identity
on which the algorithm terminates with a nontrivial word v. Since we cannot
perform any more replacements of the third kind, v is Dehn-minimal. Thus, by
Claim 4.5 and Britton’s Lemma, we should be able to do a replacement of either
the first or the second kind, a contradiction. �

5. Finitely generated rings

In this section, we use the group ring construction to produce a ring that is
self-reflective. Notice that the group ring R[G] is computable if both G and R are
computable.

Theorem 5.1. Let G be the self-reflective group defined in Section 4. Then the
group ring R[G] = {f : G → R | | supp(f)| < ∞} over any finitely generated ring
R is also self-reflective.

Proof. Note that any endomorphism α ofG induces an endomorphism α∗ of R[G] by
precomposition and fixing R. Furthermore, if the endomorphism on G is injective,
then the induced endomorphism on R[G] is also injective.

Let ι be as defined in Lemma 4.6. Then ι∗, the induced endomorphism of R[G],
is also injective and not surjective. Say B = ι∗(R[G]). Note that B is just R[H],
where H = ι(G).
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Now, as in Lemma 4.6, it suffices to show that for every finite subset 0 /∈ T ⊂
R[G], there is a retraction β : R[G] → R[G] with β(R[G]) = B, β|B = id |B , and
0 /∈ β(T ). Let U be the set of group elements that appear in some members of T ,
and let S = {u1u

−1
2 | u1 �= u2 ∈ U}. Since 1 /∈ S, the proof of Lemma 4.6 gives a

retraction κ : G → G such that 1 /∈ κ(S). Now the induced endomorphism β = κ∗

is also a retraction. Furthermore, if κ∗(t) = 0 for some t ∈ T , since 1 /∈ κ(S), κ∗ is
injective on the support of t, thus we must have t = 0, a contradiction. Thus R[G]
is also self-reflective. �
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