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Abstract. We provide conditions for the existence of measurable solutions to
the equation ξ(Tω) = f(ω, ξ(ω)), where T : Ω → Ω is an automorphism of the
probability space Ω and f(ω, ·) is a strictly nonexpansive mapping. We use
results of this kind to establish a stochastic nonlinear analogue of the Perron–
Frobenius theorem on eigenvalues and eigenvectors of a positive matrix. We
consider a random mapping D(ω) of a random closed cone K(ω) in a finite-
dimensional linear space into the cone K(Tω). Under the assumptions of
monotonicity and homogeneity of D(ω), we prove the existence of scalar and
vector measurable functions α(ω) > 0 and x(ω) ∈ K(ω) satisfying the equation
α(ω)x(Tω) = D(ω)x(ω) almost surely.

1. Introduction

Let V = R
n be a finite-dimensional real vector space with some norm ‖ · ‖.

A subset K of V is called a cone if it contains with any vectors x and y any
nonnegative linear combination αx+βy of these vectors. A cone is called proper if
K ∩ (−K) = {0}.

Let K ⊆ V be a closed proper cone in V with nonempty interior K◦; we will
call such cones solid. The cone K induces the partial ordering ≤K in the space V
defined as follows: x ≤K y if and only if y − x ∈ K. We shall write x ≺K y if
x ≤K y, x �= y, and x <K y if y − x ∈ K◦.

Let L be another solid cone in V . A mapping D : K → L is called monotone if
D(x) ≤L D(y) for any vectors x, y ∈ K satisfying x ≤K y. It is called completely
monotone if each of the relations x ≤K y, x ≺K y or x <K y between two vectors
x, y ∈ K implies the corresponding relation D(x) ≤L D(y), D(x) ≺L D(y), or
D(x) <L D(y) between the vectors D(x), D(y) ∈ L. A mapping D is termed
strictly monotone if the relation x ≺K y implies D(x) <L D(y).

Denote by V ∗ the dual to the space V . Elements of V ∗ are linear functionals
φ(x) = 〈φ, x〉 on V . For any cone K, denote by

K∗ = {φ ∈ V ∗ : φ(x) ≥ 0 for all x ∈ K}
the cone dual toK. IfK is a solid cone, then so isK∗(see [25, Lemma 1.2.4]). Every
functional in the interior of K∗ is strictly positive, i.e., φ(x) > 0 for all 0 �= x ∈ K.
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For any linear functional φ in the interior of K∗, put

ΣK
φ = {x ∈ K : φ(x) = 1}.

The set ΣK
φ is nonempty, compact, and convex (ibid).

Let (Ω,F , P ) be a complete probability space and let T : Ω → Ω be its auto-
morphism, i.e., a one-to-one mapping such that T and T−1 are measurable and
preserve the measure P . Let · · · ⊆ F−1 ⊆ F0 ⊆ F1 ⊆ · · ·be a filtration on Ω such
that each σ-algebra Ft is completed by F-measurable sets of measure 0. Assume
this filtration is invariant with respect to T , i.e. Ft+1 = T−1Ft for each t. Suppose
that for every ω ∈ Ω, a solid cone K(ω) ⊆ V depending F0-measurably1 on ω is
given. Put Kt(ω) = K(T tω), t = 0,±1,±2, . . .. Let D(ω, x) be a mapping of the
cone K0(ω) into the cone K1(ω). Define

Dt(ω, x) = D(T t−1ω, x), t = 0,±1,±2, . . . .

For shortness, we will write D(ω) in place of D(ω, x) and Dt(ω) in place of Dt(ω, x).
Put

C(t, ω) = Dt(ω)Dt−1(ω) · · ·D1(ω), t = 1, 2, . . . ,

where the product means the composition of maps, and C(0, ω) = Id (the identity
map). We have

C(t, T sω)C(s, ω) = C(t+ s, ω), t, s ≥ 0,

i.e., the mapping C(t, ω) is a cocycle over the dynamical system (Ω,F , P, T ) (see
Arnold [1]). The mapping C(t, ω) transforms elements of the cone K0(ω) into
elements of the cone Kt(ω).

It can be shown that the interior of the dual cone K∗(ω) depends F0-measurably
on ω, and so there exists an F0-measurable linear functional φ(ω) such that φ(ω)
belongs to the interior of K∗(ω) for each ω (this follows from [5, Theorems III.22

and III.30]). We fix the functional φ(ω) and define K̂(ω) = Σ
K(ω)
φ(ω) . The set K̂(ω)

is nonempty, compact and convex.
Let us extend the mapping D(ω, x) to all x ∈ V by setting D̄(ω, x) = D(ω, x)

if x ∈ K(ω) and D̄(ω, x) = ∞ for x /∈ K(ω), where “∞” stands for a one-point
compactification of V . We will impose the following conditions:

(D1) D(ω, x) is continuous in x ∈ K(ω) and D̄(ω, x) is F1×V-measurable in
(ω, x) ∈ Ω× V , where V is the Borel σ-algebra on V .

(D2) D(ω, x) is positively homogeneous (of degree one) in x ∈ K(ω):

D(ω, λx) = λD(ω, x) for any λ > 0, x ∈ K(ω).

(D3) D(ω, x) is a completely monotone mapping from K0(ω) into K1(ω).
Furthermore, we will assume that the cocycle C(t, ω) satisfies the following con-

dition:
(C) For almost all ω ∈ Ω there is a natural number lω such that the mapping

C(lω, ω) is strictly monotone.

1We say that the set-valued mapping ω �→ K(ω) ⊆ V is F0-measurable (or the set K(ω)
depends F0-measurably on ω) if its graph {(ω, x) : x ∈ K(ω)} belongs to F0 × V, where V is the
Borel σ-algebra on V .
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The main result of this paper is as follows.

Theorem 1.
(a) There exist an F0-measurable vector function x(ω) and an F1-measurable

scalar function α(ω) such that

α(ω) > 0, x(ω) ∈ K◦(ω), 〈φ(ω), x(ω)〉 = 1

for all ω and

(1.1) α(ω)x(Tω) = D(ω)x(ω) (a.s.).

(b) The pair of functions (α(ω), x(ω)), where α(ω) ≥ 0, x(ω) ∈ K(ω), and
〈φ(ω), x(ω)〉 = 1, satisfying (1.1) is determined uniquely up to the equivalence with
respect to the measure P .

(c) If t → ∞, then

(1.2) ‖ C(t, T−tω)a

〈φ(ω), C(t, T−tω)a〉 − x(ω)‖ → 0 (a.s.),

where convergence is uniform in 0 �= a ∈ K−t(ω).

This result may be regarded as a stochastic nonlinear generalization of the
Perron–Frobenius theorem: x(·) and α(·) play the roles of an “eigenvector” and
an “eigenvalue” of the random mapping D(ω) with respect to the dynamical sys-
tem T : Ω → Ω. The original versions of this classical theorem were discovered at
the beginning of the 20th century by Perron [37, 38], who investigated eigenvalues
and eigenvectors of matrices with strictly positive entries, and by Frobenius [15–17],
who extended Perron’s results to irreducible nonnegative matrices. Extensions of
the Perron–Frobenius results to nonlinear mappings were obtained by H. Nikaidô
[33], M. Morishima [30], T. Fujimoto [18], Y. Oshime [34–36], and others. Those ex-
tensions were motivated by applications in mathematical economics, in particular,
to the so-called nonlinear Leontief model [39]. For reviews of nonlinear versions of
the Perron–Frobenius theory, we refer the reader to the monographs by Nussbaum
[31,32] and the papers by Kohlberg [23] and Gaubert and Gunawardena [19].

The first result on stochastic generalizations of the Perron–Frobenius theorem for
linear maps D(ω) (nonnegative random matrices) was obtained in [10]. The result
was extended and applied to mathematical models in statistical physics and evolu-
tionary biology by Arnold et al. [2]. Recently, important progress has been made in
a series of papers by Mierczyński and Shen [27–29], who established stochastic ver-
sions of the Krein–Rutman theorem (generalizing the Perron–Frobenius theorem to
infinite-dimensional Banach spaces). Under some general conditions, it was shown
that a positive linear random dynamical system in an ordered Banach space admits
a family of generalized principal Floquet subspaces, a generalized principal Lya-
punov exponent, and a generalized exponential separation. These results extend to
the stochastic case the classical Krein–Rutman theorem for strongly positive and
compact operators in strongly ordered Banach spaces. In the paper [26] by Lian
and Wang, a stochastic Krein–Rutman theory for general k-cones was developed,
extending the classical results both from the deterministic to the stochastic case
and from k = 1 to k > 1.

The first stochastic nonlinear analogue of the Perron–Frobenius theorem was
obtained in the paper by Evstigneev and Pirogov [12]. In that paper, D(ω) was a
mapping of the set R

n
+ of nonnegative n-dimensional vectors into itself. Now we

generalize this result to more general random cones K(ω) ⊆ V .
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Problems related to stochastic (linear and nonlinear) Perron–Frobenius theorems
arise in various areas of pure and applied mathematics, in particular, in statistical
physics, ergodic theory, mathematical biology, and mathematical finance; see, e.g.,
Arnold et al. [2], Kifer [21, 22], and Dempster et al. [7]. Extensions of this theory
to set-valued mappings D(ω, x) (von Neumann–Gale dynamical systems [3], [13])
have important applications in mathematical economics [14] and finance [8].

Several comments about the assumptions imposed are in order. Let K and L
be solid cones in V . Consider a concave mapping D : K → L, i.e., a mapping
satisfying

(1.3) D(θx+ (1− θ)y) ≥L θD(x) + (1− θ)D(y)

for all x, y ∈ K and θ ∈ [0, 1]. Clearly, if D is homogeneous, then D is concave if
and only if it is superadditive:

(1.4) D(x+ y) ≥L D(x) +D(y).

For a superadditive mapping D : K → L, the relation x ≺K y between two
vectors x, y ∈ K implies the corresponding relation D(x) ≺L D(y) between the
vectors D(x), D(y) ∈ L if and only if

(M1) D(h) �L 0 for all h �K 0.
The relation x <K y implies the corresponding relation D(x) <L D(y) if and

only if
(M2) D(h) >L 0 for all h >K 0.
The mapping D(x) is strictly monotone if and only if
(M3) D(h) >L 0 for all h �K 0.
We can also see from (1.4) that any superadditive mapping is monotone. By using

this, we obtain that if D is concave and homogeneous, then (M2) is equivalent to
(M4) D(h∗) >L 0 for some h∗ ≥K 0.
Clearly, (M4) follows from (M2). Conversely, (M4) implies (M2) because for

any h >K 0 we have h ≥K λh∗, where λ > 0 which yields D(h) ≥L λD(h∗) >L 0.
Thus, for a concave homogeneous mapping, its complete monotonicity is equivalent
to the validity of (M1) and (M2) (or (M1) and (M4)), and its strict monotonicity
is equivalent to (M3).

The remainder of the paper is organized as follows. In Section 2, some general
facts regarding the Hilbert–Birkhoff metric are given. In Section 3, a stochastic
version of the fixed point principle, which plays a key role in the proof of Theorem
1, is formulated. Sections 4 and 5 provide proofs of the main results.

2. Hilbert–Birkhoff metric

Given a solid cone K and a strictly positive linear functional φ, the Hilbert–
Birkhoff ([20], [4]) metric on the set Y := ΣK

φ ∩K◦ is defined as follows. For any
x, y ∈ Y put

M(x/y) = inf{β > 0 : x ≤K βy}, m(x/y) = sup{α > 0 : αy ≤K x}
and

(2.1) d(x, y) = log

[
M(x/y)

m(x/y)

]
.

It can be shown (see [25, Propositions 2.1.1 and 2.5.4]) that the function d(x, y)
is a complete separable metric on Y and that the topology generated by it on Y
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coincides with the Euclidean topology on Y . Furthermore, there exists a constant
M > 0 such that

(2.2) ‖x− y‖ ≤ M(ed(x,y) − 1),

for all x, y ∈ Y (see [25, formula (2.21)]).

Remark. An important example of K is the cone R
n
+ consisting of all nonnegative

vectors in V = R
n. Suppose φ(x) =

∑n
i=1 xi for x = (x1, . . . , xn). Then we have

ΣK
φ = {x ≥ 0 :

n∑
i=1

xi = 1}, Y = {x > 0 :

n∑
i=1

xi = 1},

M(x/y) = max
i

(xi/yi), m(x/y) = min
j

(xj/yj),

d(x, y) = log

[
max

i
(xi/yi) ·max

j
(yj/xj)

]
.

Here, the inequalities x ≥ 0 and x > 0 are understood coordinate-wise.

The Hilbert–Birkhoff metric is a particularly useful tool in the study of monotone
homogeneous maps on cones. A mapping f : X → Y from a metric space (X, dX)
into a metric space (Y, dY ) is called nonexpansive if dY (f(x), f(y)) ≤ dX(x, y) for
all x, y ∈ X. It is called strictly nonexpansive if the inequality in the above formula
is strict for all x �= y in X. The usefulness of the Hilbert–Birkhoff metric lies in
the fact that linear, and some nonlinear, mappings of cones are nonexpansive with
respect to this metric.

Let K and L be solid cones in V and let φ1 ∈ (K∗)◦, φ2 ∈ (L∗)◦. Put Y1 =
ΣK

φ1
∩K◦ and Y2 = ΣL

φ2
∩L◦, and suppose di(x, y) is Hilbert–Birkhoff metric on Yi,

i = 1, 2.

Theorem 2. If f : K → L is a monotone and homogeneous (of degree 1) mapping
such that f(x) �L 0 for all x �K 0, then the mapping g : Y1 → Y2 given by
g(x) = f(x)/〈φ2, f(x)〉 is nonexpansive with respect to the metric d1(x, y) on Y1 and
the metric d2(x, y) on Y2. Moreover, if f is strictly monotone and homogeneous,
then g is strictly nonexpansive.

Proof. Let x, y ∈ Y1 and write α = m(x/y), β = M(x/y). Since K is a closed cone,
we have αy ≤K x ≤K βy, and so αf(y) ≤L f(x) ≤L βf(y) because f is monotone
and homogeneous. Thus,

α
〈φ2, f(y)〉
〈φ2, f(x)〉

g(y) ≤L g(x) ≤L β
〈φ2, f(y)〉
〈φ2, f(x)〉

g(y),

which implies

d2(g(x), g(y)) ≤ log(β/α) = d1(x, y).

Let f be strictly monotone. If x, y ∈ Y1 and x �= y, we have x �= λy for all λ > 0
(otherwise if x = λy for some λ > 0, then 1 = φ1(y) = φ1(x) = λφ1(y), which
yields λ = 1 and x = y). Then αy ≺K x ≺K βy, and so αf(y) <L f(x) <L βf(y).
Hence there exist μ > α and τ < β such that μf(y) ≤L f(x) ≤L τf(y). Therefore,

d2(g(x), g(y)) ≤ log(
τ

μ
) < log(

β

α
) = d1(x, y).

The proof is complete. �
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3. Stochastic fixed-point principle

In the proof of Theorem 1, we will use a stochastic generalization of the following
well-known result regarding strictly nonexpansive mappings (see, e.g., [9], [23]). Let
f be a strictly nonexpansive mapping from a compact space X into itself. Then
f has a unique fixed point x, and fk(x) → x as k → ∞ for each x ∈ X. (We
denote by fk(x) the kth iterate of the mapping f .) A stochastic version of the
above contraction principle was obtained in the paper by Evstigneev and Pirogov
[11]. Here we establish a more general version of this result. Let us formulate it.

As before, let (Ω,F , P ) be a complete probability space, let T : Ω → Ω be its
automorphism, and let · · · ⊆ F−1 ⊆ F0 ⊆ F1 ⊆ · · · be a filtration such that each
Ft contains all sets in F of measure 0. Let (V,V) be a standard2 measurable space
and let X(ω) ⊆ V be a nonempty set depending F0-measurably on ω ∈ Ω. Let
f(ω, x) be a mapping assigning to every ω ∈ Ω and every x ∈ X(ω) an element
f(ω, x) ∈ X(Tω). Our main goal in this section is to provide conditions under
which the equation

(3.1) ξ(Tω) = f(ω, ξ(ω)) (a.s.)

has a solution in the class of measurable mappings ξ : Ω → V such that ξ(ω) ∈ X(ω)
for all ω. We also will be interested in the uniqueness of this solution and the
properties of its stability. Equations of the type (3.1) arise in connection with
various questions of the theory of random dynamical systems (Arnold [1]). Our
study of such equations is motivated by their applications in the stochastic Perron–
Frobenius theory.

Let us extend f(ω, x) to the whole space V by setting f̄(ω, x) = f(ω, x) if
x ∈ X(ω) and f̄(ω, x) = ∞ if x /∈ X(ω), where the symbol “∞” denotes a point
added to V .

Assume that the following conditions hold:
(A1) The mapping f̄(ω, x) (ω ∈ Ω, x ∈ V ) is F1×V-measurable.
For each ω, let Y (ω) be a nonempty subset of X(ω) equipped with a separable

metric ρ(ω, x, y), x, y ∈ Y (ω). Let us introduce the following assumptions:
(A2)
(a) The set-valued mapping ω �→ Y (ω) is F0-measurable.
(b) The function

ρ̄(ω, x, y) :=

{
ρ(ω, x, y), if x, y ∈ Y (ω),

+∞, otherwise

is F0 × V × V-measurable.
(c) For each ω, the Borel measurable structure on Y (ω) induced by the metric

ρ(ω, x, y) coincides with the measurable structure induced on Y (ω) by the σ-algebra
V .

(d) For each ω ∈ Ω and x ∈ Y (ω), we have f(ω, x) ∈ Y (Tω), and the mapping
f(ω, ·) : Y (ω) → Y (Tω) is continuous with respect to the metric ρ(ω, x, y) on Y (ω)
and the metric ρ(Tω, x, y) on Y (Tω).

Note that Y (ω) ∈ V for each ω by virtue of (a).
For every k = 0,±1,±2, . . . define

Xk(ω) = X(T kω), Yk(ω) = Y (T kω), ρk(ω, x, y) = ρ(T kω, x, y),

2A measurable space is called standard if it is isomorphic to a Borel subset of a complete
separable metric space.
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(3.2) fk(ω, x) = f(T k−1ω, x) [x ∈ Xk−1(ω)].

For each m = 0, 1, 2, . . . put

(3.3) f (m)(ω, x) = f0(ω)f−1(ω) · · · f−m(ω)(x) [x ∈ X−m−1(ω)],

X(m)(ω) = f (m)(ω,X−m−1(ω)).

The product f (m)(ω, x) = f0(ω)f−1(ω) · · · f−m(ω) means the composition of the
mappings. Note that for each m = 0, 1, . . . the map f−m(ω, x) acts from Ω ×
X−m−1(ω) into X−m(ω), and so f (m)(ω, x) acts from Ω ×X−m−1(ω) into X0(ω).
The extended mappings f̄−m(ω, x) and f̄ (m)(ω, x) are F−m × V-measurable and
F0 × V-measurable, respectively. The functions ρ̄−m(ω, x, y) are measurable with
respect to F−m × V × V ⊆ F0 × V × V .

(A3) There is a sequence of F0-measurable sets Ω0 ⊆ Ω1 ⊆ · · · ⊆ Ω such that
P (Ωm) → 1, and for each m = 0, 1, . . . and ω ∈ Ωm the following conditions are
satisfied:

(a) the set X(m)(ω) is contained in Y (ω) and is compact with respect to the
metric ρ(ω, x, y);

(b) for all x, y ∈ Y−m−1(ω) with x �= y, we have

(3.4) ρ(ω, f (m)(ω, x), f (m)(ω, y)) < ρ−m−1(ω, x, y).

Since the sequence of the sets Ωm is nondecreasing, there exists an F0-measurable
function m(ω) with nonnegative integer values such that for each ω ∈ Ω̄ := Ω1 ∪
Ω2 ∪ · · · (and hence for almost all ω), we have ω ∈ Ωm, m ≥ m(ω). We can define
m(ω) = min{i : ω ∈ Ωi} if ω ∈ Ω̄, and m(ω) = 0 otherwise.

Theorem 3.
(i) There exists an F0-measurable mapping ξ : Ω → V such that ξ(ω) ∈ Y (ω),

equation (3.1) holds, and

(3.5) lim
m(ω)≤m→∞

sup
x∈X−m−1(ω)

ρ(ω, ξ(ω), f0(ω) · · · f−m(ω)(x)) = 0 (a.s.).

(ii) If η : Ω → V is any (not necessarily measurable) mapping for which η(ω) ∈
X(ω) and equation (3.1) holds, then η = ξ with probability one.

According to (3.5), the sequence f0 · · · f−m(x) converges to ξ(ω) in the metric
ρ(ω, x, y) uniformly in x ∈ X−m−1(ω) with probability one. Note that the dis-
tance ρ(ω, ·, ·) between f0 · · · f−m(x) and ξ(ω) involved in (3.5) is defined only if
f0 · · · f−m(x) ∈ Y (ω). By virtue of condition (a) in (A3), this inclusion holds for
almost all ω, and all m ≥ m(ω) and x ∈ X−m−1(ω); therefore the limit in (3.5) is
taken over m ≥ m(ω).

4. Proof of the stochastic fixed point principle

Proof of Theorem 3.
1st step. Observe that X(0)(ω) ⊇ X(1)(ω) ⊇ X(2)(ω) ⊇ · · · and X(m)(ω) �= ∅

for each m and ω. Consider the sets Ωm (m = 0, 1, . . .) described in (A3) and
their union Ω̄ . According to (A3), P (Ω̄) = 1 and each ω ∈ Ω̄ belongs to
all Ωm, m ≥ m(ω). For ω ∈ Ω̄, all the sets X(m)(ω), m ≥ m(ω), are con-
tained in Y (ω) and compact, and so the set X∞(ω) :=

⋂∞
m=0 X

(m)(ω) ⊆ Y (ω)
is nonempty and compact as an intersection of a nested sequence of nonempty
compacta X(m)(ω), m ≥ m(ω).
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2nd step. Define Ω∗ =
⋂+∞

k=−∞(T kΩ̄). The set Ω∗ is invariant and P (Ω∗) = 1.
Let us show that

(4.1) X∞(Tω) = f(ω,X∞(ω)), ω ∈ Ω∗.

Equality (4.1) is equivalent to

(4.2) X∞(ω) = f(T−1ω,X∞(T−1ω)), ω ∈ Ω∗,

because ω ∈ Ω∗ if and only if T−1ω ∈ Ω∗. To prove (4.2) let us observe that

(4.3) f(T−1ω,
∞⋂

m=0
X(m)(T−1ω)) =

∞⋂
m=0

f(T−1ω,X(m)(T−1ω)), ω ∈ Ω∗.

The inclusion “⊆” in (4.3) holds always. The opposite inclusion follows from the
continuity of f(T−1ω, ·) on Y (T−1ω) and the fact that X(m)(T−1ω) are nested and
compact in Y (T−1ω) for all m large enough. By using (4.3), we obtain

f(T−1ω,X∞(T−1ω)) = f(T−1ω,
∞⋂

m=0
X(m)(T−1ω))

=
∞⋂

m=0
f(T−1ω,X(m)(T−1ω)) =

∞⋂
m=0

f0(ω,X
(m)(T−1ω))

=
∞⋂

m=0
X(m+1)(ω) = X∞(ω), ω ∈ Ω∗.

The fourth equality in this chain of relations holds because

X(m)(T−1ω) = f0(T
−1ω)f−1(T

−1ω) · · · f−m(T−1ω)(X−m−1(T
−1ω))

= f−1(ω)f−2(ω) · · · f−m−1(ω)(X−m−2(ω)),

and so

f0(ω)(X
(m)(T−1ω)) = f0(ω)f−1(ω) · · · f−m−1(ω)(X−m−2(ω)) = X(m+1)(ω).

3rd step. For ω ∈ Ω∗, denote the diameter in the metric ρ(ω, x, y) of the compact
set X∞(ω) ⊆ Y (ω) by ρ(ω) and put ρ(ω) = +∞ if ω ∈ Ω \Ω∗. For m = 0, 1, 2, . . .,
put Ω∗

m := Ω∗ ∩ Ωm, and for ω ∈ Ω define

(4.4) ρ(m)(ω) =

{
diamX(m)(ω), if ω ∈ Ω∗

m,
+∞, otherwise.

Recall that, for ω ∈ Ωm and hence for ω ∈ Ω∗
m, the set X(m)(ω) is contained in Y (ω)

and is compact, so that its diameter diamX(m)(ω) in the metric ρ(ω, x, y) is well
defined and finite. We claim that ρ(m)(ω) is an F0-measurable function of ω ∈ Ω.
To prove this assertion we observe that for ω ∈ Ω∗

m, we have diamX(m)(ω) =
diam f (m)(ω,X−m−1(ω)), where

f (m)(ω, x) = f0(ω)f−1(ω) · · · f−m(ω)(x), x ∈ X−m−1(ω).

Consequently, for each real a, the set Ωa
m of ω ∈ Ω∗

m satisfying diamX(m)(ω) > a
is the projection on Ω∗

m of the set
(4.5)

{(ω, x, y) ∈ Ω∗
m ×X−m−1(ω)×X−m−1(ω) : ρ(ω, f (m)(ω, x), f (m)(ω, y)) > a },

which is an F0 ×V ×V-measurable subset in Ω∗
m ×V ×V by virtue of assumptions

(A1) and (A2). Since V (and hence V ×V ) is standard and (Ω,F0, P ) is a complete
probability space, Ωa

m is F0-measurable (see, e.g., [6, Theorem III.33]). This implies
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that ρ(m)(ω) is F0-measurable because ρ(m)(ω) = +∞ outside Ω∗
m. Finally, ρ(ω) is

F0-measurable because

(4.6) ρ(ω) = lim
m→∞

ρ(m)(ω) for ω ∈ Ω∗,

which follows the fact that X(m)(ω) are nested and compact in Y (ω) for all ω ∈ Ω∗

and m ≥ m(ω).
4th step. Let us show that ρ(ω) = 0 (a.s.). Observe that equality (4.1) implies

X∞(ω) = f(T−1ω,X∞(T−1ω)) = f(T−1ω)(X∞(T−1ω))

= f(T−1ω)f(T−2ω)(X∞(T−2ω)) = · · · = f(T−1ω) · · · f(T−m−1ω)(X∞(T−m−1ω))

(4.7) = f0(ω) · · · f−m(ω)(X∞(T−m−1ω)) = f (m)(ω,X∞(T−m−1ω)), ω ∈ Ω∗.

By virtue of (4.7) and condition (b) in (A3), for ω ∈ Ω∗
m, we have

(4.8) ρ(ω) = ρ(ω,X∞(ω)) ≤ ρ(T−m−1ω,X∞(T−m−1ω)) = ρ(T−m−1ω)

and

(4.9) if ρ(ω) > 0, then ρ(ω) < ρ(T−m−1ω).

(Here we also use the fact that X∞(ω) is compact.) Since P (Ω∗
m) = P (Ω∗∩Ωm) →

1, inequality (4.8) yields

(4.10) lim
m→∞

P{ρ(ω) ≤ ρ(T−mω)} → 1.

We claim that (4.10) implies

(4.11) ρ(ω) = ρ(T−mω) a.s. for all m.

To deduce (4.11) from (4.10) we may assume that ρ(ω) is bounded by some constant
C (we can always replace ρ(ω) by arctan ρ(ω)). By setting Δm := {ω : ρ(ω) ≤
ρ(T−mω)}, we write

E|ρ(ω)− ρ(T−mω)| ≤ E(ρ(T−mω)− ρ(ω))χΔm
+ CP (Ω \Δm),

where χΔm
is the indicator function of Δm. Further, since Eρ(T−mω) = Eρ(ω),

we have

E(ρ(T−mω)− ρ(ω))χΔm
= E(ρ(T−mω)− ρ(ω))χΔm

− E(ρ(T−mω)− ρ(ω))

= −E(ρ(T−mω)− ρ(ω))χΩ\Δm
≤ CP (Ω \Δm).

Consequently, E|ρ(ω)− ρ(T−mω)| ≤ 2CP (Ω \Δm) → 0, which implies (4.11).
Suppose ρ(ω) > 0 with strictly positive probability. Then there exists a number

m and a set Γ ∈ F0 contained in Ω∗
m such that P (Γ) > 0 and ρ(ω) > 0 on Γ. By

virtue of (4.9), we have ρ(ω) < ρ(T−m−1ω) for ω ∈ Γ. On the other hand, we
proved that ρ(ω) = ρ(T−m−1ω) for almost all ω. A contradiction.

5th step. Since the F0-measurable function ρ(ω) is zero a.s., there is a set Ω̃ ∈ F0

of full measure such that

(4.12) Ω̃ ⊆ Ω∗ and ρ(ω) = 0 for each ω ∈ Ω̃.

This means that for ω ∈ Ω̃, the set X∞(ω) consists of exactly one point, ξ∞(ω).

Replacing Ω̃ by
⋂+∞

k=−∞(T kΩ̃), we may assume that Ω̃ is invariant.
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For every ω, fix any point ỹ(ω) in the nonempty set Y (ω) and put ξ(ω) = ξ∞(ω)

for ω ∈ Ω̃ and ξ(ω) = ỹ(ω) for ω ∈ Ω \ Ω̃. Then for any ω ∈ Ω̃ ⊆ Ω∗ we have

Tω ∈ Ω̃ ⊆ Ω∗, and so

{ξ(Tω)} = {ξ∞(Tω)} = X∞(Tω) = f(ω,X∞(ω))

= f(ω, {ξ∞(ω)}) = f(ω, {ξ(ω)}}

by virtue of (4.1). Consequently, ξ(ω) satisfies (3.1) for all ω in the set Ω̃ ⊆ Ω∗ ⊆ Ω̄
of measure one.

Consider the functions ρ(m)(ω) defined by (4.4). For each ω ∈ Ω̃ and m ≥ m(ω)
we have ω ∈ Ωm, and so

(4.13) sup
x∈X−m−1(ω)

ρ(ω, ξ(ω), f0 · · · f−m(x)) ≤ diamX(m)(ω) = ρ(m)(ω)

because {ξ(ω)} = X∞(ω) ⊆ X(m)(ω). This implies (3.5) since lim ρ(m)(ω) =

ρ(ω) = 0 on the set Ω̃ of full measure.
6th step. To complete the proof of (i) it is sufficient to show that the mapping ξ

constructed above coincides a.s. with some F0-measurable mapping ζ. Then ζ will
be the sought-after solution to (3.1) possessing the properties listed in (i).

Consider some F0-measurable mappings y0(ω), x−m−1(ω), m = 0, 1, . . ., with
values in V such that y0(ω) ∈ Y (ω) and x−m−1(ω) ∈ X−m−1(ω) for all ω. The
existence of these mappings follows from the measurable selection theorem (see
[5]) because the graphs of the set-valued mappings ω �→ Y (ω) and X−m−1(ω) are
measurable with respect to F0 ×V and F−m−1 ×V ⊆ F0 ×V , respectively. Define
the mappings ζm(ω) of Ω into V (m = 0, 1, . . .) by the formula

ζm(ω) =

{
f0(ω) · · · f−m(ω)(x−m−1(ω)) if ω ∈ Ωm,

y0(ω) , otherwise.

Clearly ζm(ω) ∈ Y (ω) for all ω. The mappings ζm(ω) are F0-measurable because
Ωm ∈ F0 and the mappings f̄−m(ω, x) are measurable with respect to F−m−1×V ⊆
F0 × V . For each ω ∈ Ω̃ and m ≥ m(ω), we have ω ∈ Ωm and

ρ(ω, ξ(ω), ζm(ω)) = ρ(ω, ξ(ω), f0(ω) · · · f−m(ω)(x−m−1(ω)) ≤ ρ(m)(ω),

where ρ(m)(ω) → 0 as m → ∞ (see (4.6), (4.12), and (4.13)). Thus ζm(ω) → ξ(ω)

on a set Ω̃ ∈ F0, where P (Ω̃) = 1. Thus ξ(ω) is an a.s. limit of F0-measurable
functions, and consequently it is F0-measurable since F0 is complete.

We know that ξ(Tω) = f(ω, ξ(ω)) (a.s.) and since ξ(ω) coincides a.s. with some
F0-measurable mapping ξ′(ω), we obtain

ξ′(Tω) = ξ(Tω) = f(ω, ξ(ω)) = f(ω, ξ′(ω)) (a.s.),

where the first equality is valid because the transformation T preserves the measure
P .

7th step. It remains to prove (ii). If η : Ω → V is a mapping for which η(ω) ∈
X(ω) and equation (3.1) holds, then

η(ω) = f(T−1ω, η(T−1ω)) = f(T−1ω)(η(T−1ω))

=f(T−1ω)f(T−2ω)(η(T−2ω))= · · · = f(T−1ω) · · · f(T−m−1ω)(η(T−m−1ω)) (a.s.),

which yields

(4.14) η(ω) = f0(ω)f−1(ω) · · · f−m(ω)(η(T−m−1ω)) (a.s.).
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By combining (4.14) and (3.5), we get

ρ(ω, ξ(ω), η(ω)) ≤ sup
x∈X−m−1(ω)

ρ(ω, ξ(ω), f0(ω) · · · f−m(ω)(x)) → 0 (a.s.),

and so ξ(ω) = η(ω) (a.s.). The proof is complete. �

5. Nonlinear Perron–Frobenius theorem: Proof

In this section we prove Theorem 1. The proof is based on a lemma.

Lemma 1. There exists a sequence of F0-measurable sets Γ1 ⊆ Γ2 ⊆ · · · ⊆ Ω such
that P (Γm) → 1, and for each m = 1, 2, . . . and ω ∈ Γm, the mapping C(m,T−mω)
from the cone K−m(ω) to the cone K0(ω) is strictly monotone.

Proof. For each m ≥ 1, consider the set Δm of those ω for which the mapping
C(m,ω, x) = C(m,ω)x of the cone K0(ω) into the cone Km(ω) is strictly monotone
in x. Let us show that Δm ∈ Fm. Denote by Hm(ω) the closed set V \K◦

m(ω) and
by δ(z,Hm(ω)) the distance (defined in terms of the norm ‖ · ‖) between the point
z ∈ V and Hm(ω). Clearly, z ∈ K◦

m(ω) if and only if δ(z,Hm(ω)) > 0.
For each i, j = 1, 2, . . . denote by Λij(ω) the set of those (x, y) ∈ K0(ω)×K0(ω)

for which

y − x ∈ K0(ω), ‖y − x‖ ≥ 1/i, max{‖x‖, ‖y‖} ≤ j.

The set-valued mapping ω �→ Λij(ω) is F0-measurable, and so it possesses a count-
able dense set of F0-measurable selections (xl

ij(ω), y
l
ij(ω)), l = 1, 2, . . . (see [5, The-

orems III.22 and III.30]). In view of the compactness of Λij(ω) and continuity of
C(m,ω, ·), we have

Δm =

∞⋃
i,j=1

{ω : inf
l
[δ(C(m,ω, ylij(ω))− C(m,ω, xl

ij(ω)), Hm(ω))] > 0}.

Since the set-valued mapping ω �→ Hm(ω) is Fm-measurable, the set Δm is a union
of a countable family of Fm-measurable sets and is thus Fm-measurable.

If ω ∈ Δm and y �K0(ω) x, we have C(m,ω)y >Km(ω) C(m,ω)x. Further-
more, D(Tmω) is a completely monotone mapping from K0(T

mω) = Km(ω) into
K1(T

mω) = Km+1(ω). Therefore

C(m+ 1, ω)y = D(Tmω)C(m,ω)y >Km+1(ω) D(Tmω)C(m,ω)x = C(m+ 1, ω)x,

and so ω ∈ Δm+1. Consequently, Δm ⊆ Δm+1. By virtue of assumption (C),
we have P (

⋃∞
m=1 Δm) = 1. By virtue of the inclusion Δm ⊆ Δm+1, this implies

P (Δm) → 1. Define Γm = TmΔm. Then ω ∈ Γm if and only if the mapping
C(m,T−mω) of the cone K0(T

−mω) = K−m(ω) into the cone Km(T−mω) = K0(ω)
is strictly monotone. Furthermore, Γm ∈ F0 for every m because TmΔm ∈ F0 if
and only if Δm ∈ Fm. If ω ∈ Γm, then ω ∈ Γm+1 because the mapping

(5.1) C(m+ 1, T−m−1ω) = C(m,T−mω)D(T−m−1ω)

of K−m−1(ω) into K0(ω) is strictly monotone as the product of two mappings,
one of which is completely monotone (from K−m−1(ω) to K−m(ω)) and the other
strictly monotone (from K−m(ω) to K0(ω)). Thus, Γ1 ⊆ Γ2 ⊆ · · · , where P (Γm) =
P (Δm) → 1, which completes the proof. �
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Proof of Theorem 1. Put

X(ω) = K̂(ω), φt(ω) = φ(T tω), K̂t(ω) = K̂(T tω), Xt(ω) = X(T tω)

for any t = 0,±1,±2, . . . . We will apply Theorem 3 to the mapping

(5.2) f(ω, x) =
D(ω, x)

〈φ1(ω), D(ω, x)〉 , x ∈ X0(ω).

The mapping f(ω, x) is well defined because D(ω, x) is a completely monotone
mapping from K0(ω) into K1(ω). This implies that 〈φ1(ω), D(ω, x)〉 > 0 because
D(ω, x) �= 0 for x �= 0. Furthermore, 〈φ1(ω), f(ω, x)〉 = 1, which means that

f(ω, x) ∈ X1(ω) = K̂1(ω), and so f(ω, ·) is a mapping of X0(ω) into X1(ω).
Denote by V the Borel σ-algebra on V induced by the Euclidean topology on

V . Then the measurable space (V,V) is standard. Let us verify the assumptions of
Theorem 3 for the mappings ω �→ X(ω) and f(ω, x) : X0(ω) → X1(ω).

We have

{(ω, x) : x ∈ X(ω)} = {(ω, x) : x ∈ K(ω), 〈φ(ω), x〉 = 1} ∈ F0 × V
because φ(ω) and ω �→ K(ω) are F0-measurable.

To check (A1) we need to show that the mapping f̄(ω, x), which is equal to
f(ω, x) if x ∈ X0(ω) and ∞ otherwise, is F1 × V-measurable. This follows from
the fact that the set Γ := {(ω, x) : ω ∈ Ω, x ∈ K0(ω), 〈φ0(ω), x〉 = 1} is F0 × V-
measurable and the mapping f(ω, x) (see (5.2)) restricted to Γ is F1×V-measurable
by virtue of (D1) and the F1-measurability of φ1(ω).

For each ω, we define Y (ω) as K̂(ω)∩K◦(ω) (which corresponds to our previous
notation) and consider the Hilbert-Birkhoff metric d(ω) = d(ω, x, y) on Y (ω). For
every k = 0,±1,±2, . . . define

Yt(ω) = Y (T tω), dk(ω) = dk(ω, x, y) = d(T kω, x, y).

Let us verify the assumptions in (A2). To check (a) observe that the set-valued
mapping ω �→ Y (ω) is F0-measurable because its graph is the intersection of the
F0×V-measurable sets {(ω, x) : 〈φ(ω), x〉 = 1} and {(ω, x) : x ∈ K◦(ω)} (as regards
the second set, its measurability can be proved by using Theorems III.22 and III.30
in [5]).

To verify (b) consider a real number r and the set

Q = {(ω, x, y) : x, y ∈ Y (ω), d(ω, x, y) > r}.
We have to show that Q ∈ F0 × V × V . To this end observe that d(ω, x, y) > r if
and only if

inf
j
{βj : x ≤K(ω) βjy} > er sup

j
{αj : αiy ≤K(ω) x},

where αj > 0 and βj > 0 are rational numbers. By combining this observation
with the fact that {(ω, x, y) : x ≤K(ω) y} ∈ F0 × V × V (following from the F0-
measurability of ω �→ K(ω)), we obtain (b).

As we have noticed in Section 2, (Y (ω), d(ω)) is a complete separable metric
space and the topology generated by the metric d(ω) on Y (ω) coincides with the
Euclidean topology on Y (ω). From the fact that D(ω, x) is completely monotone,
it follows that the map f(ω, x) transforms Y (ω) into Y1(ω). Furthermore, f(ω, ·)
is continuous in the Euclidean topology and hence with respect to the metric d(ω)
on Y (ω) and the metric d1(ω) on Y1(ω). Therefore, conditions (c) and (d) hold.
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Consider the F0-measurable sets Γ1 ⊆ Γ2 ⊆ · · · ⊆ Ω constructed in Lemma
1. Let Ωm = Γm+1, (m = 0, 1, . . .). We will show that the sets Ω0 ⊆ Ω1 ⊆
· · · ⊆ Ω possess the properties listed in (A3). Consider the mappings fm(ω, x) and
f (m)(ω, x) defined by (3.2) and (3.3), respectively. By virtue of (3.2) and (5.2), we
get

fm(ω, x) = f(Tm−1ω, x) =
D(Tm−1ω, x)

〈φm(ω), D(Tm−1ω, x)〉 , x ∈ Xm−1(ω).

Let us prove by induction with respect to m = 0, 1, 2, . . . the following formula for
every x ∈ X−m−1(ω):

(5.3) f (m)(ω, x) = f0(ω)f−1(ω) · · · f−m(ω)x =
C(m+ 1, T−m−1ω)x

〈φ(ω), C(m+ 1, T−m−1ω)x〉 .

If m = 0, then

f0(ω, x) = f(T−1ω, x) =
D(T−1ω, x)

〈φ(ω), D(T−1ω, x)〉 =
C(1, T−1ω)x

〈φ(ω), C(1, T−1ω)x〉 , x ∈ X−1(ω).

Suppose equation (5.3) holds for m− 1. To verify it for m we take x ∈ X−m−1(ω),
put

z =
D(T−m−1ω)x

〈φ−m(ω), D(T−m−1ω)x〉 ,

and write

C(m+ 1, T−m−1ω)x

〈φ(ω), C(m+ 1, T−m−1ω)x〉 =
C(m,T−mω)D(T−m−1ω)x

〈φ(ω), C(m,T−mω)D(T−m−1ω)x〉

=
C(m,T−mω)z

〈φ(ω), C(m,T−mω)z〉 = f0(ω)f−1(ω) · · · f−m+1(ω)z

= f0(ω)f−1(ω) · · · f−m+1(ω)
D(T−m−1ω)x

〈φ−m(ω), D(T−m−1ω)x〉
= f0(ω)f−1(ω) · · · f−m+1(ω)f−m(ω)x.

In this chain of equalities, the first one follows from (5.1), the second from the
definition of z and homogeneity of the mappings under consideration, the third
from the assumption of induction, the fourth from the definition of z, and the last
from the definition of f−m.

Let m be any nonnegative integer and let ω ∈ Ωm = Γm+1. Then, according
to Lemma 1, the mapping C(m+ 1, T−m−1ω) is strictly monotone. Consequently
(see (5.3)), f (m)(ω, x) ∈ K◦(ω) for all x ∈ X−m−1(ω), and so f (m)(ω,X−m−1(ω))
is a subset in Y (ω). Moreover, f (m)(ω,X−m−1(ω)) is a compact set in Y (ω), as a
continuous image of the set X−m−1(ω) which is compact in the Euclidean topology,
and hence f (m)(ω,X−m−1(ω)) is compact with respect to the metric d(ω). By virtue
of Theorem 2, f (m)(ω, x) : Y−m−1(ω) → Y (ω) is a strictly nonexpansive mapping
with respect to the metric d−m−1(ω) on Y−m−1(ω) and d(ω) on Y (ω). Consequently,
condition (A3) holds. Thus, all the conditions sufficient for the validity of Theorem
3 are verified.

By virtue of assertion (i) of Theorem 3, there exists an F0-measurable mapping
ξ(ω) ∈ Y (ω) for which the equation ξ(Tω) = f(ω, ξ(ω)) (a.s.) holds, i.e., we have

ξ(Tω) =
D(ω, ξ(ω))

〈φ1(ω), D(ω, ξ(ω))〉 (a.s.).
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Let x(ω) = ξ(ω) and α(ω) = 〈φ1(ω), D(ω, ξ(ω))〉. Then α(ω)x(Tω) = D(ω)x(ω)
(a.s.), and since x(ω) ∈ Y (ω), we have x(ω) ∈ K◦(ω), 〈φ(ω), x(ω)〉 = 1 and α(ω) >
0. Furthermore, x(ω) is F0-measurable and α(ω) is F1-measurable, which proves
assertion (a).

To prove (b), take any (α′(ω), x′(ω)), where α′(ω) ≥ 0, x′(ω) ∈ K(ω), and 〈φ(ω),
x′(ω))〉 = 1, satisfying α′(ω)x′(Tω) = D(ω)x′(ω) (a.s.). Then

α′(ω) = α′(ω)〈φ1(ω), x
′(Tω)〉 = 〈φ1(ω), D(ω)x′(ω)〉 > 0,

and so

x′(Tω) =
D(ω)x′(ω)

α′(ω)
=

D(ω)x′(ω)

〈φ1(ω), D(ω)x′(ω)〉 = f(ω, x′(ω)) (a.s.).

By virtue of assertion (ii) of Theorem 3, we have x′(ω) = x(ω) (a.s.), and conse-
quently, α′(ω) = α(ω) (a.s.), which proves (b).

To prove (c) we observe that x := a/〈φ−m−1(ω), a〉 ∈ X−m−1(ω) for any 0 �=
a ∈ K−m−1(ω), and by virtue of (5.3), the following equations hold:

C(m+ 1, T−m−1ω)a

〈φ(ω), C(m+ 1, T−m−1ω)a〉 =
C(m+ 1, T−m−1ω)x

〈φ(ω), C(m+ 1, T−m−1ω)x〉 = f (m)(ω, x).

By using (3.5), we get

lim
m(ω)≤m→∞

sup
0	=a∈K−m−1(ω)

d(ω, ξ(ω),
C(m+ 1, T−m−1ω)a

〈φ(ω), C(m+ 1, T−m−1ω)a〉 )

= lim
m(ω)≤m→∞

sup
x∈X−m−1(ω)

d(ω, ξ(ω), f (m)(ω, x)) = 0 (a.s.).

In view of (2.2), here we can replace the Hilbert-Birkhoff metric d(ω, x, y) by the
norm ‖x− y‖, which yields (1.2). This completes the proof. �
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