
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 10, October 2018, Pages 4105–4116
http://dx.doi.org/10.1090/proc/14081

Article electronically published on May 24, 2018

HYPERBOLICITY CONES AND IMAGINARY PROJECTIONS
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(Communicated by Patricia Hersh)

Abstract. Recently, the authors and de Wolff introduced the imaginary pro-
jection of a polynomial f ∈ C[z] as the projection of the variety of f onto its
imaginary part, I(f) = {Im(z) : z ∈ V(f)}. Since a polynomial f is stable if
and only if I(f) ∩ Rn

>0 = ∅, the notion offers a novel geometric view under-
lying stability questions of polynomials. In this article, we study the relation

between the imaginary projections and hyperbolicity cones, where the latter
ones are only defined for homogeneous polynomials. Building upon this, for
homogeneous polynomials we provide a tight upper bound for the number of
components in the complement I(f)c and thus for the number of hyperbolicity
cones of f . And we show that for n ≥ 2, a polynomial f in n variables can
have an arbitrarily high number of strictly convex and bounded components
in I(f)c.

1. Introduction

A homogeneous polynomial f ∈ R[z] = R[z1, . . . , zn] is called hyperbolic in di-
rection e ∈ Rn if f(e) �= 0 and for every x ∈ Rn the real function t �→ f(x + te)
has only real roots.

We denote by C(e) = {x ∈ R
n : f(x + te) = 0 ⇒ t < 0} the hyperbolicity cone

of f with respect to e. By G̊arding’s results [3], C(e) is convex, f is hyperbolic
with respect to every point e′ in its hyperbolicity cone, and C(e) = C(e′) (see
[3]). Note that 0 /∈ C(e) and −C(e) = C(−e) is a hyperbolicity cone of f as well.
Furthermore, hyperbolicity cones are open. Recent interest in the hyperbolicity
cones was supported by their application in hyperbolic programming (see [4,10,12])
as well as by the open conjecture that every hyperbolicity cone is spectrahedral
(“Generalized Lax conjecture”; see [16] for an overview as well as [1, 5, 8, 9, 11]).

In [6], the authors and de Wolff introduced the imaginary projection of a poly-
nomial f ∈ C[z] as the projection of the variety V(f) of f onto its imaginary part,
I(f) = {Im(z) : z ∈ V(f)}. A polynomial f ∈ R[z] is (real) stable; i.e., its imagi-
nary projection does not intersect the positive orthant if and only if f is hyperbolic
with respect to every point in the positive orthant; see [3, 17]. The complement
of the closure of I(f) consists of finitely many convex components, thus offering
strong connections to the theory of amoebas (see [6]).

The main goal of this paper is to study the number of complement components
of the imaginary projection of a polynomial f . In the homogeneous case, it turns
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out that this question is equivalent to characterizing the number of hyperbolicity
cones of f :

Theorem 1.1. Let f ∈ R[z] be homogeneous. Then the hyperbolicity cones of f
coincide with the components of I(f)c.

Hence, imaginary projections offer a geometric view on the collection of all hy-
perbolicity cones of a given polynomial. Building upon this, we can provide the
following sharp upper bound for homogeneous polynomials.

Theorem 1.2. Let f ∈ R[z] be homogeneous of degree d. Then the number of
hyperbolicity cones of f and thus the number of components in the complement of
I(f) is at most {

2d for d ≤ n ,

2
∑n−1

k=0

(
d−1
k

)
for d > n .

The maximum is attained if and only if f is a product of independent linear poly-
nomials in the sense that any n of them are linearly independent.

If a part of the boundary of a complement component comes from a linear factor,
then the complement component is not strictly convex. It seems to be open whether
for given dimension n, the number of strictly convex cones in the complement of
I(f) can become arbitrarily large for a homogeneous polynomial f . We show in
Theorem 1.3 that a non-homogeneous polynomial f can have an arbitrarily large
number of strictly convex, bounded components in the complement.

Theorem 1.3. Let n ≥ 2. For any K > 0 there exists a polynomial f ∈ R[z] such
that f has at least K strictly convex, bounded components in the complement of
I(f).

The following question remains open:

Question 1.4. Given a non-homogeneous polynomial f ∈ C[z] of total degree d
(or with given Newton polytope P ), how many bounded or unbounded components
can the complement of I(f) at most have?

The paper is structured as follows. Section 2 deals with the connections of imag-
inary projections of homogeneous polynomials and hyperbolicity cones and proves
Theorem 1.1. Section 3 contains the proof of Theorem 1.2, and it characterizes
the boundary of imaginary projections. Section 4 then deals with inhomogeneous
polynomials and proves Theorem 1.3.

2. Imaginary projection of homogeneous polynomials

and hyperbolicity cones

Throughout the paper, we use bold letters for vectors, e.g., z = (z1, . . . , zn) ∈ Cn.
If not stated otherwise, the dimension is n. Denote by V(f) the complex variety of
a polynomial f and by VR(f) the real variety of f . Moreover, set Ac = Rn \ A for
the complement of a set A ⊆ Rn.

For the notion of hyperbolic polynomials, one usually starts from real homo-
geneous polynomials, while imaginary projections can be defined also for non-
homogeneous and complex polynomials. For coherence, we also consider the notion
of a hyperbolic polynomial for complex homogeneous polynomials f ∈ C[z]. Note
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that if f ∈ C[z] is hyperbolic with respect to a ∈ Rn, then f(z)/f(a) has real
coefficients and is hyperbolic with respect to a as well (see [3]).

For homogeneous polynomials, we now prove the connection between hyperbol-
icity cones and imaginary projections stated in Theorem 1.1. It generalizes the
relation between homogeneous real stable polynomials and hyperbolicity cones,
which was already mentioned in the introduction. Note that for a homogeneous
polynomial f , the imaginary projection I(f) can be regarded as a (non-convex)
cone; i.e., for any z ∈ I(f) and λ ≥ 0 we have λz ∈ I(f). Thus, in particular,
0 ∈ I(f).
Proof of Theorem 1.1. We show the following two properties:

(1) If f is hyperbolic with respect to e ∈ Rn, then the hyperbolicity cone C(e)
satisfies C(e) ⊆ I(f)c.

(2) If there is a convex cone C with C ⊆ I(f)c, then f is hyperbolic with
respect to every point in C; i.e., C is contained in that hyperbolicity cone
of f .

Assume first that f is hyperbolic with respect to e ∈ Rn, and let e′ ∈ C(e). Then
e′ cannot be the imaginary part of a root z = x+ iy, since otherwise i would be a
non-real zero of the univariate function t �→ f(x+ te′).

Assume now that there is a convex cone C with C ⊆ I(f)c. The homogeneity
of f implies −C ⊆ I(f)c. For e ∈ ±C, we have f(x+ ie) �= 0 for all x ∈ Rn, which
gives in particular

f(e) = (1 + i)− deg ff((1 + i)e) = (1 + i)− deg ff(e+ ie) �= 0,

where deg(f) denotes the degree of the homogeneous polynomial f . Furthermore,
if there were an x ∈ Rn such that t �→ f(x + te) has a non-real solution a + ib,
b �= 0, then

f(x+ ae+ ibe) = 0

in contradiction to be ∈ ±C ⊆ I(f)c. �
As an immediate consequence, we obtain the following description of the imagi-

nary projection of a homogeneous polynomial.

Corollary 2.1. If f ∈ C[z] is homogeneous, then its imaginary projection is a
closed cone (in general non-convex ). The components C1, . . . , Ct of I(f)c are hy-
perbolicity cones of f and occur pairwise, with Ci1 = −Ci2 . In particular, the
imaginary projection of a homogeneous polynomial has no bounded components in
its complement.

Proof. By Theorem 1.1, the components C1, . . . , Ct of I(f)c are the hyperbolicity
cones of f , which occur pairwise. Since hyperbolicity cones are open and since I(f)
has only finitely many of these conic components in the complement, I(f) is closed.
And since I(f) is a cone, there are no bounded components in the complement. �

The following examples illustrate the connection stated in Theorem 1.1 in well-
known cases.

Example 2.2. Let f(z) = z1 · · · zn. Then f is hyperbolic with respect to every
point e ∈ (R \ {0})n. Setting zj = xj + iyj , we obtain

I(f) = {y ∈ R
n :

n∏
j=1

(xj + iyj) = 0 for some x ∈ R
n} =

n⋃
j=1

{y ∈ R
n : yj = 0}.
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Example 2.3. Let f(z) = z21−
∑n

j=2 z
2
j , n > 2. It is well-known that f is hyperbolic

with respect to any point e ∈ Rn with e21 −
∑n

j=2 e
2
j > 0 (e.g., [3, Example 1]) and

that the two hyperbolicity cones are the open second-order cone (or open Lorentz
cone) L = {x ∈ Rn : x2

1−
∑n

j=2 x
2
j > 0, x1 > 0} and its negative −L. Likewise, the

imaginary projection of f is I(f) = {y ∈ Rn : y21 −
∑n

j=2 y
2
j ≤ 0} = Rn \ (L∪−L),

which was computed as part of [6, Theorem 5.4]. This illustrates Theorem 1.1.
Furthermore, if a real homogeneous quadratic polynomial f ∈ R[z] is hyper-

bolic, then its hyperbolicity cone is the image of the second-order cone under a
linear transformation; that property follows from the classification of the imagi-
nary projections of real homogeneous quadratic polynomials in [6].

Example 2.4. Let f(z) = det(z1A1 + · · · + znAn), where A1, . . . , An are Her-
mitian d × d-matrices. It is well-known [9, Prop. 2] that f has the spectrahedral
hyperbolicity cone

C = {x ∈ R
n : x1A1 + · · ·+ xnAn � 0}.

This implies that ±C are components of I(f)c. We can compute directly that
I(f)c has exactly these two components. Namely, given some y ∈ Rn with A(y) :=
y1A1 + · · ·+ ynAn � 0, we have

f(x+ iy) = det

⎛
⎝ n∑

j=1

xjAj + iA(y)

⎞
⎠

= det(A(y)) · det

⎛
⎝ n∑

j=1

xjA(y)−1/2AjA(y)−1/2 + iI

⎞
⎠ ,

(2.1)

where A(y)−1/2 is the unique matrix with A(y)−1/2 · A(y)−1/2 = A(y)−1. If
f(x+ iy) vanished for some x ∈ Rn, then the Hermitian matrix

∑
xjA(y)−1/2AjA(y)−1/2

would have the eigenvalue −i. But this is impossible, since Hermitian matrices
have only real eigenvalues. Hence, y /∈ I(f).

Conversely, let f(x+ iy) = 0. Assuming A(y) � 0, the right hand side of (2.1)
vanishes, which again gives the contradiction that −i is an eigenvalue of the Her-
mitian matrix.

In the following, we consider the number and structure of hyperbolicity cones of
a homogeneous polynomial. In order to see that there can appear many hyperbolic-
ity cones, consider polynomials of the form f(z) = det(A1z1+ · · ·+Anzn) with real
diagonal d×d-matrices. This is a special case of Example 2.4, where the spectrahe-
dral hyperbolicity cone becomes a polyhedron. In that case, it becomes profitable
to use the viewpoint of imaginary projections to describe exactly the hyperbolicity
cones of their complement. Namely, I(f) is an algebraic variety here, whereas the
hyperbolicity cones are semi-algebraic.
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Theorem 2.5. Let f(z)=det(A1z1+ · · ·+Anzn), where A1, . . . , An are d× d real

diagonal matrices, Aj = diag(a
(j)
1 , . . . , a

(j)
n ). Then I(f) is the hyperplane arrange-

ment

(2.2) I(f) =
d⋃

l=1

{y ∈ R
n :

n∑
j=1

a
(j)
l yj = 0}.

Lemma 3.1 in Section 3 will show that if d′ is the number of distinct hyperplanes
in (2.2), then the number of complement components is at most 2d

′
for d′ ≤ n and

at most 2 ·
∑n−1

k=0

(
d′−1
k

)
for d′ > n.

Proof. We have

(2.3) det(A1z1 + · · ·+Anzn) =
d∏

l=1

⎛
⎝ n∑

j=1

a
(j)
l xl + i

n∑
j=1

a
(j)
l yl

⎞
⎠ .

Assume that there is some y ∈ Rn such that
∑n

j=1 a
(j)
l yj = 0 for an l ∈ {1, . . . , d}.

Then, choosing x = y, we have f(x+ iy) = 0.

Assume now that
∑n

j=1 a
(j)
l yj �= 0 for all 1 ≤ l ≤ d. Since (2.3) vanishes if and

only if at least one factor vanishes, we have f(x+ iy) �= 0 for all x ∈ Rn. �
We conclude the section with an exact statement on the number of hyperbolicity

cones in the bivariate case.

Theorem 2.6. Let f ∈ R[z1, z2] be homogeneous and of degree d. Then f has at
most 2d hyperbolicity cones. The exact number depends on the number of distinct
solutions of f(1, z2) = 0:

(1) If there is at least one complex solution, then there are no hyperbolicity
cones.

(2) If there are k distinct real solutions, then there are 2k hyperbolicity cones.

For the proof, recall the definition of the set of limit directions as the set of limit
points of points in 1

rI(f) ∩ Sn−1 (for r → ∞), written

I∞(f) = lim
r→∞

(
1

r
I(f) ∩ S

n−1

)
,

which describes the behavior at infinity of the imaginary projection of a polynomial
f ∈ C[z]. The following statement was shown in [6, Cor. 6.7].

Proposition 2.7. Let f ∈ C[z1, z2] be of total degree d and assume its homoge-
nization fh ∈ C[z0, z1, z2] has the zeros at infinity (0 : 1 : aj), j = 1, . . . , d. Then

I∞(f) =

⎧⎪⎨
⎪⎩

d⋃
j=1

{
± 1√

1+a2
j

(1, aj)

}
if all aj are real,

S1 otherwise.

Proof of Theorem 2.6. By Proposition 2.7, either every point on S1 is a limit di-
rection of f or f has at most 2d limit directions. Since f is homogeneous, we
have I∞(f) = I(f)∩ Sn. Hence, every connected component of the complement of
I(f)∩S

1 on the sphere corresponds to a hyperbolicity cone of f . The more precise
characterization then follows from the more refined characterization in Proposi-
tion 2.7 as well. �
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3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2 on the maximal number of hyperbolicity
cones of homogeneous polynomials. Moreover, as a consequence of the results on the
hyperbolicity cones, we provide a characterization of the boundary of the imaginary
projections of homogeneous polynomials in Theorem 3.5.

For the maximal number of hyperbolicity cones, it will turn out that this number
is achieved by polynomials which are products of independent linear factors.

Lemma 3.1. Let f(z) = p1(z) · · · pd(z) ∈ C[z] be a product of d linear polynomials
p1, . . . , pd. Unless I(f) = Rn, the number of hyperbolicity cones of f is positive
and at most

(1) 2d for 1 ≤ d ≤ n,

(2) 2
∑n−1

k=0

(
d−1
k

)
for d > n.

Before the proof, we recall the following statement on linear polynomials from [6],
phrased there in the affine setting.

Proposition 3.2. For every homogeneous linear polynomial f(z) =
∑n

j=1 ajzj ∈
R[z] with (a1, . . . , an) �= 0, we have I(f) = VR(

∑n
j=1 ajyj). If the coefficients of f

are complex, then I(f) is either a hyperplane or I(f) = R
n.

Proof of Theorem 3.1. Let f(z) = p1(z) · · · pd(z) be a product of d linear polyno-
mials p1, . . . , pd and I(f) �= Rn. Since I(pj) is a hyperplane for all j, the imaginary
projection I(f) defines a central hyperplane arrangement in R

n, where central ex-
presses that all the hyperplanes are passing through the origin. We can assume that
the hyperplanes are in general position, since otherwise the number of hyperbolicity
cones may only become smaller.

By Zaslavsky’s results [18] (see also [15, Prop. 2.4]), the number of chambers
in an affine hyperplane arrangement of d affine hyperplanes in general position is∑n

k=0

(
d
k

)
, out of which

(
d−1
n

)
chambers are bounded. Determining the number of

chambers in a central hyperplane arrangement of d affine hyperplanes in general
position can be reduced to an affine hyperplane arrangement in R

n−1 and gives

n−1∑
k=0

(
d

k

)
+

(
d− 1

n− 1

)
= 2

n−1∑
k=0

(
d− 1

k

)
.

For 1 ≤ d ≤ n, by the Binomial Formula this specializes to the expression given. �

By the results of Helton and Vinnikov [5], the real variety of a smooth and
hyperbolic polynomial consists of nested ovals (and a pseudo-line in case of odd
degree) in the projective space Pn−1. Hence, the hyperbolicity cone is unique
(up to sign). Motivated by an earlier version of the present article, Kummer was
able to weaken the precondition and showed that even for irreducible hyperbolic
polynomials the hyperbolicity cone is unique (up to sign).

Proposition 3.3 ([7]). Let f ∈ R[z] be an irreducible homogeneous polynomial.
Then f has at most two hyperbolicity cones (i.e., one pair) and thus at most two
components in the complement of I(f).

Lemma 3.4. Let f1, f2 ∈ C[z] be homogeneous and let f1 be irreducible. Then the
number of hyperbolicity cones of f1 · f2 is at most twice the number of hyperbolicity
cones of f2.
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Proof. First note that any hyperbolicity cone C of f1 ·f2 is of the form C = C1∩C2

with hyperbolicity cones C1 and C2 of f1 and f2.
We can assume that f1 and f2 are hyperbolic. Then, by Theorem 3.3, f1 has

at most one pair of hyperbolicity cones. Intersecting these two cones with the
hyperbolicity cones of f2 gives the bound. �

Since the lemma inductively extends to an arbitrary number of factors, two or
more pairs of hyperbolicity cones only arise from different factors in the polynomial
f . This fact is captured explicitly by Theorem 1.2, whose proof is now given.

Proof of Theorem 1.2. Since the case n = 1 is trivial, we can assume n ≥ 2. Let f =
p1 · · · pk be a homogeneous polynomial of degree d, where p1, . . . , pk are irreducible.
Hence, d = deg(p1) + · · · + deg(pk). We construct a polynomial g = q1 · · · qk with
linear polynomials qi such that g has at least as many hyperbolicity cones as f .

By Lemma 3.4, the number of hyperbolicity cones of f is at most twice the
number of hyperbolicity cones of p2 · · · pk. Since the irreducible polynomial p1 has at
most two hyperbolicity cones, there exists some hyperplane H separating these two
(open) convex cones. Set q1 to be a linear polynomial whose zero set isH. The set of
hyperbolicity cones of f injects to the set of hyperbolicity cones of f∗ = q1p2 · · · pk.
Repeating this process for p2, . . . , pk provides a polynomial g = q1 · · · qk whose
number of hyperbolicity cones is at least the number of hyperbolicity cones of f .

Hence, the number of hyperbolicity cones is maximized if f is a product of
independent linear polynomials. Since replacing any nonlinear polynomial pi by a
linear polynomial qi decreases the total degree of the overall product, the maximum
number of hyperbolicity cones of a degree d polynomial cannot be attained if f has
a nonlinear irreducible factor pi.

Now the stated numbers follow from Lemma 3.1. �

An illustration, where this number is attained, is given by Theorem 2.5.
For homogeneous polynomials f , the uniqueness statement Proposition 3.3 (up to

sign) allows us to characterize the boundary of I(f)c – or equivalently the boundary
of the hyperbolicity cones – in terms of the variety V(f).

Theorem 3.5. Let f ∈ C[z] be homogeneous. Then:

(1) VR(f) ⊆ I(f), with equality if and only if eiφf is a product of real linear
polynomials for some φ ∈ [0, 2π).

(2) If f is hyperbolic and irreducible, then the Zariski closure of the boundary
of I(f)c equals V(f),

∂I(f)cZ = V(f).

Proof. By homogeneity, if z is a root of f , then iz is a root of f as well. Hence, if
x ∈ VR(f), then x ∈ I(f).

Let eiφf be a linear polynomial with real coefficients. By Proposition 3.2, the
imaginary projection of eiφf and thus of f is exactly VR(f) (notice that I(f) �= R

n).
Hence, the statement holds for products of linear polynomials as well.

For the converse direction, let I(f) = VR(f). Assume first that f is irreducible.
We observe that f must be hyperbolic, since otherwise I(f) = Rn, which would
imply that f ≡ 0. By Proposition 3.3, f has exactly one pair of hyperbolicity
cones. It corresponds to the two convex, open components C and −C of I(f)c. By
assumption, I(f) is a real algebraic set, and hence I(f) = ∂I(f) = ∂C = ∂(−C).
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Thus, I(f) = C ∩ −C is a convex set, where C denotes the topological closure
of C. Since for any two points a,b ∈ I(f) with a �= b their convex combination
is contained in I(f) = VR(f), the underlying polynomial must be linear. Due to
I(f) �= Rn, the classification of linear polynomials in [6] (cf. Proposition 3.2 here)
provides that f is of the form eiφf .

If f is a product of non-constant irreducible polynomials, we can consider the
imaginary projection of each factor and obtain the overall statement.

For the second statement, let f be hyperbolic with respect to e and irreducible.
By Theorem 1.1, the hyperbolicity cone C = C(e) is a component of I(f)c. Since
C is the connected component in the complement of V(f) containing e (see [12]), it
is bounded by some subset of its real variety. And since f is irreducible, the Zariski
closure of ∂I(f)c is V(f). �

4. Non-homogeneous polynomials and their homogenization

In this section, we deal with the complement components for non-homogeneous
polynomials as well as with homogenization. For f ∈ C[z], we show that there is a
bijection between the set of unbounded components of I(f)c with full-dimensional
recession cone and the hyperbolicity cones of the initial form of f (as defined below).
Then we show Theorem 1.3.

Denote by fh = fh(z0, z) the homogenization of f with respect to the variable
z0. For a set X ⊆ Rn let coneX = {λx ∈ Rn : x ∈ X,λ ≥ 0} denote the cone
over X. The following statement captures the connection between the imaginary
projection of f and the imaginary projection of its homogenization.

Theorem 4.1. If f ∈ C[z], then I(fh) ∩ {(y0,y) ∈ Rn+1 : y0 = 0} = {0} ×
(cone I(f) ∪ I(fh(0, z))).

Proof. If y is a non-zero point in cone I(f), we have λy ∈ I(f) for some λ ≥ 0.
Hence, there exists an x ∈ R

n with fh((1,x + iλy)) = 0. By homogeneity of fh,
this also gives (0,y) ∈ I(fh) ∩ {(y0,y) ∈ Rn+1 : y0 = 0}.

Conversely, if (0,y) is a non-zero point in I(fh) ∩ {(y0,y) ∈ Rn+1 : y0 = 0}
and y �∈ I(fh(0, z)), then there exist some x ∈ Rn and some c ∈ R \ {0} such that
fh((c,x+iy)) = 0. Hence, 1

c (x+iy) is a zero of f , and therefore y ∈ cone I(f). �

By Theorem 4.1, bounded components in the complement vanish under homog-
enization, and only conic components with apex at the origin remain. Concern-
ing dehomogenization, note that the intersection of the imaginary projection of
a homogeneous polynomial f ∈ C[z0, z] = C[z0, . . . , zn] with a fixed hyperplane
{(y0,y) ∈ Rn+1 : y0 = β}, β �= 0, is

I(fh) ∩ {(y0,y) ∈ R
n+1 : y0 = β} =

⋃
α∈R

I(fh(α+ iβ, z)).

We denote by in(f) the initial form of f , i.e., the sum of all those terms which
have maximal total degree. Note that in(f)(z) = fh(0, z).

Recall that the recession cone of a convex set A ⊆ Rn is rec(A) = { a ∈ A :
a + x ∈ A for all x in A} (see, e.g., [13]). Whenever A is closed rec(A) is closed.

For a polynomial f , denoting by I(f) the closure of I(f), we can characterize

the components of (I(f))c with full-dimensional recession cones in terms of the
hyperbolicity cones of in(f).
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Figure 1. f(z1, z2) = z31 − 2z21z2 + z1z
2
2 + z1 + z2 + 1. We have

in(f) = z1(z1 − z2)
2, and any boundary point of the complement

of I(in(f)) satisfies z1 = 0 or z1 = z2. Altogether, I(f)c has six
components.

Theorem 4.2. For f ∈ C[z], there is a bijection between the set of unbounded com-
ponents of I(f)c with full-dimensional recession cone and the hyperbolicity cones of
in(f).

Hence, there are at least as many unbounded components in I(f)c as com-
ponents in I(in(f))c. Moreover, if in(f) is hyperbolic, I(f)c has at least two
(full-dimensional) components. Note that for a polynomial f , the terms of lower
degree can cause some unbounded components in the complement that have lower-
dimensional recession cones. See Figure 1 for an example.

In order to prove the theorem, we show the following lemma, where int denotes
the interior of a set.

Lemma 4.3. For f ∈ C[z], the following statements hold.

(1) The sets of limit directions I∞(f) and I∞(in(f)) coincide.

(2) If C is an unbounded component of (I(f))c with recession cone C ′, then
intC ′ is a component of I(in(f))c if and only if dimC ′ = n.

(3) If C is a component of I(in(f))c, then there is a y0 ∈ Rn such that y0 +C
lies in a component of I(f)c and C equals the interior of the recession cone
of that complement component.

Proof. (1) The homogenization fh has a zero at infinity, i.e. (0, z1, . . . , zn) ⊆ V(fh)
if and only if in(f) = fh(0, z1, . . . , zn) = 0. Hence, the limit directions of f and
in(f) coincide.

(2) Since hyperbolicity cones are open, I(in(f)) is closed and thus I∞(f) =
I∞(in(f)) is closed as well.

Let C be an unbounded component of (I(f))c with recession cone C ′. If dimC ′ <
n, then intC ′ = ∅; hence C ′ is not a hyperbolicity cone of the homogeneous poly-
nomial in(f). Conversely, if dimC = n, then let y0 ∈ Rn with y0 + C ′ ⊆ C. For
all r > 0 we have

1

r

(
(y0 + C ′) ∩ I(f)

)
∩ S

n−1 = ∅.
Under taking the limit r → ∞, we obtain that no interior point of the set of limit
points

(4.1) lim
r→∞

1

r
(y0 + C ′) ∩ S

n−1
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is a limit direction of I(f). By (1), these interior points are not limit directions of
I(in(f)) either. As a consequence, intC ′ is a component of I(in(f))c.

(3) Let C ′ be a component of I(in(f))c. Set U = C ′ ∩ S
n−1 and note that

the positive hull posU satisfies posU = C ′. Since I(in(f)) is a cone, we have
U ⊆ I∞(in(f)) = I∞(f). Hence, there is a y0 ∈ I(f)c such that y0 + posU is
contained in a component I(f)c.

Denote by C ′′ the recession cone of the component of I(f)c that contains y0+C ′.
Clearly, C ′ ⊆ C ′′. Using (2), it follows that intC ′′ = C ′. �

Theorem 4.2 is a consequence of Lemma 4.3.

Proof of Theorem 4.2. If the recession cone C ′ of C is full-dimensional, then, by
Lemma 4.3(2), intC ′ is a component of I(in(f))c; i.e., intC ′ is a hyperbolicity cone
of in(f).

Conversely, if the recession cone C ′ of C is a hyperbolicity cone of in(f), then,
by Lemma 4.3(3), it is open and thus full-dimensional. �

We now show Theorem 1.3. For ϕ ∈ R, denote by Rϕ : R2 → R
2 the linear

mapping rotating a given point x ∈ R2 by an angle ϕ around the origin. Rϕ has a
real representation matrix and can also be viewed as a linear mapping C2 → C2.

Proof of Theorem 1.3. Given K ∈ N, we construct a polynomial pK,n in n variables
with at least K strictly convex complement components. For the case n = 2, let

g(z1, z2) = (−z21 + z22 − 1)(z21 − z22 − 1)

and

(4.2) pK,2(z) =
(
z21 + z22 + r2

)
·
m−1∏
j=0

g(R
2πj/m
1 (z1, z2), R

2πj/m
2 (z1, z2)),

where m =
⌈
K
4

⌉
and r > 0 sufficiently large. By [6, Thm. 5.3], I(z21 + z22 + r2)c is

the open disk with radius r centered at the origin, and the boundaries of the two-
dimensional components of I(g)c are given by four hyperbolas. Since the convex
components of I(g)c and of I(z21 + z22 + r2)c are strictly convex, the components of
I(pK,2)

c are strictly convex. Figure 2 depicts I(p4,2).

Figure 2. The imaginary projections of p4,2.

The expressions (R
2πj/m
1 (z1, z2), R

2πj/m
2 (z1, z2)) in the arguments of g provide

a rotation of its imaginary projection by an angle of −2πj/m. Choosing r large
enough guarantees that the complement component of I(z21 + z22 + r2) is not com-

pletely covered by the imaginary projections of g(R
2πj/m
1 (z1, z2), R

2πj/m
2 (z1, z2)).
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Altogether, I(pK,2)
c has 4m ≥ K bounded and strictly convex, two-dimensional

components.
Note that the asymptotes of the hyperbolas do not belong to the imaginary

projection of g, except the origin. Therefore, I(pK,2)
c has in total 8m bounded

components.
The case n ≥ 3 follows by a suitable modification of (4.2). Namely, set

g(z) = (rz1)
2 −

( n∑
j=2

z2j
)
+ 1 = r2z21 −

( n∑
j=2

z2j
)
+ 1

and

pK,n(z) =

⎛
⎝ n∑

j=1

z2j + 1

⎞
⎠ ·

m−1∏
j=0

g(R
2πj/m
1 (z1, z2), R

2πj/m
2 (z1, z2), z3, . . . , zn) ,

where m =
⌈
K
2

⌉
. I(

∑n
j=1 z

2
j + 1)c is the open ball in R

n with radius 1 centered

at the origin, and by [6, Thm. 5.4] the boundaries of the two convex components
of I(g)c are given by B1 := {y ∈ Rn : y1 ≥ 1/r and r2y21 −

∑n
j=2 y

2
j = 1} and

B2 := {y ∈ R
n : y1 ≤ −1/r and r2y21 −

∑n
j=2 y

2
j = 1}. Since B1 ∪ B2 is a

two-sheeted n-dimensional hyperboloid, B1 and B2 are the boundaries of strictly
convex sets. Note that for r → ∞, the set I(g) converges to the y1-hyperplane on
all compact regions of Rn.

Again, since the rotation (R
2πj/m
1 (z1, z2), R

2πj/m
2 (z1, z2)) in the arguments of g

induce a rotation of its imaginary projection by an angle of −2πj/m with respect
to the y1y2-plane, choosing r large enough gives 2m ≥ K bounded and strictly
convex components. �

5. Conclusion and open question

We have provided quantitative and convex-geometric results on the complement
components of imaginary projections and of the hyperbolicity cones of hyperbolic
polynomials. In the case of amoebas of polynomials, to every complement compo-
nent an order can be associated (see [2] for this order map). In the homogeneous
case of imaginary projections, the direction vectors of the hyperbolicity cones can
be regarded as a (non-unique) representative of an order map. And for the un-
bounded complement components of non-homogeneous polynomials, Theorem 4.2
establishes a connection via the initial form. It is an open question whether a vari-
ant or generalization of this also holds for the bounded complement components in
case of non-homogeneous polynomials.

Moreover, Shamovich and Vinnikov [14] recently studied generalizations of hy-
perbolic polynomials in terms of hyperbolic varieties, and it would be interesting
to extend our results to that setting.
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[1] N. Amini and P. Brändén, Non-representable hyperbolic matroids, preprint, arXiv:1512.
05878, 2015.

[2] Mikael Forsberg, Mikael Passare, and August Tsikh, Laurent determinants and arrangements
of hyperplane amoebas, Adv. Math. 151 (2000), no. 1, 45–70. MR1752241

[3] Lars G̊arding, An inequality for hyperbolic polynomials, J. Math. Mech. 8 (1959), 957–965.
MR0113978
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