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WANDERING MONTEL THEOREMS FOR HILBERT SPACE
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(Communicated by Stephan Ramon Garcia)

Abstract. We prove that if {uk} is a sequence of holomorphic functions that
takes values in an infinite dimensional Hilbert space H, there are unitaries

{Uk} on H so that Ukuk has a subsequence that converges locally uniformly.
We also prove a non-commutative version of this result.

1. Introduction

1.1. Commutative theory. Let Ω be an open set in Cd and assume that {uk}
is a sequence in Hol(Ω), the algebra of holomorphic functions on Ω equipped with
the topology of uniform convergence on compact subsets. The classical Montel
Theorem asserts that if {uk} is locally uniformly bounded on Ω, then there exists
a subsequence {ukl} that converges in Hol(Ω).

It is well known that if X is an infinite dimensional Banach space, then Montel’s
Theorem breaks down for HolX (Ω), the space of X -valued holomorphic functions;
see e.g. [5, 14]. For example, if X = �2 and {fk} is a locally uniformly bounded
sequence of holomorphic functions on Ω, then the sequence⎛

⎜⎜⎜⎝
f1(λ)
0
0
...

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

0
f2(λ)
0
...

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

0
0

f3(λ)
...

⎞
⎟⎟⎟⎠ , . . .

is a locally uniformly bounded sequence that will have a convergent subsequence
only if there exists a subsequence {fkl} that converges uniformly to 0 on Ω.

Observe that the problem in the example given above is that while for all λ ∈ Ω,
uk converges weakly to 0, it needn’t be the case that uk(λ) converges in norm for
any λ ∈ Ω. However, just as in the case of the classical proof of Montel’s theorem
that uses the Arzela-Ascoli Theorem, if one assumes that {uk} is well behaved
pointwise on a large enough set, then one can conclude uniform convergence in
norm on compact sets. For example, consider the following theorem by Arendt and
Nikolski [5, Cor. 2.3].
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Theorem 1.1. Let Ω be an open connected set in C, and let uk be a sequence in
HolX (Ω) that is locally bounded. Assume that

Ω0 := {z ∈ Ω : {uk(z) : k ∈ N} is relatively compact in X}
has an accumulation point in Ω. Then there exists a subsequence which converges
to a holomorphic function uniformly on compact subsets of Ω.

Theorem 1.1 deals with the difficulty by making strong additional assumptions
about the pointwise behavior of {uk}, assumptions that may not hold in desirable
applications. The central idea of this paper, for Hilbert space valued functions, is
instead to use a sequence of unitaries to push (most of) the range of the functions
into a finite dimensional space. Here is our first main result.

Theorem 1.2. If Ω is an open set in Cd, H is a Hilbert space, and {uk} is a
locally uniformly bounded sequence in HolH(Ω), then there exists a sequence {Uk}
of unitary operators on H such that {Ukuk} has a subsequence that converges in
HolH(Ω).

We prove Theorem 1.2 in Section 2. In Sections 3 and 4 we consider versions
for non-commutative functions. These functions have been extensively studied re-
cently; see e.g. [4, 6,8–13,15,17]. Before stating our results, we must spend a little
time explaining some definitions.

1.2. Non-commutative theory. In commutative analysis, one studies holomor-
phic functions defined on domains in Cd. In non-commutative analysis one studies
holomorphic functions defined on domains in M

d, the d-dimensional nc universe.
For each n we let Md

n denote the set of d-tuples of n× n matrices. We then let

M
d =

∞⋃
n=1

M
d
n.

When E is a subset of Md, for each n, we adopt the notation

En = E ∩M
d
n.

In non-commutative analysis one studies graded functions, i.e., functions f de-
fined on subsets E of Md, that satisfy

(1.3) ∀n ∀λ∈En
f(λ) ∈ Mn.

Md carries a topology, the so-called finite topology,1 wherein a set Ω is deemed
to be open precisely when

∀n Ωn is open in M
d
n.

With this definition, note that a graded function f : E → M1 is finitely continuous
if and only if f |En is continuous for each n and also that a set K ⊆ Md is finitely
compact if and only if there exists n such that Em = ∅ when m > n and Em is
compact when m ≤ n.

If Ω is finitely open in Md, then for each n, Ωn can be identified with an open

set in Cdn2

in an obvious way. If, in addition, f is a graded function on Ω, then we
say that f is holomorphic on Ω if for each n, f |Ωn is a holomorphic mapping of Ωn

into Mn. We let Hol(Ω) denote the collection of graded holomorphic functions.

1Subsequently, we shall consider other topologies as well.
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It is also possible to consider H-valued holomorphic functions in the non-comm-
utative setting. One particularly concrete way to do this is to realize in the scalar
case just considered that (1.3) is equivalent to asserting that

∀n ∀λ∈En
f(λ) ∈ B(Cn,Cn).

We therefore replace the former definition (that f be graded) with the requirement
that f be a graded H-valued function, i.e., that

∀n ∀λ∈En
f(λ) ∈ B(Cn,Cn ⊗H).

Just as before, we declare a graded H-valued function defined on a finitely open
set Ω in Md to be holomorphic if for each n, f |Ωn is a holomorphic mapping of
Ωn into B(Cn,Cn ⊗H). We let HolH(Ω) denote the collection of graded H-valued
functions and view HolH(Ω) as a complete metric space endowed with the topology
of uniform convergence on finitely compact subsets of Ω.

A special class of graded functions arise by formalizing certain algebraic proper-
ties of free polynomials. If E ⊆ Md we say that E is an nc-set if E is closed with
respect to direct sums. We define the class of nc-functions as follows.

Definition 1.4. Let H be a Hilbert space, let E be an nc-set, and assume that f
is a function defined on E. We say that f is an H-valued nc-function on E if the
following conditions hold.

(i) f is H-graded, i.e.,

∀n ∀λ∈E∩Mn
f(λ) ∈ B(Cn,Cn ⊗H).

(ii) f preserves direct sums, i.e.,

∀λ,μ∈E λ⊕ μ ∈ E =⇒ f(λ⊕ μ) = f(λ)⊕ f(μ).

In this formula, if λ ∈ Em and μ ∈ Em, we identify Cm ⊕ Cn and Cm+n

and identify (Cm ⊗H)⊕ (Cn ⊗H) and Cm+n ⊗H.
(iii) f preserves similarity, i.e.,

f(SλS−1) = (S ⊗ idH)f(λ)S−1

whenever n ≥ 1, S ∈ Mn is invertible, and both λ and SλS−1 are in En.

When f : E → M1⊗H is an nc-function and E is a finitely open nc-set condition
(iii) above becomes very strong and yields the following proposition, which lies at
the heart of nc analysis (see [10] or [13, Thm. 7.2]). We say a function f is bounded
on E if supλ∈E ‖f(λ)‖ < ∞.

Proposition 1.5. Let Ω be a finitely open nc-set. If f is a bounded nc-function
defined on Ω, then f is holomorphic on Ω.

Proposition 1.5 suggests the following terminology. We say that a set Ω ⊆ Md

is an nc-domain if Ω is a finitely open nc-set and we say that a topology τ on Md

is an nc-topology if τ has a basis consisting of nc-domains. We then define special
classes of functions in non-commuting variables as follows.

Definition 1.6. Let Ω ⊆ Md
n, τ be an nc-topology, and assume that f : Ω → M1⊗H

is an H-valued function. We say that f is τ -holomorphic if f is a τ -locally bounded
nc function on Ω.2 We let HolτH(Ω) denote the collection of τ -holomorphic H-valued
functions defined on Ω.

2That is, f is an nc-function on Ω in the sense of Definition 1.4 and for each λ ∈ Ω, there
exists B ⊆ Ω such that λ ∈ B ∈ τ and f |B is bounded.
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Evidently, Proposition 1.5 guarantees that if τ is an nc-topology and f is a
τ -holomorphic function in the sense of Definition 1.6, then f is holomorphic, i.e.,

HolτH(Ω) ⊆ HolncH (Ω) ⊆ HolH(Ω),

where HolncH (Ω) denotes the set of functions in HolH(Ω) that are nc.
We can now state our second main result, the non-commutative version of The-

orem 1.2.

Theorem 1.7. Assume that τ is an nc-topology, Ω ∈ τ , H is a Hilbert space,
and {uk} is a τ -locally uniformly bounded sequence in HolτH(Ω). There exist u ∈
HolτH(Ω), a sequence {Uk} of unitary operators on H, and an increasing sequence
of indices {kl} such that (idn ⊗Ukl) ukl → u in Hol(Ω).

As an application of Theorem 1.7, in Section 5 we prove that the cones

P = {u(μ)∗u(λ) : u ∈ HolH(Ω) for some Hilbert space H}

and

C = {
id

CJ

⊗
u(μ)∗

(
id−

δ(μ)∗δ(λ)
⊗
idH

)
id

CJ

⊗
u(λ)

: u ∈ HolH(Bδ) and u is nc}

are closed. In this last formula, δ is a J-by-J matrix of free polynomials, and
Bδ = {x : ‖δ(x)‖ < 1} is a non-commutative polynomial polyhedron. (We adopt
the convention of [16] and write the tensors vertically for legibility.)

Proving that the cones are closed is the key step in proving realization formulas
for free holomorphic functions; see [1, 2, 7].

In Section 6 we show that the assumptions in Proposition 3.2 below can be
weakened to just requiring convergence on a set of uniqueness, which yields a graded
version of the Arendt-Nikolski theorem.

2. A Montel theorem for Hilbert space valued holomorphic

functions

In this section we prove Theorem 1.2 from the introduction.

2.1. Notation and definitions. If Ω is an open set in Cd and H is a Hilbert
space, we let HolH(Ω) denote the space of holomorphic H-valued functions on Ω.
If u ∈ HolH(Ω) and E ⊆ Ω, we let

‖u‖E = sup
λ∈E

‖u(λ)‖H.

If ‖u‖Ω < ∞, then we say that u is bounded on Ω. If {uk} is a sequence in HolH(Ω),
we say that {uk} is uniformly bounded on Ω if

sup
k

‖uk‖Ω < ∞,

and we say that {uk} is locally uniformly bounded on Ω if for each λ ∈ Ω there
exists a neighborhood B of λ such that {uk} is uniformly bounded on B. Recall
that if such a neighborhood exists, then a Cauchy estimate implies that {uk} is
equicontinuous at λ; i.e., for each ε > 0 there exists a ball B0 such that λ ∈ B0 ⊆ B
and

∀μ∈B0
∀k ‖uk(μ)− uk(λ)‖ < ε.
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We equip HolH(Ω) with the usual topology of uniform convergence on compacta.
Thus, a sequence {uk} in HolH(Ω) is convergent precisely when there is a function
u ∈ HolH(Ω) such that

lim
k→∞

‖uk − u‖E = 0

for every compact E ⊆ Ω. We say that a sequence {uk} in HolH(Ω) is a Cauchy
sequence if for each compact E ⊆ Ω, {uk} is uniformly Cauchy on E; i.e., for each
ε > 0, there exists N such that

k, l ≥ N =⇒ ‖uk − ul‖E < ε.

It is well known that HolH(Ω) is complete; i.e., every Cauchy sequence in HolH(Ω)
converges. The following result is proved in [5, Thm. 2.1]; we include a proof that
easily generalizes to Proposition 3.2.

Proposition 2.1. Assume that Ω is an open set in C
d, {λi} is a dense sequence

in Ω, and H is a Hilbert space. If {uk} is a sequence in HolH(Ω) that is locally
uniformly bounded on Ω and for each fixed i, {uk(λi)} is a convergent sequence in
H, then {uk} is a convergent sequence in HolH(Ω).

Proof. Fix a compact set E ⊆ Ω and ε > 0. Note that as {uk} is assumed to be
locally uniformly bounded on Ω, {uk} is equicontinuous at each point of Ω. Hence,
as E is compact, we may construct a finite collection {Br : r = 1, . . . ,m} of open
balls in C

d such that

(2.2) E ⊆
m⋃
r=1

Br ⊆ Ω

and

(2.3) ∀r ∀μ1,μ2∈Br
∀k ‖uk(μ1)− uk(μ2)‖ < ε/3.

As {λi} is assumed dense in Ω,

(2.4) ∀r ∃ir λir ∈ Br.

Consequently, as for each fixed i we assume that {uk(λi)} is a convergent (and
hence Cauchy) sequence in H, there exists N such that

(2.5) ∀r k, j ≥ N =⇒ ‖uk(λir)− uj(λir)‖ < ε/3.

Now, fix λ ∈ E. Use (2.2) to choose r such that λ ∈ Br. Use (2.4) to choose ir
such that λir ∈ Br. As λ and λir are both in Br, we see from (2.3) that

∀k ‖uk(λ)− uk(λir)‖ < ε/3.

Hence, using (2.5), we have that if k, j ≥ N , then

‖uk(λ)− uj(λ)‖

≤ ‖uk(λ)− uk(λir)‖+ ‖uk(λir)− uj(λir)‖+ ‖uj(λir)− uj(λ)‖

< ε.

�
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Since the concluding estimate in the previous paragraph holds for an arbitrary
point λ ∈ E, {uk} is uniformly Cauchy on E. Since E is an arbitrary compact
subset of Ω, {uk} is a Cauchy sequence in HolH(Ω). Therefore, {uk} converges in
HolH(Ω).

2.2. The proof of Theorem 1.2. Theorem 1.2 follows quickly from Proposition
2.1 and the following lemma.

Lemma 2.6 (Wandering Isometry Lemma). Assume that Ω is an open set in Cd,
{λi} is a sequence in Ω, and H is a Hilbert space. If {uk} is a sequence in HolH(Ω)
that is locally uniformly bounded on Ω, then there exists a subsequence {ukl} and a
sequence {V l} of unitary operators on H such that for each fixed i, {V lukl(λi)} is
a convergent sequence in H.

Proof. If H is finite dimensional, one can let each unitary be the identity, and
the result is the regular Montel theorem. So we shall assume that H is infinite
dimensional. Let {ei} be an orthonormal basis for H. For each fixed k let

Hk = span {e1, e2, . . . , ek},

Mk
i = span {uk(λ1), u

k(λ2), . . . , u
k(λi)}, i = 1, . . . , k.

For each k choose a unitary Uk ∈ B(H) satisfying

UkMk
i ⊆ Hi, i = 1, . . . , k.

Observe that with this construction, for each fixed i,

{Ukuk(λi)}∞k=i

is a bounded sequence in Hi, a finite dimensional Hilbert space. Therefore, there
exist vi ∈ H and an increasing sequence of indices {kl} such that

Uklukl(λi) → vi in H as l → ∞.

Applying this fact successively with i = 1, i = 2, and so on, at each stage taking a
subsequence of the previously selected subsequence, leads to a sequence {vi} in H
and an increasing sequence of indices {kl} such that

Uklukl(λi) → vi in H as l → ∞

for all i. The lemma then follows if we let V l = Ukl . �

Proof of Theorem 1.2. Assume that Ω is an open set in C
d,H is a Hilbert space, and

{uk} is a locally uniformly bounded sequence in HolH(D). The theorem follows from
the classical Montel theorem (with Uk = idH for all k) if dimH < ∞. Therefore,
we may assume that dimH = ∞.

Fix a dense sequence {λi} in Ω. By Lemma 2.6, there exists a subsequence
{ukl} and a sequence {V l} of unitary operators on H such that for each fixed i,
{V lukl(λi)} is a convergent sequence in H. Furthermore, as {uk} is locally uni-
formly bounded, so also {V lukl} is locally uniformly bounded. Therefore, Propo-
sition 2.1 implies that {V lukl} is a convergent sequence in HolH(Ω). The theorem
then follows by choosing {Uk} to be any sequence of unitaries in B(H) such that
Ukl = V l for all l. �
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3. Holomorphic functions in non-commuting variables

If Ω is finitely open in Md, we may construct a finitely compact-open exhaustion
of Ω, i.e., an increasing sequence of compact sets {Ki} that satisfy

K1 ⊂ int(K2) ⊂ K2 ⊂ int(K3) ⊂ . . .

and with Ω =
⋃

i Ki. For a set E ⊆ Ω and f ∈ Hol(Ω) we let

‖f‖E = sup
λ∈E

‖f(λ)‖

and then in the usual way define a metric d on Hol(Ω) with the formula

d(f, g) =
∞∑

n=1

1

2n
‖f − g‖Kn

1 + ‖f − g‖Kn

.

It then follows that fk → f in the metric space (Ω, d) if and only if for each finitely
compact set K in Ω, {fk} converges uniformly to f on K, i.e.,

lim
k→∞

‖f − fk‖K = 0.

Furthermore, Hol(Ω) is a complete metric space when endowed with this topology
of uniform convergence on finitely compact subsets of Ω.

It is a straightforward exercise to extend Montel’s theorem to the space HolH(Ω)
when dimH is finite.

Proposition 3.1. If Ω is a finitely open set in M
d, H is a Hilbert space with

dimH < ∞, and {uk} is a finitely locally uniformly bounded sequence in HolH(Ω),
then {uk} has a convergent subsequence.

Also, with the setup we have just described, mere notational changes to the proof
of Proposition 2.1 yield a proof of the following proposition.

Proposition 3.2. Assume that Ω is a finitely open set in M
d, {λi} is a dense

sequence in Ω with λi ∈ Md
ni

for each i, and H is a Hilbert space. If {uk} is a se-
quence in HolH(Ω) that is finitely locally uniformly bounded on Ω and for each fixed
i, {uk(λi)} is a convergent sequence in B(Cni ,Cni ⊗H), then {uk} is a convergent
sequence in HolH(Ω).

Just as was the case for Proposition 2.1 in [5], it is possible to relax the assump-
tion in Proposition 3.2 that {λi} be a dense sequence in Ω to the assumption that
{λi} merely be a set of uniqueness for HolH(Ω) (see Proposition 6.2).

We now turn to an analog of Theorem 1.2 in the non-commutative setting.

Lemma 3.3 (Wandering Isometry Lemma (non-commutative case)). Assume that
Ω is a finitely open set in M

d and {λi} is a sequence in Ω (where, for each i,
λi ∈ Md

ni
). If H is an infinite dimensional Hilbert space and {uk} is a sequence

in HolH(Ω) with the property that {uk(λi)} is bounded for each i, then there exists
a subsequence {ukl} and a sequence {V l} of unitary operators on H such that for
each fixed i, {(idni

⊗V l) ukl(λi)} is a convergent sequence in B(Cni ,Cni ⊗H).

Proof. Choose an increasing sequence {Hi} of subspaces of H with the property
that

dimH1 = n2
1 and ∀i≥1 dim(Hi+1 �Hi) = n2

i+1,

and for each n, let {e1, . . . , en} denote the standard basis of Cn.
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Fix k. For each i = 1, . . . , k, as uk(λi) : C
ni → Cni ⊗H, there exist n2

i vectors
xk,i
r,s ∈ H, r, s = 1, . . . , ni, such that

(3.4) uk(λi)er =

ni∑
s=1

es ⊗ xk,i
r,s, r = 1, . . . , ni.

For each i = 1, . . . k, define Mk
i by

Mk
i = span {xk,i

r,s : r, s = 1, . . . , ni}

and then define a sequence of spaces {N k
i } by setting N k

1 = Mk
1 and

N k
i =

(
Mk

1 +Mk
2 + . . .+Mk

i

)
�
(
Mk

1 +Mk
2 + . . .+Mk

i−1

)
,

for i = 2, . . . , k. As for each i = 1, . . . , k, dimMk
i ≤ n2

i , so also for i = 1, . . . , k,
dimN k

i ≤ n2
i . Consequently, as the spaces {N k

i } are also pairwise orthogonal, it
follows that there exists a unitary Uk ∈ B(H) such that

Uk(N k
1 ) ⊆ H1 and Uk(N k

i ) ⊆ Hi �Hi−1 for i = 2, . . . , k.

With this construction it follows using (3.4) that

(3.5) (idni
⊗Uk)uk(λi)(C

ni) ⊆ C
ni ⊗Hi, i = 1, . . . , k.

Now observe that as (3.5) holds for each k, for each fixed i,

(idni
⊗Uk)uk(λi)(C

ni) ⊆ C
ni ⊗Hi, k = i, i+ 1, . . . ;

i.e., {
(idni

⊗Uk)uk(λi)
}∞
k=i

is a bounded sequence in B(Cni ,Cni ⊗ Hi), a finite dimensional Hilbert space.
Therefore, for each fixed i, there exist L ∈ H and an increasing sequence of indices
{kl} such that

Uklukl(λi) → L in B(Cni ,Cni ⊗Hi) as l → ∞.

Applying this fact successively with i = 1, i = 2, and so on, at each stage taking a
subsequence of the previously selected subsequence leads to a sequence {Li} with
Li ∈ B(Cni ,Cni ⊗ Hi) for each i and an increasing sequence of indices {kl} such
that

∀i Uklukl(λi) → Li in B(Cni ,Cni ⊗Hi) as l → ∞.

The lemma then follows if we let V l = Ukl . �

Lemma 3.3 suggests the following notation. Let Ω be a finitely open set in Md

and let H be a Hilbert space. If U is a unitary acting on H and f ∈ HolH(Ω), then
we may define U ∗ f ∈ HolH(Ω) by the formula

∀n (U ∗ f)|Ωn = (idn ⊗ U)f |Ωn.

With this notation we may formulate a non-commutative analog of Theorem 1.2 in
the non-commutative setting.

Theorem 3.6. If Ω is a finitely open set in M
d, H is a Hilbert space, and {uk} is a

finitely locally uniformly bounded sequence in HolH(Ω), then there exists a sequence
{Uk} of unitary operators on H such that {Uk ∗ uk} has a convergent subsequence.
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Proof. Assume that Ω is an open set in Md, H is a Hilbert space, and {uk} is a
finitely locally uniformly bounded sequence in HolH(Ω). If dimH < ∞, then the
theorem follows from Proposition 3.1 if we choose Uk = idH for all k. Therefore,
we assume that dimH = ∞.

Fix a dense sequence {λi} in Ω. By Lemma 3.3, there exists a subsequence
{ukl} and a sequence {V l} of unitary operators on H such that for each fixed i,
{V lukl(λi)} is a convergent sequence in B(Cni ,Cni ⊗H). Furthermore, as {uk} is
locally uniformly bounded, so also {V lukl} is locally uniformly bounded. Therefore,
Proposition 2.1 implies that {V lukl} is a convergent sequence in HolH(Ω). The
theorem then follows by choosing {Uk} to be any sequence of unitaries in B(H)
such that Ukl = V l for all l. �

4. Locally bounded nc functions

Properties of τ -holomorphic functions can be very sensitive to the choice of nc-
topology τ . For example, if τ is the fat topology studied in [3], then τ -holomorphic
functions satisfy a version of the Implicit Function Theorem. On the other hand,
if τ is the free topology, studied in [2], then τ -holomorphic functions satisfy the
Oka-Weil Approximation Theorem. Remarkably, neither of these theorems holds
for the other topology.

Also notice that if f is τ -holomorphic in the sense of Definition 1.6, then neces-
sarily Ω, the domain of f , is an open set in the τ topology: for each λ ∈ Ω there
exists Bλ ⊆ Ω such that λ ∈ Bλ ∈ τ ; hence, Ω =

⋃
λ Bλ ∈ τ .

There are no such subtleties between the nc-topologies when it comes to under-
standing the implications of local boundedness.

Definition 4.1. Assume that τ is an nc-topology and Ω ∈ τ . If {uk} is a sequence
in HolτH(Ω), we say that {uk} is τ -locally uniformly bounded on Ω if for each λ ∈ Ω,
there exists a τ -open B ⊆ Ω such that λ ∈ B and

sup
k

‖uk‖B < ∞.

Lemma 4.2. Assume that τ is an nc-topology and Ω ∈ τ . Let u ∈ Hol(Ω) and let
{uk} be a sequence in HolτH(Ω). If {uk} is τ -locally uniformly bounded on Ω and
uk → u in HolH(Ω), then u ∈ HolτH(Ω).

Proof. Under the assumptions of the lemma, we need to prove the following two
assertions:

(4.3) u is an nc-function on Ω.

(4.4) u is τ -locally bounded on Ω.

To prove (4.3), note first that as u ∈ HolH(Ω), condition (i) in Definition 1.4
holds. To verify condition (ii), assume that λ, μ, λ ⊕ μ ∈ Ω. Then, as uk → u in
HolH(Ω) and uk ∈ HolτH for all k,

u(λ⊕ μ) = lim
k→∞

uk(λ⊕ μ)

= lim
k→∞

(
uk(λ)⊕ uk(μ)

)
= lim

k→∞
uk(λ)⊕ lim

k→∞
uk(μ)

= u(λ)⊕ u(μ).
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Finally, note that if n ≥ 1, S ∈ Mn is invertible, and both λ and SλS−1 are in Ωn,
then

u(SλS−1) = lim
k→∞

uk(SλS−1)

= lim
k→∞

(S ⊗ idH) uk(λ)S−1

= (S ⊗ idH) u(λ)S−1,

which proves condition (iii).
To prove (4.4), fix λ ∈ Ω. As {uk} is τ -locally uniformly bounded on Ω, Definition

4.1 implies that there exist B ⊆ Ω and a constant ρ such that λ ∈ B ∈ τ and

sup
k

‖uk‖B ≤ ρ.

Fix μ ∈ B. As we assume that uk → u in HolH(Ω), it follows that

‖u(μ)‖ = lim
k→∞

‖uk(μ)‖ ≤ ρ.

But then,

‖u‖B ≤ ρ.

As B ∈ τ , this proves that u is τ -locally bounded on Ω. �

Definition 4.1 and Lemma 4.2 allow one to easily deduce Theorem 1.7 as a
corollary of Theorem 3.6.

Proof of Theorem 1.7. As we assume that {uk} is a τ -locally uniformly bounded
sequence in HolτH(Ω), {uk} is finitely locally uniformly bounded in HolH(Ω). There-
fore, Theorem 3.6 implies that there exists a sequence {Uk} of unitary operators on
H such that {Uk ∗uk} has a subsequence that converges in HolH(Ω). Consequently,
we may choose u ∈ HolH(Ω) and an increasing sequence of indices {kl} such that
Ukl ∗ ukl → u in Hol(Ω). The proof is completed by observing that Lemma 4.2
implies that u ∈ HolτH(Ω). �

Let us emphasize that Theorem 1.7 asserts that Ukl ∗ ukl converges to u, which
is in HolτH(Ω), uniformly on sets that are compact in the finite topology; it does
not say that it converges uniformly on compact sets in the τ topology.

Note that the proofs of Lemma 4.2 and Theorem 1.7 work identically if uk are
just assumed to be in HolncH (Ω), so we get

Theorem 4.5. Let Ω be a finitely open set in M
d, let H be a Hilbert space, and let

{uk} be a finitely locally uniformly bounded sequence in HolncH (Ω). Then there exists
a sequence {Uk} of unitary operators on H such that {Uk ∗ uk} has a subsequence
that converges finitely locally uniformly to an element of HolncH (Ω).

5. Some applications

A useful construct in the study of τ -holomorphic functions is the duality con-
struction. If Ω is a finitely open set it is natural to consider the algebraic tensor
product Hol(Ω)∗ ⊗ Hol(Ω). This space can concretely be realized as the set of
functions A defined on

Ω� Ω =

∞⋃
n=1

(
Ω ∩M

d
n

)
×
(
Ω ∩M

d
n

)
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and such that there exist a finite dimensional Hilbert space H and u, v ∈ HolH(Ω)
such that

A(λ, μ) = v(μ)∗u(λ), (λ, μ) ∈ Ω� Ω.

As the functions in Hol(Ω)∗ ⊗ Hol(Ω) are holomorphic in λ for each fixed μ and
anti-holomorphic in μ for each fixed λ, we may complete Hol(Ω)∗ ⊗ Hol(Ω) in the
topology of uniform convergence on finitely compact subsets of Ω�Ω to obtain the
space of hereditary holomorphic functions on Ω, Her(Ω). Inside Her(Ω), we may
define a cone P by

P = {u(μ)∗u(λ) : u ∈ HolH(Ω) for some Hilbert space H}.

Theorem 5.1. P is closed in Her(Ω).

Proof. Assume that {vk} is a sequence with vk ∈ HolHk
(Ω) for each k and with

vk(μ)∗vk(λ) → A in Her(Ω). We may assume that Hk is separable for each k. Fix
a separable infinite dimensional Hilbert space H and for each k choose an isometry
V k : Hk → H. If for each k we let uk = V k ∗vk, then {uk} is a sequence in HolH(Ω)
and uk(μ)∗uk(λ) → A in Her(Ω).

Now, as uk(μ)∗uk(λ) → A in Her(Ω) it follows that {uk} is a finitely locally
uniformly bounded sequence in HolH(Ω). Hence, by Theorem 3.6, there exists
a sequence Uk of unitary operators on H such that {Uk ∗ uk} has a convergent
subsequence; i.e., there exists u ∈ HolH(Ω) and an increasing sequence of indices
{kl} such that Ukl ∗ ukl → u. But then, for each (λ, μ) ∈ Ω� Ω,

A(λ, μ) = lim
k→∞

uk(μ)∗uk(λ)

= lim
l→∞

ukl(μ)∗ukl(λ)

= lim
l→∞

(Ukl ∗ ukl)(μ)∗(Ukl ∗ ukl)(λ)

= u(μ)∗u(λ),

i.e., A ∈ P. �

We also may use wandering Montel theorems to study sums of τ -holomorphic
dyads. We let Herτ (Ω) denote the closure of

{v(μ)∗u(λ) : u, v ∈ HolτH(Ω) for some finite dimensional Hilbert space H}

inside Her(Ω) and define Pτ in Herτ (Ω) by

Pτ = {u(μ)∗u(λ) : u ∈ HolτH(Ω) for some Hilbert space H}.

Theorem 5.2. Let τ be an nc-topology, and let Ω ∈ τ . Then Pτ is closed in
Herτ (Ω).

Proof. Assume that uk(μ)∗uk(λ) → A in Her(Ω), where, as in the proof of Theorem
5.1, we may assume that uk ∈ HolτH(Ω) for each k. By Theorem 1.7, there exist
u ∈ HolτH(Ω), a sequence Uk of unitary operators on H, and an increasing sequence
of indices {kl} such that Ukl ∗ ukl → u. But then as in the proof of Theorem 5.1,
A(λ, μ) = u(μ)∗u(λ) for all (λ, μ) ∈ Ω� Ω, i.e., A ∈ Pτ . �

Finally, we shall prove that the model cone is closed; this is the key ingredient
in the proof of the realization formula for free holomorphic functions [1, 2, 7]. Let
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δ be a J-by-L matrix whose entries are free polynomials in d variables. We define
Bδ to be the polynomial polyhedron

Bδ := {x ∈ M
d : ‖δ(x)‖ < 1}.

The free topology is the nc-topology generated by the sets Bδ, as δ ranges over all
matrices of polynomials. The model cone C is the set of hereditary functions on Bδ

of the form

(5.3) C := {
id

CJ

⊗
u(μ)∗

(
id−

δ(μ)∗δ(λ)
⊗
idH

)
id

CJ

⊗
u(λ)

: u ∈ HolH(Bδ) and u is nc,

for some Hilbert space H}.
We write the tensors vertically just to enhance readability.

Theorem 5.4. The model cone C, defined in (5.3), is closed in Her(Bδ).

Proof. Suppose uk is a sequence of nc functions in HolH(Bδ) (we may assume the
space H is the same for each uk, as in the proof of Theorem 5.1), so that

(5.5)
id

CJ

⊗
uk(μ)∗

(
id−

δ(μ)∗δ(λ)
⊗
idH

)
id

CJ

⊗
uk(λ)

converges in Her(Bδ) to A(λ, μ). On any finitely compact set, ‖δ(x)‖ will be
bounded by a constant that is strictly less than one. Since (5.5) converges uni-
formly on finitely compact subsets of Bδ � Bδ, this means that uk is a finitely
locally uniformly bounded sequence. Therefore by Theorem 3.6, there exist uni-
taries Uk such that Uk ∗uk has a convergent subsequence which converges to some
nc function u ∈ HolH(Bδ). Then

A(λ, μ) =
id

CJ

⊗
u(μ)∗

(
id−

δ(μ)∗δ(λ)
⊗
idH

)
id

CJ

⊗
u(λ)

,

as desired. �

6. Sets of uniqueness

In this section we shall show that the assumption in Propositions 2.1 and 3.2
that {λi} is a dense sequence in Ω can be relaxed to the assumption that {λi} is a
set of uniqueness for Hol(Ω). We remark that it is an elementary fact that if H is
a Hilbert space, then {λi} is a set of uniqueness for HolH(Ω) if and only if {λi} is
a set of uniqueness for Hol(Ω).

The following proposition is essentially the same as the Arendt-Nikolski Theo-
rem 1.1, so we shall omit the proof.

Proposition 6.1. Assume that Ω is an open set in Cd, {λi} is a sequence in Ω
that is a set of uniqueness for HolH(Ω),3 and H is a Hilbert space. If {uk} is a
sequence in HolH(Ω) that is locally uniformly bounded on Ω and for each fixed i,
{uk(λi)} is a convergent sequence in H, then {uk} converges in HolH(Ω).

Here is the graded version.

Proposition 6.2. Assume that Ω is a finitely open set in M
d, {λi} is a sequence

in Ω (with λi ∈ Md
ni

for each i) that is a set of uniqueness for HolH(Ω), and H is

a Hilbert space. If {uk} is a sequence in HolH(Ω) that is finitely locally uniformly

3That is, if f ∈ Hol(Ω) and f(λi) = 0 for all i, then f(λ) = 0 for all λ ∈ Ω.
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bounded on Ω and for each fixed i, {uk(λi)} is a convergent sequence in H, then
{uk} converges in HolH(Ω).

Proof. The theorem will follow if we can show that {uk|Ωn} is a convergent sequence
for each n. Accordingly, fix n and adopt the notation Hn for the holomorphic
B(Cn,Cn⊗H)-valued functions defined on Ωn. Thus, {uk|Ωn} is a locally uniformly
bounded sequence in Hn. Furthermore, if {ηj} is an enumeration of {λi : i ≥
1} ∩ Ωn, as {λi} is a set of uniqueness for Hol(Ω), {ηi} is a set of uniqueness for
both Hol(Ωn) and Hn. Finally, let u

k(ηj) → uj as k → ∞ for each j.
For fixed α ∈ Cn and β ∈ Cn, define fk

α,β ∈ Hol(Ωn) by

(6.3) fk
α,β(λ) = 〈uk(λ)α, β〉Cn⊗H, λ ∈ Ω.

Noting that

(6.4) |fk
α,β(λ)| = |〈uk(λ)α, β〉| ≤ ‖uk(λ)‖‖α‖‖β‖,

it follows that {fk
α,β} is locally uniformly bounded on Ωn. Therefore by Montel’s

theorem, {fk
α,β} has compact closure in Hol(Ωn).

We claim that {fk
α,β} has a unique cluster point, for assume that {fkr

α,β} and

{fks

α,β} are subsequences of {fk
α,β} with {fkr

α,β} → f and {fks

α,β} → g. Then, as we

assume for each j, uk(ηj) → uj as k → ∞,

f(ηi) = lim
r→∞

fkr

α,β(ηi)

= lim
r→∞

〈ukr(ηi)α, β〉

= 〈uiα, β〉
= lim

s→∞
〈uks(ηi)α, β〉

= lim
s→∞

fks

α,β(ηi)

= g(ηi).

Hence, as {ηi} is a set of uniqueness, f = g. Since {fk
α,β} has a unique cluster point,

we have shown that for each α ∈ Cn and β ∈ Cn ⊗H, there exists fα,β ∈ Hol(Ωn)
such that

(6.5) fk
α,β → fα,β in Hol(Ωn) as k → ∞.

Now fix λ ∈ Ωn and define Lλ by

(6.6) Lλ(α, β) = fα,β(λ), α ∈ C
n, β ∈ C

n ⊗H.

Observe that (6.3) and (6.5) imply that Lλ is a sesquilinear functional on Cn ×
(Cn ⊗H). Furthermore, (6.4) and (6.5) imply that Lλ is bounded. Therefore, by
the Riesz Representation Theorem, there exists u(λ) ∈ B(Cn,Cn ⊗H) such that

∀α∈Cn ∀β∈Cn⊗H Lλ(α, β) = 〈u(λ)α, β〉
or, equivalently,

∀α∈Cn ∀β∈Cn⊗H 〈u(λ)α, β〉 = fα,β(λ).

The function u constructed in the previous paragraph has the following proper-
ties: it is holomorphic,

(6.7) ∀λ∈Ωn
uk(λ) → u(λ) weakly in B(Cn,Cn ⊗H) as k → ∞,
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and

(6.8) ∀j uk(ηj) → u(ηj) in norm in B(Cn,Cn ⊗H) as k → ∞.

Claim 6.9. Let

uk(μ)∗uk(λ) → u(μ)∗u(λ) in Her(Ωn) as k → ∞.

To prove this claim, first note that as we are assuming {uk} is a locally uniformly
bounded sequence in HolH(Ωn), {uk(μ)∗uk(λ)} is a locally uniformly bounded se-
quence in Her(Ωn). Therefore, the claim follows from Montel’s theorem if we can
show that

(6.10) A(λ, μ) = u(μ)∗u(λ)

whenever {kr} is a sequence of indices such that

(6.11) ukr(μ)∗ukr(λ) → A(λ, μ) in Her(Ωn) as r → ∞.

But if (6.11) holds, then (6.8) implies that for each independently chosen i and j,

A(ηj , ηi) = lim
r→∞

ukr(ηi)
∗ukr(ηj) = ukr(ηi)

∗ukr(ηj).

Since both sides of (6.10) are holomorphic in λ and anti-holomorphic in μ and {ηi}
is a set of uniqueness, it follows that (6.10) holds for all λ, μ ∈ Ω. This completes
the proof of Claim 6.9.

Finally, fix λ ∈ Ω. By (6.7), {uk(λ)} converges weakly in B(Cn,Cn⊗H) to u(λ),
and by Claim 6.9, uk(λ)∗uk(λ) → u(λ)∗u(λ). Therefore, uk(λ) → u(λ) is norm in
B(Cn,Cn ⊗H). Since this holds for all λ ∈ Ω, the proof of Proposition 6.2 may be
completed by an application of Proposition 3.2. �
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