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SIGNATURE FUNCTIONS OF KNOTS

CHARLES LIVINGSTON

(Communicated by David Futer)

Abstract. The signature function of a knot is an integer-valued step function
on the unit circle in the complex plane. Necessary and sufficient conditions for
a function to be the signature function of a knot are presented.

1. Introduction

For a knot K ⊂ S3, the signature function, σK(ω), is an integer-valued step
function defined on the unit circle S1 ⊂ C. Its discontinuities can occur only at
roots of the Alexander polynomial, ΔK(t) ∈ Z[t, t−1]. The function is balanced, in
the sense that for all x ∈ R,

σK(e2πix) =
1

2
lim

ε→0+

(
σK(e2πi(x+ε)) + σK(e2πi(x−ε))

)
.

There is an associated jump function,

JK(e2πix) =
1

2
lim
ε→0+

(
σK(e2πi(x+ε))− σK(e2πi(x−ε))

)
.

Seifert [15] (see also [5]) characterized the set of polynomials that occur as Alexander
polynomials of knots: if Δ(t) ∈ Z[t, t−1], there exists a knot K such that ΔK(t) =
Δ(t) if and only if Δ(1) = ±1 and Δ(t) = tkΔ(t−1) for some k ∈ Z. In general, the
Alexander polynomial is well-defined up to multiplication by ±tk. We refer to any
integer polynomial that satisfies these conditions as an Alexander polynomial.

Here we characterize the set of signature functions of knots. Recall that two
complex numbers are calledGalois conjugate if they are roots of the same irreducible
rational polynomial.

Theorem 1. Let σ be a balanced integer-valued step function on S1 ⊂ C. Then
σ = σK for some knot K if and only if:

(1) σ(ω) = σ(ω) for all ω ∈ S1.
(2) σ(1) = 0.
(3) All discontinuities of σ occur at roots of Alexander polynomials.
(4) If α1 ∈ S1 and α2 ∈ S1 are Galois conjugate, then σ(α1) ≡ σ(α2) mod 2.

Before proceeding to the proof, we briefly present background. The signature of
a knot, now viewed as σK(−1), was first defined by Trotter [18] and Murasugi [12].
The signature function is essentially due to Levine [6] and Tristram [17]. Milnor [11]
defined a different set of invariants, now called Milnor signatures, and these were
proved to be equivalent to the jumps in the signature function by Matumoto [10].
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One can define the knot signature function as we do below, but without taking
the two-sided average to make it balanced. This yields a well-defined knot invariant.
However, it is not a knot concordance invariant. In particular, it does not vanish
for slice knots (knots that bound smooth embedded disks in B4); specifically, there
are slice knots having nonzero (unbalanced) signature functions [2, 7]. In contrast
to this, the (balanced) signature function induces a well-defined homomorphism
from the knot concordance group to the set of functions on S1.

2. Definition of the signature function

The signature function of a knot is defined in terms of the Seifert matrix of the
knot, VK . Associated to VK there is the matrix

WK(t) = (1− t)VK + (1− t−1)V T
K

with entries in the field of fractions, Q(t). This matrix is hermitian with respect
to the involution of Q(t) induced by t → t−1. Substituting ω ∈ S1 for t yields a
complex hermitian matrix having signature which we temporarily denote sK(ω).
Then σK is defined by

σK(e2πix) =
1

2
lim

ε→0+

(
sK(e2πi(x+ε)) + sK(e2πi(x−ε))

)
.

For almost all ω ∈ S1, WK(ω) is nonsingular. For these ω, sK(ω) ≡ rank(WK(ω)) ≡
0 mod 2. It follows that σK(ω) is an integer for all ω. Similarly, the jump function
JK takes on integer values.

3. Proof of necessity

The necessity of the first three conditions is well-known, with many references.
The fourth condition is also known, but is not stated explicitly in the literature.
Summary proofs are included for (1), (2), and (3); more details are provided for
(4).

Property (1). The necessity of Property (1) follows from the fact that a hermitian
matrix and its complex conjugate have the same signature.

Property (2). If ω ∈ S1 is close to 0 with positive argument, we can use a Taylor
approximation to write ω = 1 + νi+ ν2g(ν), where ν ∈ R+ is close to 0 and g is a
real-valued differentiable function defined near 0. In terms of ν,

WK(ω) = νi(−VK + V T
K)− ν2g(ν)(VK + V T

K).

The signature of this matrix is the same as that of

i(−VK + V T
K)− νg(ν)(VK + V T

K).

For a knot, the matrix i(−VK+V T
K) is congruent to the direct sum of 2×2 matrices,

each of the form (
0 i
−i 0

)
.

(This is false for links.) This is nonsingular with signature 0. A small perturbation
leaves the signature unchanged.
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Property (3). We can rewrite

WK = (1− t)(VK − t−1V T
K).

This matrix is nonsingular except at roots of det(VK − t−1V T
K) and at t = 1, and

hence the signature is locally constant away from such roots. We have just seen that
t = 1 is not a singular point: σK(ω) = 0 for ω near 1. The Alexander polynomial
can be defined as ΔK(t) = det(VK−tV T

K). Replacing t with t−1 does not change this
determinant, modulo multiplication by ±tk for some k ∈ Z. Thus, all singularities
of the signature function occur at roots of ΔK(t).

Property (4). Since Q(t) is a field of characteristic 0, the form WK can be di-
agonalized. Thus, we can prove the necessity of Property (4) by verifying it for
1× 1 forms and applying the additivity of signature. In general, a 1× 1 hermitian
matrix is given as (h(t)) for some rational function h(t) that is invariant under the
involution t → t−1. A change of basis permits us to clear the denominator, and we
can assume that h(t) is in the Laurent polynomial ring Q[t, t−1].

The ring Q[t, t−1] is a principal ideal domain, and thus h(t) factors into irre-
ducible factors which are well-defined up to multiplication by a unit. (Units are
elements of the form u = αtk where α �= 0 ∈ Q and k ∈ Z.) The proof of these
properties of Q[t, t−1] follows readily from the same result for Q[t], where the units
are nonzero rational numbers.

If the irreducible factorization of h(t) includes a factor f(t) where f(t) �= uf(t−1)
for some unit u, then the symmetry of h(t) implies that f(t−1) is also a factor. A
change of basis for the 1×1 form can then eliminate a term f(t)f(t−1). Continuing
in this way, we can assume that the irreducible factorization of h(t) is of the form
h(t) = f1(t)f2(t) · · · fn(t), with the property that fi(t) = uifi(t

−1) for some unit
ui for all i.

If fi(t) = ufj(t) for some unit u with i �= j, then a change of basis can eliminate
fi(t)fj(t) from the product. Continuing to eliminate factors in this way reduces us
to the setting in which h(t) has the following property: if δ(t) ∈ Q[t, t−1] is irre-
ducible and satisfies δ(t−1) = uδ(t), then δ(t) has exponent 0 or 1 in the irreducible
factorization of h(t).

We can now proceed with the proof of Property (4). Suppose that α1 ∈ S1 and
α2 ∈ S1 are roots of the same irreducible polynomial δ(t) ∈ Q[t]. If δ(t) does not
divide h(t), then h(α1) �= 0 �= h(α2), and the signature of the 1 × 1 form (h(t))
evaluated at αi is ±1; in particular σ(α1) ≡ σ(α2) mod 2, as desired.

On the other hand, if δ(t) does divide h(t), then h(α1) = 0 = h(α2). Notice
that h(t) is an analytic function of the complex variable t near α1 and α2 and has
a simple root at both of these points (since δ(t) has exponent 1 in the irreducible
factorization of h(t)). Thus, the complex derivative of h(t) is nonzero at both α1

and α2. If we restrict our attention to S1 by considering the real-valued function
s(x) = h(e2πix), the chain rule implies that the derivative s′(xi) �= 0, where xi

is chosen so that e2πixi = αi, i = 1, 2. It follows that the signature of (h(t))
when restricted to S1 changes sign at both α1 and α2, going from ±1 to ∓1. The
(averaged) signature at both points is thus 0.

4. Proof of sufficiency

4.1. Background. The proof of sufficiency depends on some previously known
facts, which we collect here as a series of lemmas.
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Lemma 1. If α ∈ S1 is the root of an Alexander polynomial Δ(t), then it is the
root of an irreducible Alexander polynomial.

Proof. Suppose that δ1(α) = 0, where δ1(t) ∈ Q[t, t−1] is an irreducible factor of
Δ(t). Since Δ(t) ∈ Z[t, t−1], by Gauss’s Lemma we can assume that δ1(t) ∈ Z[t, t−1]
and Δ(t)/δ1(t) ∈ Z[t, t−1]. Thus, the fact that Δ(1) = ±1 implies that δ1(1) = ±1.
It remains to prove the symmetry of δ1(t).

Normalize δ1(t) so that δ1(t) ∈ Z[t] with nonzero constant coefficient. Let k
denote the degree of δ1(t) and let δ2(t) = tkδ1(t

−1). We have δ2(α
−1) = 0. But

α−1 = α, so δ2(α) = 0. On the other hand, δ1 has real coefficients, so δ1(α) = 0.
Thus, δ1(t) = aδ2(t) for some a ∈ Q; that is, δ1(t) = atkδ1(t

−1). Letting t = 1, we
have δ1(1) = aδ1(1). Since δ1(1) �= 0, we have a = 1, implying the symmetry of
δ1(t). �

Lemma 2. If α ∈ S1 is the root of a symmetric irreducible polynomial δ(t) that
has odd exponent as a factor of ΔK(t), then JK(α) ≡ 1 mod 2.

Proof. The diagonalization process used in the proof of the necessity of Property
(4) does not change the exponent of δ(t) as a factor of the determinant, modulo 2.
Thus, after diagonalizing and removing repeated factors, there are an odd number
of diagonal entries of the form f(t)δ(t) where δ(t) does not divide f(t); each such
entry contributes ±1 to the jump function. �

Lemma 3. For every Alexander polynomial Δ(t), there is an unknotting number
one knot K with ΔK(t) = Δ(t).

Proof. This is a theorem of Kondo [4] and Sakai [14]. �

Lemma 4. There is a dense subset {βi} of S1, each element of which is the root
of a quartic Alexander polynomial having precisely two roots on S1. Consequently,
for every ω ∈ S1, there is an ω′ arbitrarily close to ω and a knot K such that σK

has nontrivial jumps only at ω′ and ω′.

Proof. In [2, Section 2] it is shown that for any ω ∈ S1 and for any ε > 0, there is a
quartic Alexander polynomial Δ(t) having precisely two real roots and two complex
roots, ω′, ω′ ∈ S1, with |ω − ω′| < ε. Let K be a knot satisfying ΔK(t) = Δ(t).
By Lemma 2, the signature function of K has nontrivial jumps at ω′ and ω′. Since
these are the only roots of ΔK(t) on S1, these are the only nontrivial jumps of σK .

�

4.2. Orientations and crossing changes. In the arguments that follow, it will
be important to keep track of signs and orientations. We summarize one approach
here, which is consistent with references such as [1, 8, 13].

First, we use the formal definition of a knot to be a smooth oriented submanifold
of S3 that is diffeomorphic to S1. Two knots K1 and K2 are equivalent if there is
an orientation preserving diffeomorphism F of S3 to itself with F (K1) = K2.

Let K be a knot and let D be an embedded disk in S3 such that D∩K = A∪ p,
where A is a closed arc in ∂D and p is a point in the interior of D; we assume that
the intersection of K and D is transverse at p. A new knot, K ′, can be constructed
from K by removing A, replacing it with the closure of the complementary arc on
∂D, and then smoothing. The orientation of K ′ is chosen to agree with that of K
on their intersection.
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The orientation of K determines one on A, and thus on D. (In a moment we will
discuss conventions.) There is then an orientated intersection number of K and D,
which we call the sign of the crossing change. If the sign is positive, we say the
crossing is from positive to negative.

In this process, a number of choices in convention are needed. These are made
so that the standard right-handed trefoil, T (2, 3), can be unknotted by a positive
crossing change, that is, by changing a crossing from positive to negative.

Let m : S3 → S3 be an orientation reversing diffeomorphism. For a knot K,
the knot m(K) is called the mirror image of K. If K can be unknotted with a
single crossing change from positive to negative, then m(K) can be unknotted with
a crossing change from negative to positive. In general, for all ω ∈ S1, σm(K)(ω) =
−σK(ω).

We should note now that initially there is another choice of sign involved in
defining the signature function. It is done so that the signature function of the
right-handed trefoil knot T satisfies σT (−1) = −2.

Lemma 5. If K can be unknotted by changing one crossing from negative to posi-
tive, then 0 ≤ σK(ω) ≤ 2 for all ω ∈ S1.

Proof. A proof of this for the classical signature σK(−1) appears in [3, Proposition
2.1]. That proof can be generalized by considering p-fold covers rather than 2-fold
covers. Here is a brief argument, similar to one given in [9] for the Heegaard Floer
τ -invariant.

Fix the value of ω on the upper half circle S1+. Use Lemma 4 to choose an ω′ ∈ S1+
with smaller argument than ω and such that there is a quartic Alexander polynomial
Δ(t) having a unique root ω′ on S1+. By Lemma 3, there is an unknotting number
one knot J having Δ(t) as its Alexander polymomial. By replacing J with its
mirror if need be, we will assume the unknotting operation for J changes a positive
crossing to negative.

According to [3, Proposition 2.1], σJ(−1) is 0 or −2, and since there is a unique
nontrivial jump in the signature function on the upper half circle, we have that
σJ(−1) = −2. Furthermore, σJ (e

2πix) is constant for x between the argument of
ω′ and 1/2, and hence σJ (ω) = −2.

Since K can be unknotted with a single crossing change, it bounds a disk D
in B4 with one double point. Two small disks on D near the double point can
be removed and replaced with an embedded annulus, yielding a punctured torus
bounded by K in B4. According to [16], this implies |σK(ω)| ≤ 2.

Next, observe that K#J bounds a disk D in B4 with two double points of
opposite sign. Thus, a pair of disks on D, one containing each double point, can
be removed and replaced with an annulus having interior in the complement of D
to show that K#J bounds a punctured torus in B4. We now have |σK#J(ω)| ≤ 2.
The three results σJ(ω) = −2, −2 ≤ σK(ω) ≤ 2, and −2 ≤ σK(ω) + σJ (ω) ≤ 2
easily yield the desired result. �

4.3. Proof of sufficiency. There is a jump function J(ω) associated to σ(ω),
as defined in the introduction. We begin with the observation that for all α ∈
S1, J(α) ≡ σ(α) mod 2. To see this, first note that at each discontinuity the
change in signature is twice the jump. This implies that the signature is even
away from the discontinuities. The jumps are also even (actually 0) away from the
discontinuities, so we can focus on a point of discontinuity ω0 = e2πix0 . Here we
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have J(e2πix0) + σ(e2πix0) = σ(e2πi(x0+ε)) for any small ε > 0. Since for almost all
ε, the right-hand side is even, we have J(α) ≡ σ(α) mod 2 as desired.

The jump function (along with the fact that σ(1) = 0) permits us to restate
the main theorem in terms of jump functions. Notice that we can eliminate the
condition concerning the value at 0, since for any Alexander polynomial Δ(t),
Δ(1) = ±1 �= 0.

Theorem 2. Let J be an integer-valued function on S1 ⊂ C with finite support.
Then J = JK for some knot K if and only if:

(1) J(ω) = J(ω) for all ω ∈ S1.
(2) J(ω) = 0 if ω is not a root of an Alexander polynomial.
(3) If α1 ∈ S1 and α2 ∈ S1 are Galois conjugate, then J(α1) ≡ J(α2) mod 2.

We will use the following lemma in the construction of knots with specified jump
functions.

Lemma 6. Let Δ(t) be an Alexander polynomial having only simple roots on S1.
There exists a knot K with ΔK(t) = Δ(t) such that the JK(ω) is zero except at the
unit roots of Δ(t), where its value alternates between 1 and −1, beginning with 1.

Proof. According to Lemma 3, there is an unknotting number one knot K with
ΔK(t) = Δ(t), and we can assume the unknotting crossing change is from negative
to positive. The jumps in the signature function can occur only at the roots of
ΔK(t) on S1, and by Lemma 2, these jumps are all odd. Lemma 5 then implies
that the jumps are all ±1. Lemma 5 also implies that the first jump must be
positive and also rules out the possibility of two successive jumps being the same
sign. �

If two irreducible rational polynomials have a root in common, then they have all
roots in common. Thus, the given jump function J(ω) can be written as the sum of
functions Ji(ω), where each Ji(ω) satisfies the conditions of Theorem 2 and has the
added property that it is nonzero away from the roots of an irreducible Alexander
polynomial Δi(t). Jump functions for knots are additive under connected sum,
so the theorem is proved by constructing knots Ki realizing the jump functions
Ji(ω). It follows that we can restrict to the case that J satisfies the conditions
of Theorem 2 and all its nonzero values occur at the roots of a single irreducible
Alexander polynomial Δ(t).

Denote the set of roots of Δ(t) that lie on the upper half circle S1+ by {α1, . . . , αk}.
By Lemma 6 there is a knot whose jump function is nontrivial precisely at the roots
of Δ(t), where it is odd. The jump function of the unknot is 0 everywhere. Any
function on the upper half circle satisfying the conditions of Theorem 2 with support
contained in {α1, . . . , αk} differs from one of these two by a function which is 0 off
the set {α1, . . . , αk} and which is even everywhere. Thus, the proof of the theorem
is reduced to the following result.

Theorem 3. For each αm, there exists a knot K with jump function satisfying
JK(αm) = 2 and JK(ω) = 0 if ω ∈ S1+ and ω �= αm.

Proof. For notational purposes, we let δ1(t) = Δ(t). Assume the set of numbers
{α1, . . . , αk} is ordered by increasing argument. We focus on one element of the
set, αm. Choose a β ∈ S1+ with argument between that of αm and αm+1. (In the
case m = k, choose β ∈ S1+ with argument greater than that of αk.) As in the
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proof of Lemma 5, we can use Lemma 4 to ensure that β is a root of an irreducible
Alexander polynomial, δ2(t), having a unique root on the upper unit circle S1+.

Let K1, K2, and K3 be the unknotting number one knots having Alexander
polynomials δ1(t), δ2(t), and δ1(t)δ2(t), respectively, provided by Lemma 6. The
signature functions for these knots can have nontrivial jumps only at elements of
the set {α1, α2, . . . , αm, β, αm+1, . . . , αk}. By Lemma 6, the jump functions of each
must be as follows. (We write the jump at β in bold to highlight its location in the
list in position (m+ 1); the entire list is an ordered (k + 1)–tuple.)

• Jumps for σK1
: [1,−1, . . . , (−1)m+1,0, (−1)m, . . . , (−1)k+1].

• Jumps for σK2
: [0, 0, . . . , 0,1, 0, . . . , 0].

• Jumps for σK3
: [1,−1, . . . , (−1)m+1, (−1)m, (−1)m+1, . . . , (−1)k].

We now see that the jumps for the connected sum Jm = K1 #(−1)m+1K2 #K3

are given by

[2,−2, . . . , (−1)m+12,0, 0, . . . , 0].

Since the jumps for this knot occur only at αi, we list the jumps at those points as
a k–tuple:

[2,−2, . . . , (−1)m+12, 0, . . . , 0].

The last nonzero entry is in the m position.
For m ≥ 2, our desired knot K is (−1)m+1(Jm #−Jm−1). For m = 1, the knot

K = J1 suffices. �
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