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ALMOST-PERIODIC HOMOGENIZATION OF ELLIPTIC

PROBLEMS IN NON-SMOOTH DOMAINS

JUN GENG AND BOJING SHI

(Communicated by Svitlana Mayboroda)

Abstract. We consider a family of second-order elliptic operators {Lε} in di-
vergence form with rapidly oscillating and almost-periodic coefficients in Lip-
schitz domains. By using the compactness method, we show that the uniform
W 1,p estimate of second-order elliptic systems holds for 2n

n+1
−δ < p < 2n

n−1
+δ;

the ranges are sharp for n = 2 or n = 3. In the scalar case we obtain that the
W 1,p estimate holds for 3

2
− δ < p < 3 + δ if n � 3, and 4

3
− δ < p < 4 + δ if

n = 2; the ranges of p are sharp.

1. Introduction

This paper investigates a family of second-order elliptic operators with rapidly
oscillating and almost-periodic coefficients,

(1.1) Lε = − ∂

∂xi

[
aαβij (

x

ε
)

∂

∂xj

]
= −div

[
A(

x

ε
)∇

]
.

Suppose that the coefficient matrix A(y) = aαβij (y) (1 ≤ i, j ≤ n, 1 ≤ α, β ≤ m) is

real and bounded measurable. Here and thereafter we will suppose that ||A||∞ ≤
μ−1 and A is elliptic, i.e.,

(1.2) μ|ξ|2 � aαβij (y)ξαi ξ
β
j for ξ = (ξαi ) ∈ R

nm, y ∈ R
n,

where μ > 0.
We shall be interested in the quantitative homogenization of second-order elliptic

systems with bounded measurable coefficients that are almost-periodic in the sense
of H. Bohr, which means that A is the uniform limit of a sequence of trigonometric
polynomials in R

n. Let Trig(Rn) denote the set of all trigonometric polynomials.
The closure of the set Trig(Rn) with respect to the L∞-norm is called the Bohr
space of almost-periodic functions. A useful equivalent description of the almost-
periodic functions is given as follows. Let A be bounded and continuous in R

n.
Then A is almost-periodic in the sense of Bohr if and only if

(1.3) lim sup
R→∞

sup
y∈Rn

inf
z∈Rn

|z|≤R

||A(·+ y)−A(·+ z)||L∞(Rn) = 0.
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Set

(1.4) ρ(R) := sup
y∈Rn

inf
z∈Rn

|z|≤R

||A(·+ y)−A(·+ z)||L∞(Rn).

Notice that ρ(R) = 0 if A is periodic.
In this paper we study uniform W 1,p estimates on Lipschitz domain for second-

order elliptic systems with almost-periodic coefficients subject to the Dirichlet

boundary condition. Suppose that F ∈ Lp(Ω) and g ∈ B1− 1
p ,p(∂Ω), where Bα,p

denotes the Besov space, and B−1/p,p(∂Ω) is defined to mean the dual of Besov

space B1/p,p′
(∂Ω) on ∂Ω for 1 ≤ p < ∞ and 0 < α < 1. Let uε be a weak solution

of the Dirichlet problem,

(D)p Lε(uε) = div F in Ω and uε = g on ∂Ω.

Theorem 1.1. Suppose that Ω is a bounded Lipschitz domain in R
n, n � 2. As-

sume that A is continuous, symmetric (i.e.,A = A∗), and satisfies (1.2) and (1.3)
and

(1.5) ρ(R) ≤ C[logR]−N

for some N > 5/2 and any R ≥ 2. Let uε ∈ H1(Ω) be a weak solution of (D)p with

F ∈ Lp(Ω), g ∈ B1− 1
p ,p(∂Ω), where 2n

n+1 − δ < p < 2n
n−1 + δ. Then

(1.6) ||∇uε||Lp(Ω) � C

{
||F ||Lp(Ω) + ||g||

B
1− 1

p
,p
(∂Ω)

}
,

where constants δ, C > 0 are independent of ε.

The next theorem is concerned with the scalar case (m = 1). The ranges of p
are sharp.

Theorem 1.2. Let m = 1. Suppose that Ω is a bounded Lipschitz domain in R
n,

n � 2. Assume that A is continuous, symmetric (i.e., A = A∗), and satisfies (1.2)
and (1.3) and

(1.7) ρ(R) ≤ C[logR]−N

for some N > 5/2 and any R ≥ 2. Let uε ∈ H1(Ω) be a weak solution of (D)p

with F ∈ Lp(Ω) and g ∈ B1− 1
p ,p(∂Ω), where 3

2 − δ < p < 3 + δ if n � 3, and
4
3 − δ < p < 4 + δ if n = 2. Then

(1.8) ||∇uε||Lp(Ω) � C

{
||F ||Lp(Ω) + ||g||

B
1− 1

p
,p
(∂Ω)

}
,

where constants δ, C > 0 are independent of ε.

Uniform regularity estimates play an essential role in the study of the convergence
problems in homogenization. We refer the reader to [16], [1], [17], and [9]. In
periodic setting, the uniform W 1,p estimate (1.6) with 1 < p < ∞ for the Dirichlet
boundary problem (D)p on C1,α domain was obtained in [2] under the assumption
that A is Hölder continuous,

(1.9) |A(x)−A(y)| ≤ C|x− y|γ for any γ ∈ (0, 1].

The non-tangential maximal function estimates and Lipschitz estimates were also
obtained there via an elegant three-step compactness argument. In [11] Kenig
and Shen solved the L2 Dirichlet, Neumann, and Regularity problems in Lipschitz
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domain for elliptic systems with periodic, symmetric and Hölder continuous coef-
ficients by the method of layer potentials. Using this result, the non-tangential
maximal function estimates, boundary Lipschitz estimates, and uniform W 1,p esti-
mate (1.6) of the Neumann problem were established by C. Kenig, F. Lin, and Z.
Shen in [10] for 1 < p < ∞ in C1,α domain. The symmetric condition on A was
removed in [1] later by using a convergence rate method. In the case of second-order
elliptic systems subject to Dirichlet boundary conditions in Lipschitz domains, in a
recent paper [5], the authors were able to show that the uniformW 1,p estimate (1.6)
holds on Lipschitz domains for | 1p −

1
2 | <

1
2n + δ under the assumption that A∗ = A

is periodic and satisfies (1.9). Similar results for the linear elasticity problem are
also proved in [5] by a different approach. In the case of scalar equation (m = 1) on
Lipschitz domain, the W 1,p estimate (1.8) for the elliptic homogenization problem
Lεuε = divF in Ω was proved in [15] for 4

3 − ε < p < 4 + ε if n = 2 and for
3
2 − ε < p < 3 + ε if n � 3; and the ranges of p are sharp.

The study of elliptic homogenization with almost periodic coefficients started
from S. M. Kozlov ([12]) and G. C. Papanicolaou and S. R. S. Varadhan [13].
In contrast to the periodic setting, it was proved in [12] that one of the main
difficulties in the almost-periodic setting was caused by the lack of the solvability

of the corrector equation. Precisely, let P β
j = yj(0, ..., 1, ..., 0) with 1 in the βth

position, the corrector equation

(1.10) L1(χ
β
j ) = −L1(P

β
j ) in R

n,

which corresponds to the homogenization problem Lεuε = 0 may not be solvable
directly, unless under some extra assumptions. In [16], by introducing the auxiliary
approximate corrector equation

(1.11) L1(χ
β
T,j) + T−2χβ

T,j = −L1(P
β
j ) in R

n,

the uniform Hölder estimates and convergence rates of elliptic systems with rapidly
oscillating almost-periodic coefficients were established by Shen on C1,α domain.
Moreover, in a recent paper [1], Armstrong and Shen prove the full boundary Lip-
schitz estimates for second-order elliptic systems with almost-periodic and Hölder
continuous coefficients, the boundary W 1,p estimates were also obtained there in
C1,α domains for 1 < p < ∞. For almost periodic operators with complex coeffi-
cients, the interior Hölder estimate was obtained in [3] by using the compactness
argument.

Our approach is to reduce the W 1,p estimate to a weak reverse Hölder inequality
via a real-variable argument. However, in the almost-periodic setting, if uε is a
weak solution to Lεuε = 0 in Ω and uε = g n.t. on ∂Ω with A satisfying (1.3), due
to the lack of the Rellich estimate∫

∂Ω

|(∇uε)
∗|2 � C

∫
∂Ω

|∇tanuε|2,

the method used in [10] or [5] is not applicable. To overcome this difficulty, for
some N > 5/2 and any R ≥ 2, under some growth assumption on ρ(R),

ρ(R) ≤ C[logR]−N,
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follow the method in [15], let uε be a weak solution of Lεuε = 0 in Z2r and uε = 0
on S2r, we instead seek the following decay estimate:∫ t

0

∫
|x′|<r

|uε(x
′, ψ(x′ + s))|pndx′ds

� C

(
t

r

)pn+α0
∫ 2r

0

∫
|x′|<2r

|uε(x
′, ψ(x′ + s))|pndx′ds,(1.12)

where ε
ε0

< t
r < 1 and pn = 2n

n−1 . Notice that

(1.13) uε → u0 strongly in L2(Ω),

(1.14) ∇uε → ∇u0 weakly in L2(Ω),

as ε → 0, we then have the homogenization result (see Theorem 2.1 or [8]),

(1.15) A(x/ε)∇uε → Â∇u0 weakly in L2(Ω),

where Â is a constant matrix and −div(Â∇u0) = F0. This, together with (1.12),
by using the compactness argument, will yield the desired weak reverse Hölder
inequality, and thus the W 1,p estimates.

Let ψ be a Lipschitz mapping ψ : Rn−1 → R for r > 0. Set

(1.16) Zr = {(x′, xn) ∈ R
n : |x′| < r and ψ(x′) < xn < ψ(x′) + (M + 10n)r},

(1.17) Sr = {(x′, ψ(x′)) ∈ R
n : |x′| < r},

denote the Lipschitz cylinder and its surface.

2. Almost-periodic homogenization

In this section we introduce some preliminaries of the homogenization theory of
elliptic systems with almost-periodic coefficients. A detailed presentation may be
found in [8].

A function f(x) ∈ L2
loc(R

n) is called almost-periodic in the sense of Bezikovich if
there is a sequence of trigonometric polynomials converging to f in the Bezikovich
norm

(2.1) ||f ||B2 = lim sup
R→∞

{
−
∫
B(0,R)

|f |2
} 1

2

.

The space of such functions is denoted by B2(Rn). For any f with finite Bezikovich
norm, define its mean value 〈f〉 by

(2.2) lim
ε→0

∫
Rn

f(ε−1x)φ(x) = 〈f〉
∫
Rn

φ(x) for any φ ∈ C∞
0 (Rn).

A function f = fα
i ∈ Trig(Rn)(1 ≤ α ≤ m) is called potential if there exists

g = gα ∈ Trig(Rn) such that f = ∇g, g ∈ H1
loc(R

n). A function f = fα
i ∈ Trig(Rn)

is said to be solenoidal if divf = 0. Let

(2.3) V 2
pot = the closure of {f is potential, 〈f〉 = 0},

(2.4) V 2
sol = the closure of {f is solenoidal, 〈f〉 = 0}.

Then

(2.5) B2(Rn) = V 2
pot ⊕ V 2

sol ⊕ R
nm.
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It follows from the Lax-Milgram theorem and the ellipticity condition (1.2), there

exists a unique ψγβ
�j ∈ V 2

pot such that for any φ = (φα
i ) ∈ V 2

pot,

(2.6) 〈aαβij φα
i 〉+ 〈aαγik ψγβ

kj φ
α
i 〉 = 0.

Also, denote Â = (âαβij ) by

(2.7) Â = 〈aαβij 〉+ 〈aαγik ψγβ
kj 〉.

Then

(2.8) μ|ξ|2 ≤ âαβij ξαi ξ
β
j ≤ μ̃|ξ|2 for any ξ ∈ R

nm,

where μ̃ depends only on m,n, and μ. Let A∗ denote the adjoint of A; then it is
known that Â∗ = (Â)∗.

The next theorem shows that L0 = −div(Â∇) is the homogenized operator of
Lε.

Theorem 2.1. Let Ω ⊂ R
n be a bounded Lispschitz domain and F0 ∈ H−1(Ω).

Assume that A(y) is continuous and satisfies (1.2) and (1.3). Let uk be a weak
solution of − div(Ak(x/εk)∇uk) = Fk in Ω. Suppose that uk → u0 strongly in
L2(Ω) and ∇uk → ∇u0 weakly in L2(Ω) as εk → 0 as well as Fk → F0 strongly in

H−1(Ω). Then Ak(x/εk)∇uk → Â∇u0 weakly in L2(Ω) with u0 ∈ H1(Ω) is a weak

solution of − div(Â∇u0) = F0.

Proof. We use Tartar’s test function method to prove it. If Ak is independent of k,
this is also a classical result in the theory of homogenization. See [8] for the scalar
case (m = 1). The proof for the case m > 1 is the same and we give a proof here
for the sake of completeness.

Denote pk = Ak(x/εk)∇uk and assume pk → p0 weakly in L2(Ω) as k → ∞.

Set ψ ∈ C∞
0 (Ω) and let χk∗β

Tk,j
(x/εk) be the approximate correctors for the adjoint

matrix (Ak)
∗. We then have

〈Fk, (P
β
j + εkχ

k∗β
Tk,j

(x/εk))ψ〉H−1(Ω)×H1
0 (Ω)

=

∫
Ω

Ak(x/εk)∇uk · ∇{(P β
j + εkχ

k∗β
Tk,j

(x/εk))ψ}

=

∫
Ω

Ak(x/εk)∇uk · ∇(P β
j + εkχ

k∗β
Tk,j

(x/εk))ψ

+

∫
Ω

Ak(x/εk)∇uk · (P β
j + εkχ

k∗β
Tk,j

(x/εk))∇ψ.(2.9)

It follows from integration by parts we obtain∫
Ω

Ak(x/εk)∇uk · ∇(P β
j + εkχ

k∗β
Tk,j

(x/εk))ψ

= −
∫
Ω

uk · (Ak)
∗(x/εk) · ∇(P β

j + εkχ
k∗β
Tk,j

(x/εk))(∇ψ)

−
∫
Ω

uk · (Ak)
∗εkχ

k∗β
Tk,j

(x/εk)ψ,(2.10)
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where the approximate corrector equation (1.11) with Tk = ε
−1/2
k

(2.11) div
{
(Ak)

∗(x/εk) · ∇(P β
j + εkχ

k∗β
Tk,j

(x/εk))
}
= −εkχ

k∗β
Tk,j

(x/εk)

was used in (2.10).
By (2.9)-(2.10) we obtain that

〈Fk, (P
β
j + εkχ

k∗β
Tk,j

(x/εk))ψ〉H−1(Ω)×H1
0 (Ω)

= −
∫
Ω

uk · (Ak)
∗(x/εk) · ∇(P β

j + εkχ
k∗β
Tk,j

(x/εk))(∇ψ)

−
∫
Ω

uk · (Ak)
∗εkχ

k∗β
Tk,j

(x/εk)ψ

+

∫
Ω

Ak(x/εk)∇uk · (P β
j + εkχ

k∗β
Tk,j

(x/εk))∇ψ.(2.12)

Notice that εkχTk
(x/εk) → 0 weakly in W 1,2(Ω) and

aαγik (x/εk)
∂

∂xk
{xjδ

γβ + εkχ
γβ
Tk,j

(x/εk)} → âαβij

weakly in L2(Ω) (see [18]). Using this and taking weak limits on both sides of (2.12),

we have that the l.h.s. of (2.9) converges to 〈F0, P
β
j ψ〉 and the r.h.s. converges to∫

Ω
âβαji

∂uα
0

∂xi
ψ +

∫
Ω
p0P

β
j (∇ψ), where the fact (Â)∗ = Â∗ was used.

Next, we take P β
j ψ as the test function to have

〈Fk, P
β
j ψ〉 =

∫
Ω

pk∇(P β
j ψ).(2.13)

Let k → ∞. We have

〈F0, P
β
j ψ〉 =

∫
Ω

p0∇P β
j ψ +

∫
Ω

p0P
β
j (∇ψ).(2.14)

In view of the arbitrariness of ψ, compare with (2.12) and we obtain that p0 =

Â∇u0. �

3. A sufficient condition and proof of Theorem 1.1 and Theorem 1.2

It was proved in [14] (see also [4], [5]) that the weak reverse Hölder inequality im-
plies theW 1,p estimates for second-order elliptic systems with bounded, measurable
coefficients, as follows.

Theorem 3.1. Let Ω be a bounded Lipschitz domain in R
n, n ≥ 2 and p > 2. Let

L = div(A(x)∇) with A satisfying (1.2). Let v ∈ H1(Z2r) be a weak solution of
L(v) = 0 in Z2r and v = 0 on S2r. Assume that the weak reverse Hölder inequality

(3.1)

(
−
∫
Zr

|∇v|p
) 1

p

� C0

(
−
∫
Z2r

|∇v|2
) 1

2

holds. Let u ∈ H1
0 (Ω) be a solution of (D)2 with F ∈ Lp(Ω). Then u ∈ W 1,p(Ω)

and

(3.2) ||∇u||Lp(Ω) ≤ C||F ||Lp(Ω)

with constant C > 0 depending only on n, p, μ, C0, and the Lipschitz character of
Ω.

The following theorem is concerned with the interior W 1,p estimate.
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Theorem 3.2. Let f ∈ Lp(2B) for some 2 < p < ∞ and ρ(R) be defined as (1.4).
Suppose that uε ∈ H1(2B) is a weak solution of Lε(uε) = divF in 2B for some ball
B ⊂ R

n. Assume that A is continuous and satisfies (1.2) and (1.3) with

(3.3) ρ(R) ≤ C[logR]−N

for some N > 5/2 and any R ≥ 2. Then we have

(3.4)

{
−
∫
B

|∇uε|p
}1/p

≤ C

{(
−
∫
2B

|∇uε|2
)1/2

+

(
−
∫
2B

|F |p
)1/p

}
,

where C depends only on p, μ.

Proof. See [1]. �

We have the following reverse Hardy type estimate.

Lemma 3.3. Let uε ∈ H1(Z3r) be a solution to Lε(uε) = 0 in Z3r and uε = 0 on
S3r. Let A satisfy the same assumptions as in Theorem 3.2. Then for any p > 1,
(3.5)∫ cr

0

∫
|x′|<r

|∇uε(x
′, ψ(x′) + s)|p dx′ds ≤ C

∫ 2cr

0

∫
|x′|<2r

∣∣∣uε(x
′, ψ(x′) + s)

s

∣∣∣p dx′ds,

where c = 10
√
n and C > 0 are independent on ε.

Proof. Set ρ(x) = dist(x, ∂Z4r). It follows from Theorem 3.2 that we obtain∫
B(x,cρ(x))

|∇uε(y)|pdy ≤ Cρ(x)n−p

(
−
∫
B(x,2cρ(x))

|uε(y)|2dy
)p/2

≤ Cρ(x)n−p

(
−
∫
B(x,2cρ(x))

|uε(y)|pdy
)

≤ C

∫
B(x,2cρ(x))

∣∣∣∣uε(y)

ρ(y)

∣∣∣∣p dy,(3.6)

where we used the Cacciopoli’s inequality in the first inequality and Hölder’s in-
equality in the second one. Next we multiply both sides of (3.6) by ρ(x)−n and
then integrate on Zr. The proof is similar to that of Lemma 3.2 in [15] and thus
omitted. �

To utilize the compactness argument, we need to recall the regularity result for
second-order elliptic systems and equations with constant coefficients.

Lemma 3.4. Let Ω ⊂ R
n be a bounded Lipschitz domain. Let u be a weak solution

of Lu = 0 in Z2r and u = 0 on S2r, where L = − div(A∇) with A is a constant
matrix and A = A∗. Then

1) if m > 1, then (3.1) holds for 2n
n+1 − δ < p = pn < 2n

n−1 + δ;

2) if m = 1, then (3.1) holds for 3
2 − δ < p = pn < 3 + δ if n � 3 ( 43 − δ < p =

p2 < 4 + δ if n = 2); the ranges of p are sharp.

Proof. See [7]. �
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Lemma 3.5. Let L = −div(A∇) and let A be a constant matrix with A = A∗.
Suppose that u0 ∈ W 1,2(Z3/2), L(u0) = 0 in Z3/2 and u0 = 0 on S3/2. Let pn be
the same as in Lemma 3.4. Then

(3.7)

∫ t

0

∫
|x′|<1

|u0(x
′, ψ(x′) + s)|pn dx′ds

≤ C tpn+2σ

∫ 3/2

0

∫
|x′|< 3

2

|u0(x
′, ψ(x′) + s)|pn dx′ds

for any 0 < t < 1, where C, σ > 0 depending only on n,m, μ, and M .

Proof. The proof follows from Lemma 3.4 by taking p = pn = 2n
n−1 . See [5]. �

Next, we prove a homogenization result on a sequence of domains.

Lemma 3.6. Let Ak(y) be a sequence of matrices and {ψk} a sequence of Lipschitz
functions. Suppose that Ak are symmetric, continuous, and satisfy (1.2) and (1.3).
Assume that

(3.8)

{
div(Ak(

x
εk
)∇uεk) = 0 in Zr(ψk),

uεk = 0 on Sr(ψk),

where εk → 0 and

(3.9) ||uεk ||H1(Zr(ψk)) ≤ C.

Then there exist subsequences of {ψk} and {uεk}, which we still denote by the same

notation, and a Lipschitz function ψ, u ∈ L2(Zr(ψ)), and a constant matrix Â such
that

(3.10)

{
ψk → ψ in {x ∈ R

n : |x′| < 5},
uεk(x

′, xn − ψk(x
′)) → u(x′, xn − ψ(x′)) strongly in L2(Er),

where Er = {(x′, xn) : |x′| < r and 0 < xn < 10(M + 1)r}, and u is a solution of

(3.11)

{
div(Â∇u) = 0 in Zr(ψ),

u = 0 on Sr(ψ).

Proof. We first note that (3.10) follows from (3.9) by the Arzelá-Ascoli theorem.
To show (3.11), we let

vεk(x
′, xn) = uεk(x

′, xn + ψk(x
′)).

Note that ||vεk ||W 1,2(Er) ≤ C, by passing to a subsequence, we have

vεk → v strongly in L2(Er),

∇vεk → ∇v weakly in L2(Er).

It follows from Theorem 2.1 that u is a weak solution of div(Â∇u) = 0 in Zr(ψ).
Finally, set

uεk = vεk(x
′, xn − ψk(x

′)) and u = v(x′, xn − ψ(x′)).

Then u = 0 on Sr(ψ) follows from the fact that vεk → v weakly in H1(Zr(0)) and
vεk = 0 on Sr(0). �
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Lemma 3.7. Let uε ∈ W 1,2(Z3) be a weak solution of Lε(uε) = 0 in Z3 and
uε = 0 on S3. Suppose that A is continuous, symmetric, and satisfies (1.2) and
(1.3). Then there exists ε0 > 0, depending only on n, μ, and M , such that for any
0 < ε ≤ ε0,

(3.12)

∫ t0

0

∫
|x′|<1

|uε(x
′, ψ(x′) + t)|pn dx′dt

≤ tpn+σ
0

∫ 3c

0

∫
|x′|<3

|uε(x
′, ψ(x′) + t)|pn dx′dt,

where 0 < t0 < 1/2 and c = (M + 10n).

Proof. We will prove the lemma by contradiction. For any k ∈ N, denote

Zk
r =

{
(x′, xn) : |x′| < r and ψk(x

′) < xn < ψk(x
′) + (M + 10n)r

}
,

Sk
r =

{
(x′, xn) : |x′| < r and xn = ψk(x

′)
}
,

where ||∇ψk||∞ ≤ M and ψk(0) = 0. Suppose that (3.12) is not true; then there

exist {εk}, {L(k)
εk }, {ψk}, and {uεk} as well as a sequence of uniformly almost-

periodic operators {Ak} satisfying (1.2) and such that εk → 0 as k → ∞,

L(k)
εk

(uεk) = −div
(
Ak

( x

εk

)
∇uεk

)
= 0 in Zk

3 and uεk = 0 on Sk
3 ,

∫ 3c

0

∫
|x′|<3

|uεk(x
′, ψk(x

′) + t)|pn dx′dt = 1,(3.13)

and ∫ t0

0

∫
|x′|<1

|uεk(x
′, ψk(x

′) + t)|pn dx′dt > tpn+σ
0 .(3.14)

Let

bαβ,kij = 〈aαβ,kij 〉+ 〈aαγ,ki� ψγβ
�j 〉,(3.15)

where ψγβ
�j ∈ V 2

pot and bαβ,kij are bounded. Hence, by passing to a subsequence, we
may suppose that

bαβij = lim
k→∞

bαβ,kij(3.16)

exists for 1 ≤ i, j ≤ n, 1 ≤ α, β ≤ m. Thus we have

μ|ξ|2 ≤ bαβij ξαi ξ
β
j ≤ μ̃|ξ|2(3.17)

for any ξ ∈ R
nm and μ̃ depends only on m,n, and μ (see, e.g., [8]).

Let vεk(x
′, t) = uεk(x

′, ψk(x
′) + t) and Er be defined as in Lemma 3.6. Note

that by Cacciopoli’s inequality and (3.13), {vεk} is uniformly bounded in W 1,2(E2).
Thus, vεk → v0 weakly in W 1,2(E2) and strongly in Lpn(E2) due to the compact
embedding. In view of (3.13) and (3.14) we obtain

(3.18)

∫ 2

0

∫
|x′|<2

|v0(x′, t)|pn dx′dt ≤ 1,∫ t0

0

∫
|x′|<1

|v0(x′, t)|pn dx′dt ≥ tpn+σ
0 .



4348 JUN GENG AND BOJING SHI

Next, let u0(x
′, xn) = v0(x

′, xn − ψ0(x
′)). Then u0 ∈ W 1,2(Z̃2) and u0 = 0 on

S̃2, where

Z̃r =
{
(x′, t) : |x′| < r and ψ0(x

′) < t < ψ0(x
′) + (M + 10n)r

}
,

S̃r =
{
(x′, ψ0(x

′)) : |x′| < r
}
.

Let L = −div(Ā∇), where Ā = (bαβij ). It follows from Lemma 3.6 that L(u0) = 0

in Z2. In view of Lemma 3.5 and (3.18) we obtain

(3.19)

∫ t0

0

∫
|x′|<1

|u0(x
′, ψ0(x

′) + t)|pn dx′dt

≤ C0t
pn+2σ
0

∫ 2

0

∫
|x′|<2

|u0(x
′, ψ0(x

′) + t)|pn dx′dt

≤ (1/2)tpn+σ
0 ,

which contradicts the second inequality in (3.18). This completes the proof. �

Lemma 3.8. Let uε ∈ W 1,2(Z3) be a weak solution of Lε(uε) = 0 in Z3 and uε = 0
on S3. Suppose that A and ε0 > 0 are the same as Lemma 3.7. There exist positive
constants δ and C, depending only on n, μ, and M , such that for (ε/ε0) < t < 1,

(3.20)

∫ t

0

∫
|x′|<1

|uε(x
′, ψ(x′) + s)|pn dx′ds

≤ Ctpn+δ

∫ 3c

0

∫
|x′|<3

|uε(x
′, ψ(x′) + s)|pn dx′ds.

Proof. Lemma 3.8 follows from Lemma 3.7 by rescaling and iteration argument.
See [15, pp. 2294-2295] for more details. �

Next we give part of the proof of Theorem 1.1 in the case of g = 0.

Theorem 3.9. Suppose that Ω is a bounded Lipschitz domain in R
n, F ∈ Lp(Ω),

where 2n
n+1 − δ < p < 2n

n−1 + δ. Let uε be a weak solution to Lεuε = divF in Ω and

uε = 0 on ∂Ω. Assume that A is continuous, symmetric, and satisfies (1.2) and
(1.3) and

ρ(R) ≤ C[logR]−N

for some N > 5/2 and any R ≥ 2. Then

(3.21) ||∇uε||Lp(Ω) � C||F ||Lp(Ω),

where constants δ, C > 0 are independent of ε.

Proof. Without loss of generality, we may assume r = 1. It suffices to prove the
weak reverse Hölder inequality (3.1) for 2 < p < 2n

n−1 + δ and the ranges 2n
n+1 − δ <

p < 2 will be obtained by a duality argument. If ε ≥ ε0/4, estimate (3.1) follows
from the standard regularity estimate of second-order elliptic systems with variable
coefficients (see [6]).
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Hence we suppose that ε < ε0/4. For 2
−j0−1 ≤ ε/ε0 ≤ 2−j0 , we decompose∫ c

0

∫
|x′|<1

|uε(x
′, ψ(x′) + s)

s
|pn dx′ds

=

{ ∫ ε/ε0

0

∫
|x′|<1

+

j0∑
j=1

∫ 2jε/ε0

2j−1ε/ε0

∫
|x′|<1

+

∫ c

2j0ε/ε0

∫
|x′|<1

}
|uε(x

′, ψ(x′) + s)

s
|pn dx′ds,

= I + II + III.

(3.22)

It is easy to see that

(3.23) III ≤ C

∫ 3c

0

∫
|x′|<3

|uε(x
′, ψ(x′) + s)|pn dx′ds

and
(3.24)

II ≤ C

j0∑
j=1

(
2j−1 ε

ε0

)−pn
(
2j

ε

ε0

)pn+δ
∫ 3c

0

∫
|x′|<3

|uε(x
′, ψ(x′) + s)|pn dx′ds

≤ C

∫ 3c

0

∫
|x′|<3

|uε(x
′, ψ(x′) + s)|pn dx′ds,

where (3.20) was used in the first inequality.
To estimate I, we claim that

(3.25)

∫ ε/ε0

0

∫
|x′|<1

∣∣∣uε(x
′, ψ(x′) + s)

s

∣∣∣pn

dx′ds

≤ C

∫ 3c

0

∫
|x′|<3

∣∣uε(x
′, ψ(x′) + s)

∣∣pn dx′ds.

Assume (3.25) for a moment; then it is easy to see that I is handled by (3.25), that
is,

I ≤ C

∫ 3c

0

∫
|x′|<3

|uε(x
′, ψ(x′) + s)|pn dx′ds.(3.26)

Therefore, we have shown that∫ 1

0

∫
|x′|<1

∣∣∣uε(x
′, ψ(x′) + s)

s

∣∣∣pn

dx′ds ≤ C

∫
Z3

|uε(x)|pn dx.(3.27)

In view of Lemma 3.3 and Sobolev imbedding, this implies that

(3.28)

∫
Z1

|∇uε|pn dx ≤ C

∫
Z3

|uε|pn dx ≤ C

{∫
Z3

|∇uε|2 dx
}pn/2

.

This completes the proof of Theorem 1.1.
Next, it remains to show that the claim (3.25) holds. Observe that v(x) = uε(εx)

is a weak solution of L1(v) = 0. Thus by Hardy’s inequality and the boundary
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Hölder estimate we obtain that,

(3.29)

∫ 1/ε0

0

∫
|x′|<1/ε0

∣∣∣v(x′, ψ(x′) + s)

s

∣∣∣pn

dx′ds

≤ C

∫ 2/ε0

0

∫
|x′|<2/ε0

|∇v(x′, ψ(x′) + s)|pn dx′ds

≤ C
( 1

ε0

)n−n
2 pn

{∫ 2/ε0

0

∫
|x′|<2/ε0

|∇v(x′, ψ(x′) + s)|2 dx′ds

}pn/2

≤ C
( 1

ε0

)n−n
2 pn−pn−n+n

2 pn

∫ 2/ε0

0

∫
|x′|<2/ε0

|v(x′, ψ(x′) + s)|pn dx′ds

= C
( 1

ε0

)−pn

∫ 2/ε0

0

∫
|x′|<2/ε0

|v(x′, ψ(x′) + s)|pn dx′ds,

where we have used the weak reverse Hölder inequality and Cacciopoli’s inequality
in the second and third estimates. A scaling argument yields that

(3.30)

∫ ε/ε0

0

∫
|x′|<ε/ε0

∣∣∣uε(x
′, ψ(x′) + s)

s

∣∣∣pn

dx′ds

≤ C

(ε)pn

∫ cε/ε0

0

∫
|x′|<2ε/ε0

∣∣uε(x
′, ψ(x′) + s)

∣∣pn
dx′ds.

By covering S1 with surface balls of radius ε/ε0, we can deduce from (3.30) that

(3.31)

∫ ε/ε0

0

∫
|x′|<1

∣∣∣uε(x
′, ψ(x′) + s)

s

∣∣∣pn

dx′ds

≤ C

εpn

∫ cε/ε0

0

∫
|x′|<2

∣∣uε(x
′, ψ(x′) + s)

∣∣pn dx′ds

≤ C

∫ 3c

0

∫
|x′|<3

∣∣uε(x
′, ψ(x′) + s)

∣∣pn
dx′ds,

where we have used Lemma 3.8 in the last inequality. Thus we finish the claim of
(3.25).

In the last, it remains to show the ranges 2n
n+1 − δ < p < 2. To do this, suppose

that uε, vε ∈ W 1,2
0 (Ω) satisfy Lεuε = divF and L∗

εvε = divg for some F, g ∈ L2(Ω).
Notice that L∗

ε = −div(A∗∇) = Lε since A is symmetric. Thus we obtain

(3.32)

∫
Ω

F · ∇vε =

∫
Ω

g · ∇uε.

By duality, the above weak formulation implies that if ||∇uε||Lp(Ω) ≤ C||F ||Lp(Ω)

holds for 2 < p < 2n
n−1+δ, then we have ||∇vε||Lp(Ω) ≤ C||g||Lp(Ω) for any

2n
n+1−δ <

p < 2. Hence we complete the proof. �
The next theorem is concerned with the case of g 
= 0.

Theorem 3.10. Suppose Ω is a bounded Lipschitz domain in R
n, g ∈ B1− 1

p ,p(∂Ω),
where 2n

n+1−δ < p < 2n
n−1+δ. Assume that A is continuous, symmetric, and satisfies

(1.2) and (1.3) and

(3.33) ρ(R) ≤ C[logR]−N
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for some N > 5/2 and any R ≥ 2. Let uε be a weak solution to Lεuε = 0 in Ω and
uε = g on ∂Ω. Then

(3.34) ||∇uε||Lp(Ω) � C||g||B1−1/p,p(∂Ω),

where constants δ, C > 0 are independent of ε.

Proof. The proof could be reduced to the case g = 0. Since g ∈ B1− 1
p ,p(∂Ω), it

follows from the trace theorem, that there exists G ∈ W 1,p(Ω) such that G = g on
∂Ω. Moreover, we have

(3.35) ||G||W 1,p(Ω) � C||g||B1−1/p,p(∂Ω).

Hence we may reduce the general case to the case G = 0 by considering the function
uε −G. Then the desired estimate (3.34) follows from Lemma 3.9 directly. �

We are in a position to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let vε be a weak solution of Lεvε = 0 in Ω and vε = g on
∂Ω. Let wε be a weak solution of Lεwε = divF in Ω and wε = 0 on ∂Ω. Also,
by setting uε = vε + wε, it follows from Theorems 3.9 and 3.10, we get (1.6), thus
complete the proof. �

By a similar manner as that of Theorem 1.1, we give the proof of Theorem 1.2.

Proof of Theorem 1.2. The proof of Theorem 1.2 almost follows from the same ar-
gument as Theorem 1.1. In view of Lemma 3.4, together with the duality argument,
yields (1.8). �
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