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ABSTRACT. We consider a family of second-order elliptic operators {L:} in di-
vergence form with rapidly oscillating and almost-periodic coefficients in Lip-
schitz domains. By using the compactness method, we show that the uniform
WP estimate of second-order elliptic systems holds for n2_~7f1 —di<p< n2lll +6;
the ranges are sharp for n = 2 or n = 3. In the scalar case we obtain that the
WP estimate holds for % —d<p<3+4+difn >3, and % —d<p<4+4if
n = 2; the ranges of p are sharp.

1. INTRODUCTION

This paper investigates a family of second-order elliptic operators with rapidly
oscillating and almost-periodic coefficients,

. 0O
)%j

0 . T
(1.1) Lo=—— {a;ﬁ(g } = —div [A(g)v} .
Suppose that the coefficient matrix A(y) = a%ﬁ(y) (1<i,j<n1<aqap<m)is
real and bounded measurable. Here and thereafter we will suppose that ||A]|c <

p~' and A is elliptic, i.e.,
(1.2) gl < aff ()€ for € = (€7) e R™, y € R™,

where p > 0.

We shall be interested in the quantitative homogenization of second-order elliptic
systems with bounded measurable coeflicients that are almost-periodic in the sense
of H. Bohr, which means that A is the uniform limit of a sequence of trigonometric
polynomials in R™. Let Trig(R") denote the set of all trigonometric polynomials.
The closure of the set Trig(R") with respect to the L*°-norm is called the Bohr
space of almost-periodic functions. A useful equivalent description of the almost-
periodic functions is given as follows. Let A be bounded and continuous in R™.
Then A is almost-periodic in the sense of Bohr if and only if

(1.3) limsup sup zier}gl IJA(-+y) — A(- + 2)|| oo (mn) = 0.
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Set
(1.4 o(R) = sup inf [IAC + ) — A+ )]l
yeR™ 50

Notice that p(R) = 0 if A is periodic.

In this paper we study uniform WP estimates on Lipschitz domain for second-
order elliptic systems with almost-periodic coefficients subject to the Dirichlet
boundary condition. Suppose that F' € LP(Q2) and ¢ € Blf%’p(aQ), where B*P
denotes the Besov space, and B~1/7?(99) is defined to mean the dual of Besov
space BY/P7 (9Q) on 9Q for 1 < p < oo and 0 < a < 1. Let u. be a weak solution
of the Dirichlet problem,

(D) L.(ug)=divFinQ and wu. =g ondf.
Theorem 1.1. Suppose that Q is a bounded Lipschitz domain in R™, n > 2. As-

sume that A is continuous, symmetric (i.e.,A = A*), and satisfies (L2) and [L3))
and

(1.5) p(R) < Cllog |V
for some N >5/2 and any R > 2. Let u. € H*(Q) be a weak solution of (D), with

Felr(Q), g€ Bl_%’p(aﬂ), where nz—]rll —8<p< 2 +6. Then

(16) IVeclliriey < € {IIFartay +lloll o4y |
where constants 6,C > 0 are independent of €.

The next theorem is concerned with the scalar case (m = 1). The ranges of p
are sharp.

Theorem 1.2. Let m = 1. Suppose that Q is a bounded Lipschitz domain in R™,
n > 2. Assume that A is continuous, symmetric (i.e., A = A*), and satisfies (L2)

and ([L3) and

(17) p(R) < CllogR]™

for some N > 5/2 and any R > 2. Let u. € H'(Q) be a weak solution of (D),
with ' € LP(Q) and g € Blf%’p(aﬂ), where 3 —6 < p < 3+46ifn >3, and
3-0<p<4+difn=2. Then

(1.9 IVeclliriey < € {IIFaray +lloll o4y
where constants §,C > 0 are independent of €.

Uniform regularity estimates play an essential role in the study of the convergence
problems in homogenization. We refer the reader to [16], [I], [I7], and [9]. In
periodic setting, the uniform W7 estimate (L8] with 1 < p < oo for the Dirichlet
boundary problem (D), on C1® domain was obtained in [2] under the assumption
that A is Holder continuous,

(1.9) |A(z) — A(y)| < Cla —y[” for any v € (0, 1].
The non-tangential maximal function estimates and Lipschitz estimates were also

obtained there via an elegant three-step compactness argument. In [II] Kenig
and Shen solved the L? Dirichlet, Neumann, and Regularity problems in Lipschitz
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domain for elliptic systems with periodic, symmetric and Hélder continuous coef-
ficients by the method of layer potentials. Using this result, the non-tangential
maximal function estimates, boundary Lipschitz estimates, and uniform WP esti-
mate (L) of the Neumann problem were established by C. Kenig, F. Lin, and Z.
Shen in [I0] for 1 < p < oo in C1* domain. The symmetric condition on A was
removed in [I] later by using a convergence rate method. In the case of second-order
elliptic systems subject to Dirichlet boundary conditions in Lipschitz domains, in a
recent paper [5], the authors were able to show that the uniform W1? estimate (L))
holds on Lipschitz domains for |% — %] < 5 46 under the assumption that A* = A
is periodic and satisfies (I9). Similar results for the linear elasticity problem are
also proved in [5] by a different approach. In the case of scalar equation (m = 1) on
Lipschitz domain, the W7 estimate (L) for the elliptic homogenization problem
Lou. = divF in Q was proved in [I5] for § — e < p < 4+ ¢ if n = 2 and for
% —e<p<3+¢ifn>3; and the ranges of p are sharp.

The study of elliptic homogenization with almost periodic coefficients started
from S. M. Kozlov ([I2]) and G. C. Papanicolaou and S. R. S. Varadhan [I3].
In contrast to the periodic setting, it was proved in [I2] that one of the main
difficulties in the almost-periodic setting was caused by the lack of the solvability
of the corrector equation. Precisely, let Pf = 4;(0,...,1,...,0) with 1 in the g*"

position, the corrector equation
(1.10) Li(x])=-L£i(P) in R,

which corresponds to the homogenization problem L.u. = 0 may not be solvable
directly, unless under some extra assumptions. In [16], by introducing the auxiliary
approximate corrector equation

(1.11) Li(xg,) + T X5, = —L1(P]) in R",

the uniform Hélder estimates and convergence rates of elliptic systems with rapidly
oscillating almost-periodic coefficients were established by Shen on C*® domain.
Moreover, in a recent paper [I], Armstrong and Shen prove the full boundary Lip-
schitz estimates for second-order elliptic systems with almost-periodic and Hélder
continuous coefficients, the boundary WP estimates were also obtained there in
C1* domains for 1 < p < co. For almost periodic operators with complex coeffi-
cients, the interior Holder estimate was obtained in [3] by using the compactness
argument.

Our approach is to reduce the WP estimate to a weak reverse Holder inequality
via a real-variable argument. However, in the almost-periodic setting, if u. is a
weak solution to L.ue, = 0in Q and ue. = g n.t. on 9 with A satisfying ([L3]), due
to the lack of the Rellich estimate

/ (Vo) 2 < C / IV samte .
oN o0

the method used in [10] or [5] is not applicable. To overcome this difficulty, for
some N > 5/2 and any R > 2, under some growth assumption on p(R),

p(R) < CllogR] ™",
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follow the method in [I5], let u. be a weak solution of L.u. = 0 in Zs, and u, =0
on Sy, we instead seek the following decay estimate:

t
L[ et + syl ass
0 Jlz'|<r

t Pntoo 2r
(1.12) <C (—> / / lue (2, (2" + 8)) [P da’ ds,
r 0 |z'| <27

where % < % <1 and p, = % Notice that

(1.13) ue — ug strongly in L?(Q),

(1.14) Vu. — Vug weakly in L*(Q),

as € — 0, we then have the homogenization result (see Theorem 1] or []),
(1.15) A(z/e)Vue — AVug weakly in L2(Q),

where A is a constant matrix and —div(AVug) = Fo. This, together with (L12),
by using the compactness argument, will yield the desired weak reverse Holder
inequality, and thus the WP estimates.

Let 9 be a Lipschitz mapping ¢ : R®~! — R for r > 0. Set

(1.16)  Z, ={(2',x,) € R" : [2'| < r and ¥(2') < z, < Y(2') + (M + 10n)r},

(1.17) S, ={(z',¢(")) e R" : |'| < r},

denote the Lipschitz cylinder and its surface.

2. ALMOST-PERIODIC HOMOGENIZATION

In this section we introduce some preliminaries of the homogenization theory of
elliptic systems with almost-periodic coefficients. A detailed presentation may be
found in [§].

A function f(x) € L2 (R™) is called almost-periodic in the sense of Bezikovich if
there is a sequence of trigonometric polynomials converging to f in the Bezikovich

norm

1
2
(21) |1 £ll2 = limsup {][ |f2} .
R—00 B(0,R)

The space of such functions is denoted by B?(R"). For any f with finite Bezikovich
norm, define its mean value (f) by

22)  tim [ fe 0o = () [ o) for any ¢ € CR(RY).
e—0 Rn R
A function f = f¥ € Trig(R*)(1 < a < m) is called potential if there exists

g = g € Trig(R") such that f = Vg, g € H} (R"). A function f = f& € Trig(R")
is said to be solenoidal if divf = 0. Let

(2.3) V2, = the closure of {f is potential, (f) =0},
(2.4) V2, = the closure of {f is solenoidal, (f) = 0}.
Then

(2.5) B*R") =Va, o V2 &R
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It follows from the Lax-Milgram theorem and the ellipticity condition (I.2]), there
exists a unique ’(/J’YB € V2 . such that for any ¢ = (¢2) € V.2

pot»
(2:6) agf o7) + ag vl o7) =
Also, denote A = (a”) by

2]

(2.7) A= (a$f) + (aTvll).
Then
(2.8) ule? < agfecel < fil¢f? for any € € R™,

where 1 depends only on m,n, and p. Let A* denote the adjoint of A; then it is
known that A* = (A)*.

The next theorem shows that £y = —div(AV) is the homogenized operator of
Le.

Theorem 2.1. Let Q C R" be a bounded Lispschitz domain and Fy € H~1 ().
Assume that A(y) is continuous and satisfies (L2) and [3). Let uy be a weak
solution of —div(Ag(x/ex)Vur) = Fi in Q. Suppose that up — ug strongly in
L3(Q) and Vuy, — Vug weakly in L?(2) as e — 0 as well as Fy, — Fy strongly in
H=YQ). Then Ay(x/er)Vur — AVug weakly in L*(Q) with ug € H'(Q) is a weak
solution of — div(AVug) = Fp.

Proof. We use Tartar’s test function method to prove it. If Ay is independent of &,
this is also a classical result in the theory of homogenization. See [§] for the scalar
case (m = 1). The proof for the case m > 1 is the same and we give a proof here
for the sake of completeness.

Denote p, = Ag(x/er)Vuy and assume p, — po weakly in L?(Q) as k — oo.
Set ¢ € C§°(Q2) and let X;:ﬂj (z/er) be the approximate correctors for the adjoint
matrix (Ag)*. We then have

(Fl, (P'B + Ekxs“zﬁj(x/sk))¢>H*1(Q)><H1(Q)
/Q A /er)Vur - T{(PP + exxs? (a/er)))

/QAk(l’/%)Vuk V(PB+5kX @/en))y

(2.9) + /Q Ay (z/er)Vuy, - (Pjﬁ + Ekxl;ﬁ(l’/%))w/f-

It follows from integration by parts we obtain

/Ak o/ex) Vg, - V(P] + epxpn (@/ex) )
_ / wp - (Ag) (3/er) - V(PP + e’ (w/21)) (V)
(2.10) —/Q ur - (Ax) exxy s (@/ex),
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where the approximate corrector equation (LIT]) with Ty = 5;1/ 2
(2.11) div{(AR)"(#/er) - V(P + euxz s (@/en))} = —enx s (@/er)
was used in (210).

By (Z9)-(2I0) we obtain that
kx
(F, (Pf + €kXTk7Bj(ﬂf/ak))WH—l(Q)xH(}(Q)

_ /Q wk - (Ag)*(@/ex) - V(PP + et (/) (V)
- /Quk (Ap)erx s (@ /)t

(2.12) + / Aw(@/er)Vug, - (P) + eixys(w/ex)) V.
Q
Notice that exx7, (z/cx) — 0 weakly in W12(Q) and
« 8 PNe
a5 (@/zx) 5w ey (/=) } > a7

weakly in L2(9) (see [18]). Using this and taking weak limits on both sides of ([2.12),
we have that the Lh.s. of (29) converges to (Fo, Pjﬁw> and the r.h.s. converges to
Jo dff‘ %ffw + fo ponB(V@/J), where the fact (A)* = A* was used.

Next, we take Pf 1 as the test function to have

(2.13) (Fy, PJw) = /Q PV (PlY).

Let kK — oo. We have

(2.14) (Fy, PPs) = /Q POV + /Q PoP? (VD).

X In view of the arbitrariness of ¢, compare with (ZI2]) and we obtain that py =
AVuyg. O

3. A SUFFICIENT CONDITION AND PROOF OF THEOREM [I.]] AND THEOREM

It was proved in [14] (see also [4], [5]) that the weak reverse Holder inequality im-
plies the WP estimates for second-order elliptic systems with bounded, measurable
coefficients, as follows.

Theorem 3.1. Let Q2 be a bounded Lipschitz domain in R",n > 2 and p > 2. Let
L = div(A(z)V) with A satisfying (L2). Let v € H(Zs,) be a weak solution of
L) =0 in Z3 and v =0 on Sy,.. Assume that the weak reverse Hélder inequality

(3.1) (][Z |W|P>% < Co (][Z |Vv|2>%

holds. Let u € H} () be a solution of (D)y with F € LP(Q). Then u € WHP(Q)
and

(3.2) [[Vullzr ) < ClF||Lr o)

with constant C' > 0 depending only on n,p, u, Cy, and the Lipschitz character of
Q.

The following theorem is concerned with the interior WP estimate.
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Theorem 3.2. Let f € LP(2B) for some 2 < p < 0o and p(R) be defined as (L4).
Suppose that u. € H*(2B) is a weak solution of L.(u:) = divF in 2B for some ball
B C R"™. Assume that A is continuous and satisfies (L2) and (L3) with

(3-3) p(R) < CllogR] ™™
for some N > 5/2 and any R > 2. Then we have

w0 {fmar) " ze{(fme) " (L)}

where C' depends only on p, p.
Proof. See [1]. O

We have the following reverse Hardy type estimate.

Lemma 3.3. Let u. € H*(Z3,) be a solution to Lo(u:) =0 in Z3, and u. =0 on
Ss,.. Let A satisfy the same assumptions as in Theorem [32. Then for any p > 1,

(3.5)
cr 2cr
/ / |Vue (2,9 (2") + s) P da’ds < C/ /
0 |z’ |<r 0 |z’ |<2r

where ¢ = 10y/n and C > 0 are independent on e.

ue (@', (') + 5)|P

S

dz'ds,

Proof. Set p(x) = dist(z,0Zs,). It follows from Theorem that we obtain

p/2
/ Ve (y)Pdy < Cplz)™ (f |ua<y>|2dy>
B(x,cp(x)) B(x,2¢cp(x))

< Cpla)™r ][ e (3) Py
B(w,20p(x))

ue(y) b

(36) =C p(y)

B(x2¢p(x))

where we used the Cacciopoli’s inequality in the first inequality and Holder’s in-
equality in the second one. Next we multiply both sides of B8] by p(z)~™ and
then integrate on Z,.. The proof is similar to that of Lemma 3.2 in [I5] and thus
omitted. O

To utilize the compactness argument, we need to recall the regularity result for
second-order elliptic systems and equations with constant coefficients.

Lemma 3.4. Let Q C R™ be a bounded Lipschitz domain. Let u be a weak solution
of Lu = 0 in Zs. and u = 0 on Ss,., where L = —div(AV) with A is a constant
matriz and A = A*. Then

1) if m > 1, then BI) holdsforf—_:_’l—5<p:pn< %4—57—

2) if m =1, then BI) holds for 3 —§ <p=p, <3+5ifn>3(3-0<p=
pa <4+ if n=2); the ranges of p are sharp.

Proof. See [1]. O
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Lemma 3.5. Let L = —div(AV) and let A be a constant matriz with A = A*.

Suppose that ug € W2(Zs)5), L(ug) = 0 in Zso and ug = 0 on Sz/o. Let p, be
the same as in Lemma 3.4 Then

/Ot /x'|<1u0(x/’¢(x/) +5)

3/2
< Ctp"+2"/ / lug(z', 1 (x') + s)|P" dx'ds
0 |2/ |< 3

Pr dz'ds

(3.7)

for any 0 <t <1, where C,o > 0 depending only on n,m, u, and M.

Proof. The proof follows from Lemma B4 by taking p = p,, = % See [5]. O
Next, we prove a homogenization result on a sequence of domains.

Lemma 3.6. Let Ay (y) be a sequence of matrices and {1} a sequence of Lipschitz
functions. Suppose that Ay, are symmetric, continuous, and satisfy (L2)) and [L3).
Assume that

(3.8) {diV(Ak(ﬁ)Vuak) =0 in Z,(¢r),
Ue, =0 on Sp(Yr),

where e, — 0 and

(3.9) lue, 111 (2, (1)) < C-

Then there exist subsequences of {1r} and {ue, }, which we still denote by the same

notation, and a Lipschitz function v, u € L*(Z.(3))), and a constant matriz A such
that

(3.10) Y — Y in {z e R™:|2'| <5},
’ e, (2, 20 — Ui (2')) = w2’ 2, — (2")) strongly in L*(E,),
where B, = {(2/,xy) : |2'| <71 and 0 < z,, < 10(M + 1)r}, and u is a solution of

{div(Avu) =0in Z(¢),

(8.11) u=0 on S(v).

Proof. We first note that BI0) follows from [B3) by the Arzeld-Ascoli theorem.
To show (B.II]), we let

Ve (2, T0) = ue, (7)) 20 + Y (2)).
Note that [[ve,||w1.2(g,) < C, by passing to a subsequence, we have
v., — v strongly in L*(E,),
V., — Vv weakly in L*(E,.).

It follows from Theorem 2] that u is a weak solution of div(AVu) = 0 in Z,(1)).
Finally, set
Ug), = Vg, (2,2 —r(a)) and  w=wv(a' z, —P(a")).

Then u = 0 on S,.(¢)) follows from the fact that v., — v weakly in H'(Z,.(0)) and
ve,, = 0 on S,(0). O
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Lemma 3.7. Let u. € W%%(Z3) be a weak solution of L.(u:) = 0 in Z3 and
us = 0 on S3. Suppose that A is continuous, symmetric, and satisfies (L2) and
([@T3). Then there exists eg > 0, depending only on n, u, and M, such that for any

0<e<e,
to
[ o) + o ara
0 lz’|<1

3c
< tp"*"/ / ue (2, () + t)|Pr da'dt,
|]<3
where 0 < tg < 1/2 and ¢ = (M + 10n).

(3.12)

Proof. We will prove the lemma by contradiction. For any k € N, denote
zF ={(2/,zn) ¢ |2 <7 and ¥p(2) < 2 < Yp(2’) + (M + 10n)r},
Sk ={(2/,2,) : |2/| <7 and z, = (')},
where ||[Vig|loo < M and 94(0) = 0. Suppose that (BIZ) is not true; then there

exist {ex}, {Eét)}, {r}, and {u.,} as well as a sequence of uniformly almost-
periodic operators {Ay} satisfying (IZ) and such that e, — 0 as k — oo,

ﬁ(k)(uak) = _dlv(Ak( )Vuak) =0 in Z§ and u,, =0 on S§,

3c
(3.13) / / |ue, (2, i (2") + )P da' dt = 1,
|z’ <3
and
to
(8.14) [ et v datan > et
|z’ |<1
Let
(3.15) B = () + G o),
where weﬁ € Vp2Ot and baﬁ k¥ are bounded. Hence, by passing to a subsequence, we
may suppose that
(3.16) bl = Jim b
k—o0
exists for 1 <i,5 <n, 1< a,8 <m. Thus we have
(3.17) ulel < vplerel < e

for any £ € R™ and 1z depends only on m,n, and p (see, e.g., [§]).

Let v, (2',t) = ue, (2/, (') + t) and E, be defined as in Lemma Note
that by Cacciopoli’s inequality and BI3)), {v., } is uniformly bounded in W2 (Es).
Thus, ve, — vg weakly in W2(Ey) and strongly in LP»(E3) due to the compact
embedding. In view of BI3]) and BI4) we obtain

2
/ / lwo(2/, )P dadt < 1,
0 Jjz'|<2
to
[ o
0 |z’ | <1

(3.18)
Prda’dt > g
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Next, let ug(z/,2,) = vo(2', 2, — Yo(z')). Then uy € W2(Z,) and ug = 0 on
So, where

(z',t) : |2'] <7 and o(z') <t < o(a’) + (M +10n)r},
(', po(2)) : |’ <7}

Let L = —div(AV), where A = (bfjﬁ) It follows from Lemma Bl that L(ug) =0
in Zy. In view of Lemma [B:5 and [BI8]) we obtain

to
L[ et ot 0

2
< Cot’gn“"/ / ‘ luo (', o (2") + t)|Pr da’dt
0 x| <2

nto
< (1/2)t5"77,

Pr da’ dt

(3.19)

which contradicts the second inequality in (B.I8). This completes the proof. a

Lemma 3.8. Let u. € W12(Z3) be a weak solution of L.(uz) =0 in Z3 and u. = 0
on S3. Suppose that A and g9 > 0 are the same as Lemma B2 There exist positive
constants 6 and C, depending only on n, u, and M, such that for (g/ep) <t < 1,

t
/ / |ue(2',9(a") + 5)|P" da'ds
0 Jjz'|<1

(3.20) .
< C’tp"%/ / lue (2, p(x") + s) [P da'ds.
0 |z/|<3

Proof. Lemma B8 follows from Lemma 37 by rescaling and iteration argument.
See [15, pp. 2294-2295] for more details. |

Next we give part of the proof of Theorem [LI]in the case of g = 0.

Theorem 3.9. Suppose that Q is a bounded Lipschitz domain in R™, F' € LP(2),
where nQ—fl —d<p< % + 0. Let u. be a weak solution to L.u. = div F in Q and
us = 0 on ON. Assume that A is continuous, symmetric, and satisfies (L2) and

@3) and

p(R) < Cllog R)~™
for some N >5/2 and any R > 2. Then
(3.21) [[Vuc|[Lr o) < ClIF|Lr @),
where constants §,C > 0 are independent of €.

Proof. Without loss of generality, we may assume r = 1. It suffices to prove the
weak reverse Holder inequality (B.]) for 2 < p < % + 0 and the ranges f—fl —i<
p < 2 will be obtained by a duality argument. If ¢ > £¢/4, estimate (B follows
from the standard regularity estimate of second-order elliptic systems with variable
coefficients (see [6]).
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Hence we suppose that ¢ < g¢/4. For 277071 < ¢/gy < 2770 we decompose

/ / uE u(@ (@) +5) —— 1 |Prdalds
|z’ |<1 S
e/eo 27e/eo
I +Z/ J
(3.22) 0 l2/| <1 27 /20 e/eo Jlar|<1
/ / ue(2, $(') + 9) [P da’ ds,
2J0e/eq J|z'|<1 $

=1+IT+1III

It is easy to see that

3c
(3.23) IIT < C/ / lue (2, (x") + 8)|[Pr da'ds
lz’|<3

and
(3.24)

Jo 3c
. c Pn . Pn+5
II1<C (2371 ) / / 0 Pn do'd
<ey (5" (2E) Il )+ )t

j=1
3c
< C/ / lue (2’ 9(x") + 8)[Pr dx'ds,
0 |z’ <3

where ([B20) was used in the first inequality.
To estimate I, we claim that

e/eo
/ ~/|w’<1

3c
< C/ / luc (', 9(2") + )" da'ds.
0 |z’ <3

Assume ([B28) for a moment; then it is easy to see that I is handled by (3:25]), that
is,

ue(a’, ¥ )+S)‘ dz'ds

S

(3.25)

3c
(3.26) I< C/ / luc (2, p(x") + s) [P da'ds.
|z’ |<3

Therefore, we have shown that

(3.27) / / “E LY )“)‘ da'ds < C [ Jue(@)P da.
|/ |<1 s Z3

In view of Lemma [3.3] and Sobolev imbedding, this implies that

Pn/2
(3.28) / [Vu |Pr dax < C/ lue|Pr de < C {/ |Vu5|2dx} .
Z1 Z3 Z3

This completes the proof of Theorem [Tl
Next, it remains to show that the claim ([3.25) holds. Observe that v(z) = u.(ex)
is a weak solution of £1(v) = 0. Thus by Hardy’s inequality and the boundary
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Holder estimate we obtain that,

1/80
/ /x "1<1/eo

2/eo
< C/ / [Vo(a', (") + s)|P™ da'ds
0 |z'|<2/e0

1 n 2/50 pn/z
(3.20) <oy / / Vo(a!, (a') + 5)|? d’ds
€o |2’|<2/e0

1 — _n 2/80
S C( ) 2 Pn—DPn +2pn/ / ( )+ S)
\x’\<2/80

€0

2/eo
=C(— p”/ / Y(2') + s)[Pr da' ds,
50 \x'\<2/60

where we have used the weak reverse Holder inequality and Cacciopoli’s inequality
in the second and third estimates. A scaling argument yields that

/5/50/ ue(x ,w( ") + 5) P
|z’ |<e/50 §
ce/eo
S p / / "U/s 7 + 5)
" |z’ |<2e/eo

By covering S; with surface balls of radius €/eg, we can deduce from ([B30) that

[
\z’\<1

ce/eo
(3.31) < / |luc (2, (2) + s)|p" dx'ds
Ep” ’
|z’ |<2

3c
< C/ / e (2, (@) + )7 da'ds,
0 lz’|<3

where we have used Lemma [38 in the last inequality. Thus we finish the claim of
B.25).

In the last, it remains to show the ranges - —” — 0 < p < 2. To do this, suppose
that u.,v. € W01’2(Q) satisfy Lou, = divF and E:UE = divg for some F,g € L*(Q).
Notice that £ = —div(A*V) = L. since A is symmetric. Thus we obtain

(3.32) / F-Vu, = / g- Vue.
Q Q

By duality, the above weak formulation implies that if ||[Vuc||pr) < C||F||Lr)
holds for 2 < p < -2 +4, then we have ||Vve||10(0) < C||g||1r (o) for any n—_H—5<
p < 2. Hence we complete the proof. (I

o', (@) +5) P

S

" da'ds

Pr dz'ds

" da'ds

(3.30)

P de! ds.

us a ) + S) Pn

S

dx'ds

The next theorem is concerned with the case of g # 0.

Theorem 3.10. Suppose Q is a bounded Lipschitz domain in R™, g € B P (092),
where n+1 —0 <p < 7 +0. Assume that A is continuous, symmetric, and satisfies

@2 and [@3) and
(3.33) p(R) < Cllog R]™N
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for some N > 5/2 and any R > 2. Let u. be a weak solution to L.u. =0 in Q and
us = g on 02. Then

(3.34) [[Vuel|zo@) < Cllgllpr-1/rr00),

where constants 6,C > 0 are independent of .

Proof. The proof could be reduced to the case g = 0. Since g € 31*%@(69), it
follows from the trace theorem, that there exists G € W1P(Q) such that G = g on
0f). Moreover, we have

(3.35) |Gllwrr) < Cllgllgr1-1/v.0(00)-

Hence we may reduce the general case to the case G = 0 by considering the function
e — G. Then the desired estimate [3:34]) follows from Lemma [3.9] directly. O

We are in a position to give the proof of Theorem [[11

Proof of Theorem [L.1l Let v, be a weak solution of L.v. = 0 in Q and v, = g on
0. Let w. be a weak solution of L.w. = divF in Q and w. = 0 on 9). Also,
by setting u. = v, + w, it follows from Theorems and B0, we get (6], thus
complete the proof. O

By a similar manner as that of Theorem [[LT] we give the proof of Theorem

Proof of Theorem [[.21 The proof of Theorem almost follows from the same ar-
gument as Theorem [Tl In view of Lemma[3.4] together with the duality argument,

yields (LS. O
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