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CHARACTERISTIC FUNCTIONS AS BOUNDED MULTIPLIERS

ON ANISOTROPIC SPACES

VIVIANE BALADI

(Communicated by Michael Hitrik)

Abstract. We show that characteristic functions of domains with piecewise
C3 boundaries transversal to suitable cones are bounded multipliers on a re-

cently introduced scale UC,t,s
p of anisotropic Banach spaces, under the condi-

tions −1 + 1/p < s < −t < 0, with p ∈ (1,∞).

1. Introduction

A (not necessarily smooth) function g : M → C is called a bounded multiplier
on a Banach space B of distributions on a d-dimensional Riemann manifold M if
there exists Cg < ∞ so that for all ϕ ∈ B the product gϕ is a well-defined element
of B and, in addition, ‖g ·ϕ‖ ≤ Cg‖ϕ‖, where ‖ ·‖ is the norm of B. One interesting
special case is when g is the characteristic function 1Λ of an open domain Λ ⊂ M :
Half a century ago, Strichartz [16] proved that for any d ≥ 1, if M = R

d and B is the
Sobolev1 space Ht

p(R
d) for p ∈ (1,∞) and t ∈ R, then the characteristic function 1Λ

of a half-space is a bounded multiplier on Ht
p(R

d) if and only if −1+1/p < t < 1/p.

In the present work, we consider a newly introduced scale UC,t,s
p of spaces of

anisotropic distributions B on a manifold M , adapted to smooth hyperbolic dy-
namics, and we prove the bounded multiplier property for characteristic functions
of suitable subsets Λ ⊂ M .

Fix r > 1, and suppose from now on that M is connected and compact. The
simplest hyperbolic maps on M are transitive Cr Anosov diffeomorphisms T . The
Ruelle transfer operator associated to such a map T and to a Cr−1 function h on
M (for example, h = 1/| detDT |) is defined on Cr−1 functions ϕ by

(1) Lhϕ = (h · ϕ) ◦ T−1 .

Blank–Keller–Liverani [7] were the first to study the spectrum of such transfer
operators on a suitable Banach space B of anisotropic distributions and to exploit
this spectrum to get information on the Sinai–Ruelle–Bowen (physical) measure:
The spectral radius of L1/| detDT | is equal to 1, and there is a simple positive
maximal eigenvalue, whose eigenvector is in fact a Radon measure μ, which is
just the physical measure of T . Finally, the rest of the spectrum lies in a disc
of radius strictly smaller than 1, which implies exponential decay of correlations
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∫
ϕ(ψ ◦Tn)dμ−

∫
ϕdμ

∫
ψdμ for Hölder observables ψ and ϕ as n → ∞. (The first

step in this analysis is to show the bound ρess < 1 for the essential spectral radius
of L1/| detDT | on B.)

Some natural dynamical systems originating from physics (such as Sinai billiards)
enjoy uniform hyperbolicity, but they are only piecewise smooth. LettingM =

⋃
i Λi

be a (finite or countable) partition ofM into domains where the dynamics is smooth,
one can often reduce to the smooth hyperbolic case via the decomposition

(2) L1/| detDT |ϕ =
∑
i

(1Λi
· ϕ)

| detDT | ◦ T
−1 .

This motivates studying bounded multiplier properties of characteristic functions.
In the 15 years since the publication of [7], dynamicists and semiclassical ana-

lysts have created a rich jungle of spaces of anisotropic distributions for hyperbolic
dynamics (here, d = ds + du with ds ≥ 1 and du ≥ 1). These spaces are usually
scaled by two real numbers v < 0 and t > 0. Leaving aside the classical foliated
anisotropic spaces of Triebel [17] (which are limited to “bunched” cases [4] and
seem to fail for Sinai billiards), they come in two groups:

In the first, “geometric” group [7, 13], a class of ds-dimensional “admissible”
leaves Γ (having tangent vectors in stable cones for T ) is introduced, and the
norm of ϕ is obtained by fixing an integer t ≥ 1 and taking a supremum, over all
admissible leaves Γ, of the partial derivatives of ϕ of total order at most t, integrated
against C |v| test functions on Γ. Modifications of this space, for suitable nonintegers
0 < t < 1 and |v| < 1, were introduced to work with piecewise smooth systems [8,9]
(only in dimension two). A version of these spaces for piecewise smooth hyperbolic
flows in dimension three recently allowed one to prove exponential mixing for Sinai
billiard flows [3].

In the2 second, “microlocal”, group [5], a third parameter p ∈ [1,∞) is present
and the norm (in charts) of ϕ is the Lp average of Δt,v(ϕ), where the operator

Δt,v interpolates smoothly between (id + Δ)v/2 in stable cones in the cotangent
space, and (id + Δ)t/2 in unstable cones in the cotangent space. Powerful tools
are available for this microlocal approach, allowing in particular the study of the
dynamical determinants and zeta functions3 much more efficiently than for the
geometric spaces. Variants of these microlocal spaces (usually in the Hilbert setting
p = 2) have also been studied by the semiclassical community, starting from [10].
However, S. Gouëzel pointed out over ten years ago that characteristic functions
cannot be bounded multipliers on spaces defined by conical wave front sets as in [5]
or [10] (Gouëzel’s counterexamples are presented in [2, App. 1]). The microlocal
spaces of the type defined in [5,6] or [10] thus appear unsuitable to study piecewise
smooth dynamics.

In order to overcome this limitation of the microlocal approach, we recently intro-
duced [2] a new scale UC,t,s

p of microlocal anisotropic spaces, obtained by mimicking
the construction of the geometric spaces of Gouëzel–Liverani [13] (with, morally,
s = v + t). We showed in [2] the expected bound on the essential spectral radius

2This group could also be called pseudodifferential, or semiclassical, or Sobolev.
3The “kneading determinants” of Milnor and Thurston from the 1970s are revisited as “nuclear

decompositions” in [1].
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of the transfer operator of a Cr Anosov diffeomorphism acting on UC,t,s
p (when

t − (r − 1) < s < −t < 0), and we conjectured that characteristic functions of do-
mains with piecewise smooth boundaries everywhere transversal to the stable cones
should be bounded multipliers on UC,t,s

p if s and t satisfy additional constraints de-

pending on p ∈ (0, 1). The main result4 of the present paper, Theorem 3.1, implies
this bounded multiplier property if max{t− (r − 1),−1 + 1/p} < s < −t < 0.

This result opens the door to the spectral study, not only of hyperbolic maps
with discontinuities in arbitrary dimensions, but also (using nuclear power decom-
positions [1,2]) of the hitherto unexplored topic of the dynamical zeta functions of
piecewise expanding and piecewise hyperbolic maps in any dimensions. This should
include billiards maps [9] and their dynamical zeta functions in arbitrary dimen-
sions. We also hope that the spaces UC,t,s

p will allow us to extend the scope of the
renewal methods introduced in [14] to dynamical systems with infinite invariant
measures. (The induction procedure used there introduces discontinuities in the
dynamics.) Finally, it goes without saying that a suitable version of the spaces
UC,t,s
p will be useful to study flows.
F. Faure and M. Tsujii [11] recently introduced new microlocal anisotropic

spaces, for which the wave front set is more narrowly constrained than for pre-
vious microlocal spaces used for hyperbolic dynamics. It would be interesting to
check whether characteristic functions are bounded multipliers on these new spaces.
(Note however that, contrary to the spaces UC,t,s

p or the spaces of [5,9,10,13], spaces
of [11] do not appear suitable for perturbations of hyperbolic maps or flows.)

2. UC,t,s
p : A Fourier version of the Demers–Gouëzel–Liverani spaces

We recall the “microlocal” spaces UC,t,s
p for real numbers s and t (in the appli-

cation, s < −t < 0) and 1 ≤ p ≤ ∞, introduced in [2].

2.1. Basic notation. Suppose that d = ds+du with du ≥ 1 and ds ≥ 1. For � ≥ 1
and x ∈ R

�, ξ ∈ R
�, we write xξ for the scalar product of x and ξ. The Fourier

transform F and its inverse F−1 are defined on rapidly decreasing functions ϕ, ψ by

F(ϕ)(ξ) =

∫
Rd

e−ixξϕ(x)dx , ξ ∈ R
d ,(3)

F
−1(ψ)(x) =

1

(2π)d

∫
Rd

eixξψ(ξ)dξ , x ∈ R
d ,(4)

and are extended to the space of temperate distributions ϕ, ψ as usual [15]. For
suitable functions a : Rd → R (called “symbols”; note that, in this paper, a depends
only on ξ, while more general symbols may depend on x and ξ), we define an
operator aOp acting on suitable ϕ : Rd → C by

(5) aOp(ϕ) = F
−1(a(·) · F(ϕ)) = (F−1a) ∗ ϕ .

Note that ‖aOpϕ‖Lp
≤ ‖F−1a‖1‖ϕ‖Lp

for each 1 ≤ p ≤ ∞, by Young’s inequality
in Lp.

Fix a C∞ function χ : R+ → [0, 1] with χ(x) = 1 for x ≤ 1 and with χ(x) = 0

for x ≥ 2. For D ≥ 1, define ψ
(D)
n : RD → [0, 1] for n ∈ Z+ by ψ

(D)
0 (ξ) = χ(‖ξ‖),

and

(6) ψ(D)
n (ξ) = χ(2−n‖ξ‖)− χ(2−n+1‖ξ‖) , n ≥ 1 .

4See Remark 2.5.
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We set ψn = ψ
(d)
n . Note that

F
−1ψ(D)

n = 2D(n−1)
F
−1ψ

(D)
1 (2n−1x) and (

∑
k≤n

F
−1ψ

(D)
k )(x) = 2Dn

F
−1χ(2nx)

so that, for any D,

(7) sup
n

‖F−1ψ(D)
n ‖L1(RD) < ∞ , sup

n
‖
∑
k≤n

F
−1ψ

(D)
k ‖L1(RD) < ∞ ,

and for every multi-index β, there exists a constant Cβ such that

(8) ‖∂βψ(D)
n ‖L∞ ≤ Cβ2

−n|β| ∀n ≥ 0 .

We shall work with the following operators (ψ
(D)
n )Op (putting ψOp

n = (ψ
(d)
n )Op):

(ψ(D)
n )Op(ϕ)(x) =

1

(2π)d

∫
y∈Rd

∫
η∈Rd

ei(x−y)ηψ(D)
n (η)ϕ(y)dηdy .

Note finally the following almost orthogonality property:

(9) (ψ(D)
n )Op ◦ (ψ(D)

m )Op ≡ 0 if |n−m| ≥ 2 .

2.2. The local anisotropic spaces UC+,t,s
p (K) for compact K ⊂ Rd. Recall

that a cone is a subset of Rd invariant under scalar multiplication. For two cones
C and C′ in Rd, we write C � C′ if C ⊂ interior (C′) ∪ {0}. We say that a cone
C is d′-dimensional if d′ ≥ 1 is the maximal dimension of a linear subset of C.

Definition 2.1. An unstable cone is a closed cone C+ with nonempty interior of
dimension du in Rd so that Rds × {0} is included in5 (Rd \C+) ∪ {0}.

Recall that r > 1. The next key ingredient is adapted from [6].

Definition 2.2 (Admissible (or fake) stable leaves). Let C+ be an unstable cone,
and let CF > 1. Then F(C+, CF , r) (or just F) is the set of all Cr (embedded)
submanifolds Γ ⊂ Rd, of dimension ds, with Cr norms of submanifold charts ≤ CF ,
and so that the straight line connecting any two distinct points in Γ is normal to a
du-dimensional subspace contained in C+. Denote by π− the orthogonal projection
from Rd to the quotient Rds and by πΓ its restriction to Γ. Our assumption implies
that πΓ : Γ → Rds is a Cr diffeomorphism onto its image with a Cr inverse, whose
Cr norm is bounded by a universal scalar multiple of CF . In what follows, we replace
CF by this larger constant and we restrict to those Γ so that πΓ is surjective.

Definition 2.3 (Isotropic norm on stable leaves). Fix an unstable cone C+. Let
Γ ∈ F(C+, CF , r) and let ϕ ∈ C0(Γ). For w ∈ Γ ⊂ Rd, we set

ψ
Op(Γ)
�s

(ϕ)(w) =
1

(2π)ds

∫
z∈Rds

∫
ηs∈Rds

ei(πΓ(w)−z)ηsψ
(ds)
�s

(ηs)ϕ(π
−1
Γ (z))dηsdz ,

(10)

where ψ
(ds)
k : Rds → [0, 1] is defined in (6). For all real numbers 1 ≤ p ≤ ∞, and

−(r − 1) < s < r − 1, define an auxiliary isotropic norm on C0(Γ) as

(11) ‖ϕ‖sp,Γ = sup
�s∈Z+

2�ss‖ψOp(Γ)
�s

(ϕ)‖Lp(μΓ) ,

where μΓ is the Riemann volume on Γ induced by the standard metric on Rd.

5In Definitions 3.2 and 3.3, and 7 lines above Definition 3.2 of [2], the condition “Rds × {0} is
included in C−” can be replaced by this condition.
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Note that (11) is equivalent, uniformly in Γ ∈ F , to the ([15, §2.1, Def. 2])
classical ds-dimensional Besov norm Bs

p,∞ of ϕ in the chart given by π−1
Γ :

‖ϕ‖sp,Γ ∼ ‖ϕ ◦ π−1
Γ ‖Bs

p,∞(Rds ) .

We next revisit the local space given in [2].

Definition 2.4 (The local space UC+,t,s
p (K)). Let r > 1, let K ⊂ Rd be a non-

empty compact set. For an unstable cone C+, a constant CF ≥ 1, real numbers
1 ≤ p ≤ ∞, and t− (r − 1) < s < −t < 0, define for ϕ ∈ L∞ supported in K,

(12) ‖ϕ‖UC+,t,s
p

= sup
Γ∈F(C+,CF ,r)

sup
�∈Z+

2�t‖ψOp
� (ϕ)‖sp,Γ .

Set U t,s
p (K) = UC+,t,s

p (K) to be the completion of {ϕ ∈ L∞(K) | ‖ϕ‖UC+,t,s
p

< ∞}
for the norm ‖ · ‖UC+,t,s

p
. (Note that U t,s

p (K) also depends on r and CF .)

Remark 2.5. Beware that, in [2, Definition 3.3], the space U t,s
p (K) was defined by

completing C∞(K) (or, equivalently, by [2, Lemma 3.4] and mollification, Cr−1(K)).
We do not claim that C∞(K) is dense in the space U t,s

p (K) from Definition 2.4.
(See, however, [9, Lemmas 3.7, 3.8].) But, since all results in [2] hold (except the
heuristic remark after [2, Definition B.1]), with the same6 proofs, for the comple-
tion used in Definition 2.4, here we may (abusively) use the same notation U t,s

p (K).

The new definition is useful to show that (13) implies that 1ΛU t,s
p (K) ⊂ U t,s

p (K).

The following lemma was proved7 in [2].

Lemma 2.6 (Comparing UC+,t,s
p (K) with classical spaces). Assume −(r − 1) <

s < −t < 0. For any u > t, there exists a constant C = C(u,K) such that

‖ϕ‖UC+,t,s
p

≤ C‖ϕ‖Cu for all ϕ ∈ Cu(K). For any u > |t+s|, the space UC+,t,s
p (K)

is contained in the space of distributions of order u supported on K.

2.3. The global spaces UC,t,s
p of anisotropic distributions. We finally intro-

duce the global spaces UC,t,s
p of distributions on a compact manifold M .

Definition 2.7. An admissible chart system and partition of unity is a finite system
of local charts {(Vω, κω)}ω∈Ω, with open subsets Vω ⊂ M , and C∞ diffeomorphisms
κω : Uω → Vω such that M ⊂

⋃
ω Vω, and Uω ⊂ R

d is bounded and open, together
with a C∞ partition of unity {θω}ω∈Ω for M , subordinate to the cover V = {Vω}.
Definition 2.8 (Anisotropic spaces UC,t,s

p on M). Fix r > 1, an admissible chart
system and partition of unity, CF ≥ 1, and a system of cones C = {Cω,+}ω∈Ω. Fix
1 ≤ p ≤ ∞ and real numbers −(r − 1) < s < −t < 0. The Banach space UC,t,s

p =

UC,t,s,r,CF
p is the completion (see Remark 2.5) of {ϕ ∈ L∞(M) | ‖ϕ‖UC,t,s

p
< ∞}

for the norm ‖ϕ‖UC,t,s
p

:= maxω∈Ω ‖(θω · ϕ) ◦ κω‖UCω,+,t,s
p

.

Remark 2.9 (Admissible systems {Cω,±}). To get a spectral gap for the transfer
operator L1/| detDT | associated to a C r̃ Anosov diffeomorphism T for r̃ > 1, one
must take r ≤ r̃ and consider an admissible chart system and partition of unity,
with cones {Cω,+}, satisfying the following conditions [2]:

6In particular, [2, Lemma C.1] holds, replacing C∞(K) by compactly supported distributions.
7Injectivity of the embedding into distributions follows from injectivity of the embedding of

the closure of the (larger) set of those tempered distributions ϕ so that ‖ϕ‖Ut,s
p

< ∞.
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(a) Let Es and Eu be the stable, respectively, unstable, bundles of T . Then if
x ∈ Vω, the cone (Dκ−1

ω )∗x(Cω,+) contains the (du-dimensional) normal subspace
of Es(x), and there exists a ds-dimensional cone Cω,−, with nonempty interior, so
that Cω,+ ∩Cω,− = {0} and so that (Dκ−1

ω )∗x(Cω,−) contains the (ds-dimensional)
normal subspace of Eu(x).

(b) If Vω′ω = T (Vω) ∩ Vω′ �= ∅, the Cr map corresponding to T−1 in charts,

F = Fω′ω = κ−1
ω ◦ T−1 ◦ κω′ : κ−1

ω′ (Vω′ω) → Uω ,

extends to a bilipschitz C1 diffeomorphism of Rd so that (by definition, Cω′,− �
(Rds \Cω′,+))

DF tr
x (Rd \Cω,+) � Cω′,− ∀x ∈ R

d .

(c) Furthermore, there exists, for each x, y, a linear transformation Lxy so that

(Lxy)
tr(Rd \Cω,+) � Cω′,− and Lxy(x− y) = F (x)− F (y) .

A map F satisfying (b)–(c) is called regular cone hyperbolic from Cω,± to Cω′,±.

The anisotropic spaces UC,t,s
1 (with p = 1) are analogues of the Blank–Keller–

Gouëzel–Liverani [7, 13] spaces Bt,|s+t| associated to T , for integer t and s < −t.
The spaces UC,t,s

p are somewhat similar to the Demers–Liverani spaces [8] when
p > 1 and −1 + 1/p < s < −t < 0. See [2].

3. Characteristic functions as bounded multipliers

3.1. Statement of the main result. Fix r > 1, CF > 0, p ∈ (1,∞), an admissible
chart system and partition of unity on M (Definition 2.7), and an associated cone

system C = {Cω,+}. Let Λ̃ ⊂ M be an open set so that ∂Λ̃ is a finite union of Cr

hypersurfaces ∂Λ̃i so that the normal vector at any x ∈ ∂Λ̃i ∩ Vω lies in Rd \Cω,+

(a transversality condition). We claim that if max{t − (r − 1),−1 + 1/p} < s <

−t < 0, then, for any8 cone system C̃ with9 C � C̃, there exists CΛ̃,C̃ < ∞ so that

‖1Λ̃ϕ‖UC,t,s
p

≤ CΛ̃,C̃‖ϕ‖UC̃,t,s
p

∀ϕ .

Since t − (r − 1) < s < −t, by using suitable C∞ partitions of unity hj and Cr

coordinates Fj (arbitrarily close to the identity, and thus regular cone hyperbolic

from C̃ to C if C � C̃), and exploiting the Lasota–Yorke estimate [2, Lemma 4.2]
for the corresponding transfer operators, we reduce to the following.

Theorem 3.1 (Characteristic functions of half-spaces). Fix r > 1, CF > 0, and an

unstable cone C+. Let K ⊂ Rd be compact, and let Λ̃ ⊂ Rd be a half-space whose
unit normal vector uΛ̃ lies in Rd \C+. Then for any

1 < p < ∞ and max{t− (r − 1),−1 +
1

p
, } < s < −t < 0 ,

there exists C < ∞ so that for any ϕ ∈ UC+,t,s
p (K) we have

(13) ‖1Λ̃ϕ‖UC+,t,s
p

≤ C‖ϕ‖UC+,t,s
p

.

8Given two cone systems with the same chart systems, C � C̃ means Cω,+ � C̃ω,+ for all ω.
9Enlarging the cones is not a problem when studying 1Λ̃((fϕ) ◦ F ) for a Cr−1 function f and

a Cr regular cone-hyperbolic map F from C to C̃ with C � C̃, since the Lasota–Yorke estimate
[2, Lemma 4.2] gives ‖(fϕ) ◦ F‖

UC̃,t,s
p

≤ Cf,F ‖ϕ‖UC,t,s
p

.
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Since 1Λ̃ϕ ∈ L∞ if ϕ ∈ L∞ and since UC+,t,s
p (K) is the completion of a set of

bounded functions, the bound (13) implies that 1Λ̃ϕ ∈ UC+,t,s
p (K) if ϕ ∈ UC+,t,s

p (K)
(using Cauchy sequences).

The conditions in the theorem imply t < 1− 1/p. (This does not imply t < 1/p
if p > 2.)

Remark 3.2 (Heuristic proof via interpolation: t < 1/p vs. t < min{|s|, r−1−|s|}).
A heuristic argument for the bounded multiplier property (13) under the conditions
−1 + 1/p < s < 0 < t < 1/p was sketched in [2, Remark 3.9], exploiting via
interpolation the fact that ([15, Thm 4.6.3/1]) the characteristic function of a half-
plane in R

n is a bounded multiplier on the Besov space Bτ
p,∞(Rn) if 1

p − 1 <

τ < 1
p . It does not seem easy to fill in details of this argument, and we shall

prove Theorem 3.1 using paraproduct decompositions instead of interpolation. The
restriction t−(r−1) < s < −t is in any case necessary for applications to hyperbolic
dynamics, and the bound for the essential spectral radius in [2] improves as p → 1.

3.2. Basic toolbox (Nikol’skij and Young bounds, paraproduct decompo-
sition, and a crucial trivial observation on functions of a single variable).
The proofs below use the Nikol’skij inequality (see, e.g., [15, Remark 2.2.3.4, p. 32])
which says, in dimension D ≥ 1, that for any p > p1 > 0 there exists C so that for
any M > 1 and any f with suppF(f) ⊂ {|ξ| ≤ M},

(14) ‖f‖Lp(RD) ≤ CMD(1/p1−1/p)‖f‖Lp1
(RD) .

We shall also use the following leafwise version of Young’s inequality (which can
be proved as in [6, Lemma 4.2] (see [2]) by using the fact that any translation Γ+x
of Γ ∈ F also belongs to F):

(15) ‖ψ̃ ∗ ϕ‖sp,Γ ≤ ‖ψ̃‖L1(Rd) sup
x∈Rd

‖ϕ‖sp,Γ+x ≤ ‖ψ̃‖L1
sup
Γ̃∈F

‖ϕ‖s
p,Γ̃

.

Write Skϕ = ψOp
k (ϕ) for k ≥ 0, set S−1ϕ ≡ 0, and put Sjϕ =

∑j
k=0 Skϕ for the

integer j ≥ 0. The (a priori formal) paraproduct decomposition (see [15, §4.4]) is

ϕ · υ = lim
j→∞

(Sjϕ) · (Sjυ)

=

∞∑
k=2

k−2∑
j=0

Sjϕ · Skυ +

∞∑
k=0

k+1∑
j=k−1

Sjϕ · Skυ +

∞∑
j=2

j−2∑
k=0

Sjϕ · Skυ

= Π1(ϕ, υ) + Π2(ϕ, υ) + Π3(ϕ, υ) ,(16)

where we put

Π1(ϕ, υ) =

∞∑
k=2

Sk−2ϕ · Skυ , Π2(ϕ, υ) =

∞∑
k=0

(Sk−1ϕ+ Skϕ+ Sk+1ϕ) · Skυ ,

and Π3(ϕ, υ) =

∞∑
j=2

Sjϕ · Sj−2υ = Π1(υ, ϕ) .

The two key facts motivating the decomposition (16) are

(17) suppF(Sk−2ϕ · Skυ) ⊂ {2k−3 ≤ ‖ξ‖ ≤ 2k+1} ∀k ≥ 2 ,
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and

(18) suppF (

k+1∑
j=k−1

Sjϕ · Skυ) ⊂ {‖ξ‖ ≤ 5 · 2k} ∀k ≥ 0 .

Finally, the proof of Theorem 3.1 hinges on the fact that the singular set of
a characteristic function is co-dimension one: We shall reduce there to the case
∂Λ̃ = {x1 = 0} so that 1Λ̃ only depends on the first coordinate x1 of x ∈ Rd. Below

we shall use the fact that for such Λ̃ (see [15, Lemma 4.6.3.2 (ii), p. 209, Lemma
2.3.1/3, p. 48]) for all p ∈ (1,∞),

(19) ‖1Λ̃‖Bt
p,q(R

d) < ∞ if 0 < t < 1/p and 0 < q < ∞ or t = 1/p and q = ∞ .

We also note for further use the trivial but absolutely essential fact that if a function
υ(x) only depends on x1, then Skυ = (F−1ψk) ∗ υ also only depends on x1 for all
k, and, more precisely,

(20) Skυ(x) := (F−1ψk) ∗ υ(x) = (F−1ψ
(1)
k ) ∗ υ(x1) .

Indeed

(F−1ψk) ∗ υ(x) =
∫
(F−1ψk)(y)dy2 · · ·dyd υ(x1 − y1)dy1 ,

and, since (2π)−(d−1)
∫
Rd−1 e

i(y2,...,yd)(ξ2,...,ξd)dy2 · · · dyd (the inverse Fourier trans-
form of the constant function) is the Dirac mass at (ξ2, . . . , ξd) = 0, we get∫

Rd−1

(F−1ψk)(y1, y2, . . . , yd)dy2 · · · dyd

=
1

(2π)d

∫
Rd−1

∫
R

∫
Rd−1

eiy1ξ1ψk(ξ)dξ1dξ2 · · ·dξdei(y2,...,yd)(ξ2,...,ξd)dy2 · · ·dyd

=
1

2π

∫
R

eiy1ξ1ψk(ξ1, 0)dξ1 = (F−1ψ
(1)
k )(y1) ,

where we used that ψ
(d)
k (ξ1, 0) = ψ

(1)
k (ξ1).

3.3. Multipliers depending on a single coordinate. This subsection is devoted
to a classical property of multipliers depending on a single coordinate, which is
instrumental in the proof of Theorem 3.1. If 1 ≤ p ≤ ∞, let 1 ≤ p′ ≤ ∞ be so that

(21)
1

p
+

1

p′
= 1 , i.e., p′ =

p

p− 1
.

Lemma 3.3. Let ds ≥ 1. Let 1 < p < ∞ and let −1 + 1
p < s < 0. Then there

exists C < ∞ so that for all f, g : Rds → C with g(x) = g(x1),

(22) ‖fg‖Bs
p,∞(Rds ) ≤ C‖f‖Bs

p,∞(Rds )(‖g‖B1/p′
p′,∞(R)

+ ‖g‖L∞(R)) .

Remark 3.4. The bound (22) is a special case of a much more general result (see,
e.g., [15, Cor 4.6.2.1 (40)]) which also implies that if g(x) = g(x1) then

(23) ‖fg‖Bt
p,∞(Rds ) ≤ C‖f‖Bt

p,∞(Rds )(lim sup
q→p

‖g‖
B

1/q
q,∞(R)

+‖g‖L∞(R)) if 0 < t <
1

p
,

for a constant C, which may depend on p and t but not on f or g.

For the convenience of the reader, and as a warmup in the use of paraproducts,
we include a proof of Lemma 3.3.
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Proof of Lemma 3.3. The proof uses the decomposition Π̃1(f, g)+Π̃2(f, g)+Π̃3(f, g)
obtained from (16) by replacing Sk and Sk by the ds-dimensional operators

(24) S̃k := (ψ
(ds)
k )Opf , S̃k :=

k∑
j=0

(ψ
(ds)
j )Opf =

k∑
j=0

S̃jf .

The bound for the contribution of Π̃3(f, g) is easy and does not require conditions
on s or g: Indeed, (17) and the Young inequality with the first claim of (7) imply

‖
∞∑
j=2

S̃jfS̃
j−2g‖Bs

p,∞(Rds ) ≤ C sup
k≥2

2ks
+3∑

�=−1

‖S̃k+�fS̃
k+�−2g‖Lp(Rds ) .

We focus on the term for � = 0 (the others are similar) and get

sup
k≥2

2ks‖S̃kfS̃
k−2g‖Lp(Rds ) ≤ C sup

k
2ks‖S̃kf‖Lp(Rds ) sup

k
‖S̃kg‖L∞(25)

≤ C‖f‖Bs
p,∞(Rds )‖g‖L∞ ,

where we used the Hölder inequality and then the Young inequality, together with
the second claim of (7).

For Π̃1(f, g), we do not require any condition on g, and the condition on s is
limited to s < 0: Indeed, again exploiting (17) we get

‖
∞∑
j=2

S̃j−2fS̃jg‖Bs
p,∞(Rds ) ≤ C sup

k≥2
2ks

+1∑
�=−1

‖S̃k+�−2fS̃k+�g‖Lp(Rds ) .

Focusing again on the terms for � = 0, we find

sup
k≥2

2ks‖S̃k−2fS̃kg‖Lp(Rds ) ≤ C sup
k

2ks‖
k−2∑
j=0

S̃jf‖Lp(Rds ) sup
k

‖S̃kg‖L∞

≤ C sup
k

(k−2∑
j=0

2(k−j)s
)
sup
j

2js‖S̃jf‖Lp(Rds )‖g‖L∞

≤ C‖f‖Bs
p,∞(Rds )‖g‖L∞ ,(26)

where we used the Hölder inequality and then the Young inequality, together with
the first claim of (7).

The computation for Π̃2(f, g) is trickier and will use the assumption s > −1+1/p
together with the Nikol’skij inequality (14). For � ∈ {0,±1}, by (18), we get

‖
∞∑
j=0

S̃j+�fS̃jg‖Bs
p,∞(Rds ) ≤ C

∞∑
j=0

sup
k≥0

2ks‖S̃k(S̃k+j+�fS̃k+jg)‖Lp(Rds ) .(27)
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In the sequel, we consider the terms with � = 0 (the other terms are almost identi-
cal). Setting y = (x2, . . . , xds

) and applying the one-dimensional Nikol’skij inequal-
ity (14) for 1 < p1 < p, we have, for any function υ,

2ks‖S̃kυ‖Lp(Rds ) =

(∫ [(∫
2ksp|S̃kυ(x1, y)|pdx1

)1/p]p
dy

)1/p

(28)

≤
(∫ [(∫

2k(s+
1
p1

− 1
p )p1 |S̃kυ(x1, y)|p1dx1

)1/p1

]p
dy

)1/p

= 2k(s+
1
p1

− 1
p )A(p, p1, S̃kυ) ,

where

(29) A(p, p1, S̃kυ) =

(∫ [(∫
|S̃kυ(x1, y)|p1dx1

)1/p1

]p
dy

)1/p

.

Since s > −1 + 1/p, we may choose p1 ∈ (1, p) close enough to 1 so that

(30) s1 = s+
1

p1
− 1

p
> 0 .

Then, the right-hand side of (27) can be bounded as follows, using (28):

∞∑
j=0

sup
k≥0

2ks‖S̃k(S̃k+jfS̃k+jg)‖Lp
≤

∞∑
j=0

sup
k

2ks1A(p, p1, S̃k(S̃k+jfS̃k+jg))(31)

≤
( ∞∑
j=0

2−js1
)
sup
k,j

2(k+j)s1A(p, p1, S̃k(S̃k+jfS̃k+jg))

≤ C sup
m≥0

2ms1A(p, p1, S̃mfS̃mg) .

In the last line we used (18) to exploit that there exists C < ∞, depending on p > 1
and p1 > 1, so that, for any {υk}k≥0 so that supp (F(υk)) ⊂ {|ξ| ≤ 5 · 2k},

A(p, p1, S̃k(υk+j)) ≤ CA(p, p1, υk+j) ∀k ≥ 0 , j ≥ 0 .

(The above basically follows from Young’s inequality (see [15, Thm 2.6.3, (5), p.
96]), noting that p > 1 and p1 > 1, so that max{0, 1/p − 1, 1/p1 − 1} = 0, and
noting that fj in the right-hand side of [15, (5), p. 96] should be replaced by fj+�

(see [12, Thm 2.4.1.(II) and (III)]).)
Next, recalling that g only depends on x1, using (20), and applying the Hölder

inequality in dx1 for 1/p1 = 1/p+ 1/q, we find C so that for all k,

A(p, p1, S̃kfS̃kg) =

(∫ [(∫
|S̃kg(x1)S̃kf(x1, y)|p1dx1

)1/p1

]p
dy

)1/p

≤ C

(∫ [(∫
|S̃kg(x1)|qdx1

)1/q(∫ |S̃kf(x1, y)|pdx1

)1/p]p
dy

)1/p

≤ C
(∫

|S̃kg(x1)|qdx1

)1/q(∫ [(∫
|S̃kf(x1, y)|pdx1

)1/p]p
dy

)1/p

= C‖S̃kg‖Lq(R)‖S̃kf‖Lp(Rds ) .
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Note that (20) implies S̃kg = (ψ
(1)
k )Opg. Finally, putting together (27) and (31),

we find, recalling (30) and (21),

‖
∞∑
j=0

S̃jfS̃jg‖Bs
p,∞(Rds ) ≤ C sup

k≥0

(
2ks1‖S̃kg‖Lq(R)‖S̃kf‖Lp(Rds )

)

≤ C sup
k≥0

(
2k

1
q ‖S̃kg‖Lq(R)

)
sup
k≥0

(
2ks‖S̃kf‖Lp(Rds )

)

≤ C sup
k≥0

(
2k

1
q 2

k( 1
p′ −

1
q )‖S̃kg‖Lp′ (R)

)
‖f‖Bs

p,∞(Rds )(32)

≤ C‖g‖
B

1/p′
p′ (R)

‖f‖Bs
p,∞(Rds ) ,(33)

where we used the one-dimensional Nikol’skij inequality for q > p′ > 1 in (32)
(recalling (18)). Together, (25), (26), and (33) give (22). �

3.4. Proof of Theorem 3.1. To prove the theorem, we need one last lemma. The
point is that if Γ is horizontal, i.e., Γ = Rds × {0}, then (9) implies

(34) S̃ks
((Skϕ) ◦ π−1

Γ |Rds ) ≡ 0 ∀ks > k + 2 ≥ 2 .

If Γ is an arbitrary admissible stable leaf, then we must work harder. To state the
bound replacing the trivial decoupling property (34), we need notation: Defining
b : R

d → R+ by b(x) = 1 if ‖x‖ ≤ 1 and b(x) = ‖x‖−d−1 if ‖x‖ > 1, we set
bk(x) = 2dk · b(2kx) for k ≥ 0. (Note that ‖bk‖L1(Rd) = ‖b‖L1(Rd) < ∞.)

Lemma 3.5 (Decoupled wave packets in Rd and the cotangent space of Γ). Fix a
compact set K ⊂ R

d. There exists C0 ∈ [2,∞) (depending on CF , K) so that for
any ks > k + C0 ≥ C0 and any Γ ∈ F , the kernel V (x, y) defined by

S̃ks
((Skϕ) ◦ π−1

Γ )(x) =

∫
y∈Rd

V (x, y)ϕ(y)dy

for x ∈ Rds and ϕ supported in K satisfies10

(35) |V (x, y)| ≤ C02
−ksrbk(π

−1
Γ (x)− y) ∀x ∈ R

ds ∀y ∈ K .

The lemma implies that, if ϕ is supported in K, then
∫
y∈Rd V (x, y)ϕ(y)dy is

bounded by a convolution with a function in L1(R
d), for which (15) holds.

Proof. The kernel V (x, y) is given by the formula11

1

(2π)ds+d

∫
z∈Rds

∫
η∈Rd

∫
ηs∈Rds

ei(π
−1
Γ (z)−y)ηei(x−z)ηs

k∑
j=0

ψj(η)ψ
(ds)
ks

(ηs)dηsdηdz .

As a warmup, let us prove (34) if Γ is horizontal or, more generally, affine:
Letting η = (η−, η+) with η− = π−(η) ∈ R

ds , we have π−1
Γ (z) = (z, A(z)+A0) with

A0 ∈ Rdu and A : Rds → Rdu linear (A ≡ 0 if Γ is horizontal) so that (using as in

10The proof shows that the same bound holds for the kernel associated to S̃ks((Skϕ)◦π−1
Γ )(x).

11Strictly speaking, we must first integrate by parts ds + 1 times in the kernel
∫
ei(π

−1
Γ

(z)−y)η ∑k
j=0 ψj(η)dη of (Skϕ) ◦Π−1

Γ (z) for d(z,K) > ε, to get an element of L1(dz).
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(20) that F−1(1) is the Dirac at 0), V (x, y) can be rewritten as

1

(2π)d+ds

∫
R2ds+d

e−iyηeixηseiA0η+eiz(−ηs+η−+Atrη+)
k∑

j=0

ψj(η)ψ
(ds)
ks

(ηs)dηsdηdz

=
1

(2π)d

∫
Rd

e−iyηeix(η−+Atrη+)eiA0η+

k∑
j=0

ψj(η)ψ
(ds)
ks

(η− +Atrη+)dη ≡ 0 ,

since ψj(η) and ψ
(ds)
ks

(η− + Atrη+) have disjoint supports if ks > k + C0, where

C0 ≥ 2 depends on ‖A‖ ≤ CF .
More generally, Γ ∈ F is the graph of a Cr map γ (with ‖γ‖Cr ≤ CF ), i.e.,

π−1
Γ (z) = (z, γ(z)) for z ∈ Rds . The lemma is thus obtained by integrating by

parts r times (in the sense of [2, App. C] if r is not an integer) with respect to
z in the kernel V (x, y), using (8), and proceeding as in the end of the proof of
[1, Lemma 2.34], mutatis mutandis (using that ‖y − π−1

Γ (x)‖ > 2−k implies that

either ‖y−π−1
Γ (z)‖ > 2−k+1 or ‖π−1

Γ (z)−π−1
Γ (x)‖ > 2−k+1, choosing C0 depending

on CF so that ‖π−1
Γ (z)− π−1

Γ (x)‖ > 2−k+1 implies ‖z − x‖ ≥ 2−k+1/C0). �

Proof of Theorem 3.1. If G is a rotation about 0 ∈ Rd, then, since ψn ◦G−1 = ψn,
we have ψOp

n (ϕ̃ ◦ G) = ((ψn ◦ Gtr)Opϕ̃) ◦ G = (ψOp
n ϕ̃) ◦ G (use Gtr = G−1), and

thus ‖ϕ̃ ◦G‖UC+,t,s
p

= ‖ϕ̃‖
UG(C+),t,s
p

for all ϕ (use G ◦ π−1
Γ = π−1

G(Γ)). It thus suffices

to show (13) for Λ = {x ∈ Rd | x1 > 0}. Indeed, the assumption on uΛ̃ implies
that the rotation G satisfying 1Λ̃ϕ = (1Λ(ϕ ◦ G−1)) ◦ G is such that G(C+) is

still an unstable cone, i.e., Rds × {0} is included in (Rd \G(C+)) ∪ {0} (note that
G(uΛ̃) = (1, 0, . . . , 0), and consider the limiting case uΛ̃ → ∂C+).

Next, since ϕ is supported in K, we can replace the half-space Λ by a strip
0 < x1 < B, still denoted Λ, and whose characteristic function 1Λ(x) still only
depends on x1 ∈ R. Without loss of generality, we may assume that B = 1.

Our starting point is then the decomposition (16) applied to υ = 1Λ. We first
consider the term Π3(ϕ, 1Λ). We will bootstrap from Lemma 3.3. Set

(36) 1k−2,Γ
Λ (x−) = (Sk−21Λ)(x−, γ(x−)) =

k−2∑
j=0

(F−1ψj ∗ 1Λ)(x−, γ(x−)) .

Then 1k−2,Γ
Λ (x−) is a function of x1 alone (recalling (20)), and the leafwise Young

inequality (15), together with the second claim of (7) and the fact that ‖1Λ‖B1/t
t,∞(R)

< ∞ (for any 1 < t < ∞; see, e.g., [15, Lemma 2.3.1/3(ii), Lemma 2.3.5]), give that

both ‖1k−2,Γ
Λ ‖

B
1/p′
p′,∞(R)

and ‖1k−2,Γ
Λ ‖L∞(R) are finite, uniformly in Γ and k. Next,

by (17), (15), and (22), there exists a constant C so that for any � ≥ 0, since
−1 + 1/p < s < 0,

2�t‖S�(Π3(ϕ, 1Λ))‖sp,Γ ≤ 2�t
�+3∑

k=�−1

‖Skϕ · Sk−21Λ‖sp,Γ

≤ 2�t
�+3∑

k=�−1

‖Skϕ‖sp,Γ(‖1
k−2,Γ
Λ ‖

B
1/p′
p′,∞(R)

+ ‖1k−2,Γ
Λ ‖L∞(R))

≤ C sup
n

2nt‖Snϕ‖sp,Γ ≤ C‖ϕ‖UC,t,s
p

,



CHARACTERISTIC FUNCTIONS AS BOUNDED MULTIPLIERS 4417

where we used (22) from Lemma 3.3 for f(x−) = Skϕ(x−, γ(x−)) with γ = γ(Γ)

from the proof of Lemma 3.5, and g(x−) = 1k−2,Γ
Λ (x−). This concludes the bound

for Π3(ϕ, 1Λ), and we move to Π2(ϕ, 1Λ). Setting

(37) 1ΓΛ,k(x−) = (Sk1Λ)(x−, γ(x−)) = (F−1ψk ∗ 1Λ)(x−, γ(x−)) ,

we have that 1ΓΛ,k(x−) = 1ΓΛ,k(x1), and also, recalling (19), the leafwise Young

inequality (15), together with the first claim of (7), we find

(38) sup
k,Γ

‖1ΓΛ,k‖B1/p′
p′,∞(R)

< ∞ , sup
k,Γ

‖1ΓΛ,k‖L∞(R) < ∞ .

Thus, using (18) and applying (22) from Lemma 3.3 again, we find, since t > 0,

2�t‖S�(Π2(ϕ, 1Λ))‖sp,Γ ≤ 2�t3
∑

k≥�−1

‖Skϕ · Sk1Λ‖sp,Γ

≤ 3 sup
k

2kt‖Skϕ‖sp,Γ(‖1ΓΛ,k‖B1/p′
p′,∞(R)

+ ‖1ΓΛ,k‖L∞(R))
∑

k≥�−1

2(�−k)t

≤ C sup
k

2kt‖Skϕ‖sp,Γ ≤ C‖ϕ‖UC+,t,s
p

∀� ≥ 0 .

It remains to bound the contribution of Π1(ϕ, 1Λ). This is the trickiest estimate.
It will use Lemma 3.5 and our assumption t− (r− 1) < s < −t < 0. For any � ≥ 0,
we have, using again (15), (17), and (7),

2�t‖ψOp
� (Π1(ϕ, 1Λ))‖sp,Γ ≤

�+3∑
k=�−1

2�t‖Sk−2ϕ · Sk1Λ‖sp,Γ .(39)

We may focus on the term k = �, as the others are almost identical. We will use the
paraproduct decomposition Π̃1 + Π̃2 + Π̃3 and the operators S̃j and S̃j (see (24)).

Put (Sk−2ϕ)Γ = (Sk−2ϕ) ◦ π−1
Γ . By (20) and (17), we have

2kt‖Sk−2ϕ · Sk1Λ‖sp,Γ ≤
2∑

i=1

2kt‖Π̃i((S
k−2ϕ)Γ, 1ΓΛ,k)‖Bs

p,∞ + 2ktRΓ
k,s,p,Λ(ϕ)

(40)

+ 2kt
k+1∑

m=k−1

m+2+C0∑
j=m+2

‖S̃j((S
k−2ϕ)Γ)(S̃m1ΓΛ,k)‖Bs

p,∞ ,(41)

taking C0 ≥ 2 from Lemma 3.5, using (9), and setting

RΓ
k,s,p,Λ(ϕ) =

k+1∑
m=k−1

∞∑
j=m+2+C0+1

‖S̃j((S
k−2ϕ)Γ)(S̃m1ΓΛ,k)‖Bs

p,∞ .

Lemma 3.3 and the Young inequality (thrice) give C so that for all j, k,m, and Γ,

‖S̃j((S
k−2ϕ)Γ)(S̃m1ΓΛ,k)‖Bs

p,∞(Rds )

≤ C‖S̃j((S
k−2ϕ)Γ)‖Bs

p,∞(Rds )(‖1ΓΛ,k‖B1/p′
p′,∞(R)

+ ‖1ΓΛ,k‖L∞(R))

≤ C‖S̃j((S
k−2ϕ)Γ)‖Bs

p,∞(Rds ) ≤ C‖(Sk−2ϕ)Γ‖Bs
p,∞(Rds ) ,(42)

where we applied (38) in the second inequality. Thus, Lemma 3.5 and the leafwise12

Young inequality (15) applied to ks = j ≥ k+2+C0 gives k0 ≥ C0 so that for any

12See §4 of Corrections and complements to [2] for the factor 2k(−s+δ).
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δ ∈ (0, 1) (recalling 0 < t− s < r − 1 < r − δ),

sup
k≥k0,Γ

2ktRΓ
k,s,p,Λ(ϕ) ≤ 3C0C sup

k,Γ
2k(t−r−s+δ)

( ∞∑
j=k+2+C0

2−(j−k)r
)
‖Sk−2ϕ‖sp,Γ

≤ 3C0C‖ϕ‖UC+,t,s
p

.(43)

Again using (42), the finite double sum in (41) is bounded by (C0+4)C‖ϕ‖UC+,t,s
p

.

For the contribution of Π̃1 in (40), again using (20) and (17) we find

2kt‖Π̃1((S
k−2ϕ)Γ, 1ΓΛ,k)‖Bs

p,∞(Rds ) ≤ 2kt
k+1∑

n=k−1

‖(S̃n−2(Sk−2ϕ)Γ) · S̃n(1
Γ
Λ,k))‖Bs

p,∞ .

Setting (Sjϕ)
Γ = (Sjϕ) ◦ π−1

Γ , we bound the term for n = k above13 by the sum of

2kt
1∑

�=−1

2(k+�)s‖[
k−2∑
j=0

k−2∑
m=j+C0

S̃k+�(S̃m(Sjϕ)
Γ)] · S̃k(1

Γ
Λ,k)‖Lp(Rds )

(which can be handled as in (43), by Lemma 3.5) and

2kt
1∑

�=−1

2(k+�)s‖[
k−2∑
j=0

j+C0−1∑
m=0

S̃k+�(S̃m(Sjϕ)
Γ)] · S̃k(1

Γ
Λ,k)‖Lp(Rds )

≤ ( sup
0≤j≤k−2

j+C0−1∑
m=0

2(j−m)s)

· 2kt
1∑

�=−1

k−2∑
j=0

sup
0≤m<j+C0

2(k+�−j+m)s‖[S̃k+�(S̃m(Sjϕ)
Γ)] · S̃k(1

Γ
Λ,k)‖Lp

≤ C2C0|s|
k−2∑
j=0

sup
0≤m<j+C0
−1≤�≤1

2(k+�−j)(t+s)2ms2jt‖S̃k+�([S̃m(Sjϕ)
Γ] · S̃k(1

Γ
Λ,k))‖Lp(Rds ) ,

using the fact that s < 0. Now, since s+ t < 0, we get, using the Young inequality,

k−2∑
j=0

sup
0≤m<j+C0
−1≤�≤1

2(k+�−j)(t+s)2ms2jt‖S̃k+�([S̃m(Sjϕ)
Γ] · S̃k(1

Γ
Λ,k))‖Lp(Rds )

≤ C sup
m

sup
j

2ms2jt‖S̃m(Sjϕ)
Γ‖Lp(Rds )‖S̃k(1

Γ
Λ,k)‖L∞(R)

≤ C sup
j

2jt‖Sjϕ‖sp,Γ ≤ C‖ϕ‖UC+,t,s
p

.

Finally, using (20) once more, we bound the contribution of Π̃2 in (40):

2kt‖Π̃2((S
k−2ϕ)Γ, 1ΓΛ,k)‖Bs

p,∞ ≤ 2kt
1∑

�=−1

‖(S̃k+�(S
k−2ϕ)Γ) · S̃k(1

Γ
Λ,k)‖Bs

p,∞

≤ 2ktR̃Γ
k,p,s,Λ(ϕ) + 2kt

1∑
�=−1

C0∑
�̃=2

‖(S̃k+�(Sk−�̃ϕ)
Γ) · S̃k(1

Γ
Λ,k)‖Bs

p,∞(Rds ) ,(44)

13The other terms are similar.
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where

2ktR̃Γ
k,p,s,Λ(ϕ) = 2kt

1∑
�=−1

k∑
�̃=C0+1

‖(S̃k+�(Sk−�̃ϕ)
Γ) · S̃k(1

Γ
Λ,k)‖Bs

p,∞(Rds )

can be bounded similarly as in (43), using Lemma 3.5. For the remaining finite

double sum in (44), we focus on the contributions with � = 0 and �̃ = 2, the others
being similar. Then, applying Lemma 3.3, we find

sup
k,Γ

2kt‖(S̃k(Sk−2ϕ)
Γ) · S̃k(1

Γ
Λ,k)‖Bs

p,∞(Rds )

≤ sup
k,Γ

2kt‖(S̃k(Sk−2ϕ)
Γ)‖Bs

p,∞(Rds )(‖1ΓΛ,k‖B1/p′
p′,∞(R)

+ ‖1ΓΛ,k‖L∞(R)) ≤ C‖ϕ‖UC+,t,s
p

,

using (38) once more. This ends the proof of Theorem 3.1. �
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