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Abstract. We study λ-hypersurfaces that are critical points of a Gaussian

weighted area functional
∫
Σ e−

|x|2
4 dA for compact variations that preserve

weighted volume. First, we prove various gap and rigidity theorems for com-
plete λ-hypersurfaces in terms of the norm of the second fundamental form
|A|. Second, we show that in one dimension, the only smooth complete and
embedded λ-hypersurfaces in R2 with λ ≥ 0 are lines and round circles. More-

over, we establish a Bernstein-type theorem for λ-hypersurfaces which states
that smooth λ-hypersurfaces that are entire graphs with polynomial volume
growth are hyperplanes. All the results can be viewed as generalizations of
results for self-shrinkers.

1. Introduction

We follow the notation of [6] and call a hypersurface Σn ⊂ R
n+1 a λ-hypersurface

if it satisfies

(1.1) H − 〈x,n〉
2

= λ,

where λ is any constant, H is the mean curvature, n is the outward pointing unit
normal, and x is the position vector.

λ-hypersurfaces were first studied by McGonagle and Ross in [19], where they
investigated the following isoperimetric type problem in a Gaussian weighted Eu-
clidean space:

Let μ(Σ) be the weighted area functional defined by μ(Σ) =
∫
Σ
e−

|x|2
4 dA for any

hypersurface Σn ⊂ R
n+1. Consider the variational problem of minimizing μ(Σ)

among all Σ enclosing a fixed Gaussian weighted volume. Note that the variational
problem is not to consider Σ enclosing a specific fixed weighted volume, but to
consider variations that preserve the weighted volume.

It turns out that critical points of this variational problem are λ-hypersurfaces
and the only smooth stable ones are hyperplanes; see [19].

In [6], Cheng and Wei introduced the notation of λ-hypersurfaces by study-
ing the weighted volume-preserving mean curvature flow. They proved that λ-
hypersurfaces are critical points of the weighted area functional for the weighted
volume-preserving variations. Moreover, they defined an F -functional of λ-hyper-
surfaces and studied the F -stability, which extends a result of Colding and Minicozzi
[10].
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Example 1.1. We give three examples of λ-hypersurfaces in R
3:

(1) The sphere S
2(r) with radius r =

√
λ2 + 4− λ.

(2) The cylinder S1(r)× R, where S
1(r) has radius

√
λ2 + 2− λ.

(3) The hyperplane in R
3.

Note that when λ = 0, λ-hypersurfaces are just self-shrinkers and they can be
viewed as a generalization of self-shrinkers in some sense.

It is well known that self-shrinkers play a key role in the study of mean curva-
ture flow (“MCF”), since they describe the singularity models of the MCF. In one
dimension, smooth complete embedded self-shrinking curves are totally understood
and they are just lines and round circles by the work of Abresch and Langer [1].
In higher dimensions, self-shrinkers are more complicated and there are only a few
examples; see [2], [16], [20], and [21]. There are many classification and rigidity
results of self-shrinkers under certain assumptions. Ecker and Huisken [13] proved
that if a self-shrinker is an entire graph with polynomial volume growth, then it is a
hyperplane. Later, Wang [22] removed the condition of polynomial volume growth.
In [10], Colding and Minicozzi proved that the only smooth complete embedded
self-shrinkers with polynomial volume growth and H ≥ 0 in R

n+1 are generalized
cylinders Sk × R

n−k.
In this paper, we study λ-hypersurfaces from three aspects: gap and rigidity

results, the one-dimensional case, and the entire graphic case.
First, partially motivated by the work of Chern, do Carmo, and Kobayashi [8]

on minimal submanifolds of a sphere with the second fundamental form of constant
length, we consider smooth closed embedded λ-hypersurfaces Σ2 ⊂ R

3 with |A| =
constant and λ ≥ 0. We prove that they are just round spheres. It can be thought
of as a generalization of the result that any smooth self-shrinker in R

3 with |A| =
constant is a generalized cylinder; see [12] and [14].

Theorem 1.2. Let Σ2 ⊂ R
3 be a smooth closed and embedded λ-hypersurface

with λ ≥ 0. If the second fundamental form of Σ2 is of constant length, i.e.,
|A| = constant, then Σ2 is a round sphere.

The proof of Theorem 1.2 has two key ingredients. The first ingredient is to
consider the point where the norm of the position vector |x| achieves its minimum.
This will give that the genus is 0. The second ingredient is an interesting result
from [15] that any smooth closed special W -surface of genus 0 is a round sphere.

The second main result is the following gap theorem for λ-hypersurfaces in terms
of the norm of the second fundamental form |A|.

Theorem 1.3. If Σn ⊂ R
n+1 is a smooth complete embedded λ-hypersurface sat-

isfying H − 〈x,n〉
2 = λ with polynomial volume growth, which satisfies

(1.2) |A| ≤
√
λ2 + 2− |λ|

2
,

then Σ is one of the following:

(1) a round sphere S
n,

(2) a cylinder S
k × R

n−k for 1 ≤ k ≤ n− 1,
(3) a hyperplane in R

n+1.

Remark 1.4. Note that when λ = 0, then Σ is a self-shrinker satisfying |A|2 ≤ 1/2.
So this theorem implies the gap theorem of Cao and Li [3] in the codimension one
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case. Cheng, Ogata, and Wei [5] obtained a gap theorem for λ-hypersurfaces in
terms of |A| and H, which also generalizes Cao and Li’s result.

We also give the following Bernstein-type theorem for λ-hypersurfaces, which
generalizes Ecker and Huisken’s result [13].

Theorem 1.5. If a λ-hypersurface Σn ⊂ R
n+1 is an entire graph with polynomial

volume growth satisfying H − 〈x,n〉
2 = λ, then Σ is a hyperplane.

In the last part, we turn to the one-dimensional case. Following an argument
in [18], we show that just as self-shrinkers in R

2, the only smooth complete and
embedded λ-hypersurfaces (λ-curves) in R

2 with λ ≥ 0 are lines and round circles.

Theorem 1.6. Any smooth complete embedded λ-hypersurface (λ-curve) γ in R
2

satisfying H − 〈x,n〉
2 = λ with λ ≥ 0 must either be a line or a round circle.

In contrast to embedded self-shrinking curves, the dynamical pictures suggest
that there exist some embedded λ-curves with λ < 0 which are not round circles.
There also exist Abresch–Langer-type curves for immersed λ-curves; see [4] for more
details.

Remark 1.7. λ-hypersurfaces with λ ≥ 0 are special cases of hypersurfaces with
non-negative rescaled mean curvature, i.e., H − 1

2 〈x,n〉 ≥ 0. Such hypersurfaces
behave nicely under the rescaled mean curvature flow. In particular, if Σ0 is a
closed hypersurface with nonnegative rescaled mean curvature, then the nonnega-
tive rescaled mean curvature is preserved under the rescaled mean curvature flow.
Moreover, if H − 1

2 〈x,n〉 > 0 holds at least at one point of Σ0, then the rescaled
mean curvature flow will develop a singularity in finite time; see [9] for more details.

2. Background and preliminaries

In this section, we recall some background and collect several useful formulas
for λ-hypersurfaces. Throughout this paper, we always assume hypersurfaces to
be smooth complete embedded, without boundary, and with polynomial volume
growth.

2.1. Notion and conventions. Let Σ ⊂ R
n+1 be a hypersurface. Then ∇Σ,

div, and Δ are the gradient, divergence, and Laplacian, respectively, on Σ. n is the
outward unit normal, H=divΣn is the mean curvature, A is the second fundamental
form, and x is the position vector. With this convection, the mean curvature H is
n/r on the sphere S

n ⊂ R
n+1 of radius r. If ei is an orthonormal frame for Σ, then

the coefficients of the second fundamental form are defined to be aij = 〈∇eiej ,n〉.

2.2. Simons-type identity. Now we will derive a Simons-type identity for λ-
hypersurfaces which plays a key role in our proof of Theorem 1.3. First, recall the
operators L and L from [10] defined by

L = Δ− 1

2
〈x,∇·〉,

L = Δ− 1

2
〈x,∇·〉+ |A|2 + 1

2
.
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Lemma 2.1. If Σn ⊂ R
n+1 is a λ-hypersurface satisfying H − 〈x,n〉

2 = λ, then

LA = A− λA2,(2.1)

LH = H + λ|A|2,(2.2)

L|A|2 = 2
(1

2
− |A|2

)
|A|2 − 2λ〈A2, A〉+ 2|∇A|2.(2.3)

Remark 2.2. More general results of the above formulas were already obtained by
Colding and Minicozzi; see Proposition 1.2 in [11]. For completeness we also include
a proof here. Note that when λ = 0, these formulas are just Simons’ equations for
self-shrinkers in [10].

Proof of Lemma 2.1. Recall that for a general hypersurface, the second fundamen-
tal form A satisfies

(2.4) ΔA = −|A|2A−HA2 −HessH .

Now we fix a point p ∈ Σ and choose a local orthonormal frame ei for Σ such that
its tangential covariant derivatives vanish. So at this point, we have ∇eiej = aijn.
Thus,

2HessH(ei, ej) = ∇ej∇ei〈x,n〉 = 〈x,−aikek〉j
= −aikj〈x, ek〉 − aij − aikajk〈x,n〉
= −(∇xTA)(ei, ej)−A(ei, ej)− 〈x,n〉A2(ei, ej).

(2.5)

Combining (2.4) with (2.5) gives

LA = ΔA− 1

2
∇xT A+

(1

2
+ |A|2

)
A = A−

(
H − 〈x,n〉

2

)
A2 = A− λA2.

This gives (2.1) and taking the trace gives (2.2). For (2.3), we have that

L|A|2 = 2〈LA,A〉+ 2|∇A|2

= 2|A|2 − 2λ〈A2, A〉 − 2
(1

2
+ |A|2

)
|A|2 + 2|∇A|2

= 2
(1

2
− |A|2

)
|A|2 − 2λ〈A2, A〉+ 2|∇A|2.

This completes the proof. �

We also need the following lemma.

Lemma 2.3. If Σn ⊂ R
n+1 is a smooth λ-hypersurface, then

L|x|2 = 2n− |x|2 − 2λ〈x,n〉.

Proof. Recall that for any hypersurface, we have Δx = −Hn. Therefore,

L|x|2 = Δ|x|2 − 1

2
〈x,∇|x|2〉 = 2〈Δx, x〉+ 2|∇x|2 − |xT |2

= −2H〈x,n〉+ 2n− |xT |2

= 2n− |x|2 − 2λ〈x,n〉.

�
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2.3. Weighted integral estimates for |A|. In this subsection, we prove a result
which will justify the integration when hypersurfaces are noncompact and with
bounded |A|.

Proposition 2.4. If Σn ⊂ R
n+1 is a complete λ-hypersurface with polynomial

volume growth satisfying |A| ≤ C0, then∫
Σ

|∇A|2e−
|x|2
4 < ∞.

The proof of Proposition 2.4 relies on the following two lemmas from [10] which
show that the linear operator L is self-adjoint in a weighted L2 space.

Lemma 2.5 ([10]). If Σ ⊂ R
n+1 is a hypersurface, u is a C1 function with compact

support, and v is a C2 function, then∫
Σ

u(Lv)e−
|x|2
4 = −

∫
Σ

〈∇u,∇v〉e−
|x|2
4 .

Lemma 2.6 ([10]). Suppose that Σ ⊂ R
n+1 is a complete hypersurface without

boundary. If u, v are C2 functions with∫
Σ

(
|u∇v|+ |∇u||∇v|+ |uLv|

)
e−

|x|2
4 < ∞,

then we get ∫
Σ

u(Lv)e−
|x|2
4 = −

∫
Σ

〈∇u,∇v〉e−
|x|2
4 .

Proof of Proposition 2.4. By Lemma 2.1 and |A| ≤ C0, we have

L|A|2 = 2
(1

2
− |A|2

)
|A|2 − 2λ〈A2, A〉+ 2|∇A|2

≥ 2
(1

2
− |A|2

)
|A|2 − 2|λ||A|3 + 2|∇A|2 ≥ 2|∇A|2 − C,

(2.6)

where C is a positive constant depending only on λ and C0. We allow C to change
from line to line. For any smooth function φ with compact support, we integrate
(2.6) against 1

2φ
2.

By Lemma 2.5, we obtain that

−2

∫
Σ

φ|A|〈∇φ,∇|A|〉e−
|x|2
4 ≥

∫
Σ

φ2(|∇A|2 − C)e−
|x|2
4 .

Using the absorbing inequality εa2 + b2

ε ≥ 2ab gives

(2.7)

∫
Σ

(εφ2|∇|A||2 + 1

ε
|A|2|∇φ|2)e−

|x|2
4 ≥

∫
Σ

φ2(|∇A|2 − C)e−
|x|2
4 .

Now we choose |φ| ≤ 1, |∇φ| ≤ 1, and ε = 1/2. Combining this with |∇A| ≥ |∇|A||,
we see that (2.7) gives∫

Σ

(4|A|2 + C)e−
|x|2
4 ≥

∫
Σ

φ2|∇A|2e−
|x|2
4 .

The conclusion follows from the monotone convergence theorem and the fact that
Σ has polynomial volume growth. �

A direct consequence of Proposition 2.4 and Lemma 2.6 is the following corollary.



4464 QIANG GUANG

Corollary 2.7. If Σn ⊂ R
n+1 is a complete λ-hypersurface with polynomial volume

growth satisfying |A| ≤ C0, then∫
Σ

L|A|2e−
|x|2
4 = 0.

3. Closed λ-hypersurfaces with the second fundamental form

of constant length

This section is devoted to proving Theorem 1.2. Recall that if Σ2 ⊂ R
3 is a

smooth complete embedded self-shrinker with |A| = constant, then one can show
that Σ is a generalized cylinder Sk×R

2−k for some k ≤ 2; see [12] and [14]. One way
to prove this is to consider the point where the norm of position vector |x| achieves
its minimum. For λ-hypersurfaces, we will also use this idea to prove Theorem 1.2.
In addition, we need some important results from [15].

First, we recall the following ingredients from [15].

Definition 3.1. A surface in R
3 is called a special Weingarten surface (special

W -surface) if its Gauss curvature and mean curvature,1 K and H, are connected
by an identity

F (K,H) = 0

in which F satisfies the following condition:

• The function F (K,H) is defined and of class C2 on the portion 4K ≤ H2

of the (K,H)-plane and satisfies

FH +HFK �= 0 when 4K = H2.

In [15], Hartman and Wintner proved the following theorem for special W -
surfaces.

Theorem 3.2 ([15]). Let S be a (small piece of a) special W -surface of class C2.
Then, unless S is part of a plane or a sphere, the umbilical points (if any) are
isolated and their indices are negative.

A direct consequence is the following result which serves as a key ingredient in
the proof of Theorem 1.2.

Theorem 3.3 ([15]). If a closed orientable surface S of genus 0 is a special W -
surface of class C2, then S is a round sphere.

One may easily check that a closed surface with |A| = constant is a special
W -surface. Hence, by Theorem 3.3, we have the following corollary.

Corollary 3.4. Let Σ2 ⊂ R
3 be a smooth closed embedded surface of genus 0. If

|A| = constant, then Σ is a round sphere.

3.1. Proof of Theorem 1.2. By Corollary 3.4, in order to prove Theorem 1.2,
all we need to show is that any closed λ-hypersurface with constant |A| has genus
0. In the proof of Theorem 1.2, we also need the following gap result for closed
λ-hypersurfaces. The proof will be given in Section 4.2.

1In [15], they use the average rather than the sum of the principal curvatures.
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Theorem 3.5. Let Σn ⊂ R
n+1 be a smooth closed λ-hypersurface with λ ≥ 0. If

Σ satisfies

(3.1) |A|2 ≤ 1

2
+

λ(λ+
√
λ2 + 2n)

2n
,

then Σ is a round sphere with radius
√
λ2 + 2n− λ.

Now, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. First, by the Gauss–Bonnet Formula, the Minkowski Inte-
gral Formulas and the Stokes’ theorem, we have

(3.2)

∫
Σ

H2 =

∫
Σ

|A|2 + 8π(1− g),

∫
Σ

H〈x,n〉 = 2Area(Σ),

∫
Σ

〈x,n〉 = 3Volume(Ω),

where g is the genus of Σ and Ω is the region enclosed by Σ.
Combining above identities, we deduce that

(3.3)

∫
Σ

H2 ≥ (λ2 + 1)

∫
Σ

= (λ2 + 1)Area(Σ).

Next, we consider the point p ∈ Σ where |x| achieves its minimum. By Lemma 2.3,
at point p, we have

(3.4) H2(p) ≤ 2 + λ2 + λ
√
λ2 + 4

2
.

At point p, we can choose a local orthonormal frame {e1, e2} such that the second
fundamental form aij = λiδij for i, j = 1, 2. Thus, we have

(3.5) |∇H|2 = (a111 + a221)
2 + (a112 + a222)

2.

Since |A|2 = constant, we see that

(3.6) a11a111 + a22a221 = a11a112 + a22a222 = 0.

Note that at point p, |∇H| = 0. This implies

a111 + a221 = a112 + a222 = 0.

Combining this with (3.5) and (3.6), we get

a111(a11 − a22) = a222(a11 − a22) = 0.

If a11 = a22, then by (3.4), we have

|A|2 =
H2

2
≤ 2 + λ2 + λ

√
λ2 + 4

4
.

By Theorem 3.5, this implies that Σ is a round sphere.
If a111 = a222 = 0, then |∇A|2 = 0. Hence,(1

2
− |A|2

)
|A|2 = λ〈A2, A〉.

Thus, we have (
|A|2 − 1

2

)
|A|2 = −λ〈A2, A〉 ≤ λ|A|3.
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Therefore,

|A|2 ≤ 1 + λ2 + λ
√
λ2 + 2

2
.

Combining this with (3.2) and (3.3) gives

(λ2 + 1)Area(Σ) ≤
∫
Σ

H2 ≤ 1 + λ2 + λ
√
λ2 + 2

2
Area(Σ) + 8π(1− g).

Observe that

λ2 + 1 >
1 + λ2 + λ

√
λ2 + 2

2
;

then we get that the genus g = 0. By Corollary 3.4, we conclude that Σ is a round
sphere. This completes the proof. �

Remark 3.6. Note that our method does not apply to higher dimensions. It is
desirable that one may remove the conditions of closedness and λ ≥ 0 to prove that
any λ-hypersurface Σ2 ⊂ R

3 with |A| = constant is a generalized cylinder. We also
conjecture that in higher dimensions, all λ-hypersurfaces with |A| = constant must
be generalized cylinders.

4. Gap theorems for λ-hypersurfaces

In this section, we prove the gap theorems for λ-hypersurfaces.

4.1. Proof of Theorem 1.3. Now we give the proof of Theorem 1.3.

Proof of Theorem 1.3. By Lemma 2.1, we have

1

2
L|A|2 =

(1

2
− |A|2

)
|A|2 − λ〈A2, A〉+ |∇A|2

≥
(1

2
− |A|2

)
|A|2 − |λ||A|3 + |∇A|2.

Then Proposition 2.4 and Corollary 2.7 give

(4.1) 0 =

∫
Σ

L|A|2e−
|x|2
4 ≥

∫
Σ

(1

2
− |A|2 − |λ||A|

)
|A|2e−

|x|2
4 +

∫
Σ

|∇A|2e−
|x|2
4 .

Note that when

|A| ≤
√
λ2 + 2− |λ|

2
,

we have
1

2
− |A|2 − |λ||A| ≥ 0.

This implies that the first term of (4.1) on the right-hand side is nonnegative.
Therefore, (4.1) implies that all inequalities are equalities. Moreover, we have

|∇A| =
(1

2
− |A|2 − |λ||A|

)
|A|2 = 0.

By Theorem 4 of Laswon [17] that every smooth hypersurface with ∇A = 0 splits
isometrically as a product of a sphere and a linear space, we finish the proof. �

By the proof of Theorem 1.3, we have the following gap result.
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Corollary 4.1. If Σn ⊂ R
n+1 is a smooth complete embedded λ-hypersurface sat-

isfying H − 〈x,n〉
2 = λ with polynomial volume growth, which satisfies

|A| <
√
λ2 + 2− |λ|

2
,

then Σ is a hyperplane in R
n+1.

4.2. Gap theorems for closed λ-hypersurfaces. In Theorem 1.3, when Σn is a
round sphere, this forces λ = 0. We address this issue by providing the gap theorem
for closed λ-hypersurfaces with λ ≥ 0, i.e., Theorem 3.5, which is used in the proof
of Theorem 1.2. Now we give the proof of Theorem 3.5.

Proof of Theorem 3.5. Since Σ is closed, we consider the point p where |x| achieves
its maximum. At point p, x and n are in the same direction. This implies 2H(p) =
2λ+ |x|(p).

By (3.1), we have

(
λ+

|x|(p)
2

)2

= H2(p) ≤ n|A|2 ≤ n
(1

2
+

λ(λ+
√
λ2 + 2n)

2n

)
.

This gives

(4.2) max
Σ

|x| ≤ |x|(p) ≤
√
λ2 + 2n− λ.

By Lemma 2.3, we have

L|x|2 = 2n− |x|2 − 2λ〈x,n〉.
Combining this with (4.2), the maximum principle gives that Σ is a round sphere.

�

4.3. A Bernstein-type theorem for λ-hypersurfaces. The aim of this subsec-
tion is to prove Theorem 1.5 which generalizes Ecker and Huisken’s result [13]. The
key ingredient is that for a λ-hypersurface Σ, the function 〈v,n〉 is an eigenfunction
of the operator L with eigenvalue 1/2, where v ∈ R

n+1 is any constant vector.
Note that the result is also true for self-shrinkers. This eigenvalue result was also
obtained by McGonagle and Ross [19].

Lemma 4.2. If Σ ⊂ R
n+1 is a λ-hypersurface, then for any constant vector v ∈

R
n+1, we have

L〈v,n〉 = 1

2
〈v,n〉.

Proof. Set f = 〈v,n〉. Working at a fixed point p and choosing ei to be a local
orthonormal frame, we have

∇eif = 〈v,∇ein〉 = −aij〈v, ej〉.
Differentiating again and using the Codazzi equation gives that

∇ek∇ei = −aijk〈v, ej〉 − aijajk〈v,n〉.
Therefore,

(4.3) Δf = 〈v,∇H〉 − |A|2f.
Using the equation of λ-hypersurfaces, we have

(4.4) 〈v,∇H〉 = 〈v,−1

2
aij〈x, ej〉ei〉 =

1

2
〈x,∇f〉.
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Combining (4.3) and (4.4), we obtain that

Lf = Δf − 1

2
〈x,∇f〉+

(1

2
+ |A|2

)
f =

1

2
f.

�

We now give the proof of Theorem 1.5.

Proof of Theorem 1.5. Since Σ is an entire graph, we can find a constant vector v
such that f = 〈v,n〉 > 0. Let u = 1/f . Then we have

∇u = −∇f

f2
and Δu = −Δf

f2
+

2|∇f |2
f3

.

By Lemma 4.2, we can easily get

Lu = |A|2u+
2|∇u|2

u
.

Since Σ has polynomial volume growth, we get∫
Σ

(
|A|2u+

2|∇u|2
u

)
e−

|x|2
4 = 0.

Therefore, |A| = 0 and Σ is a hyperplane in R
n+1. �

Remark 4.3. A similar result is also obtained later by Cheng and Wei [7] under
the assumption of properness instead of polynomial volume growth. Note that
they proved properness of λ-hypersurfaces implies polynomial volume growth; see
Theorem 9.1 in [6].

5. Embedded λ-hypersurfaces in R
2

In this section, we will follow the argument in [18] to show that any λ-hypersurface
(λ-curve) in R

2 with λ ≥ 0 must either be a line or a round circle, i.e., Theorem
1.6.

Proof of Theorem 1.6. Suppose s is an arclength parameter of γ; then the curvature
is H = −〈∇γ′γ′,n〉. Note that ∇γ′n = Hγ′, so we have

2H ′ = ∇γ′〈x,n〉 = H〈x, γ′〉.
If at some point H = 0, then H ′ = 0. By the uniqueness theorem of ODE, we

conclude that H ≡ 0, and, thus, γ is just a line. Therefore, we may assume that
H is always nonzero and possibly reversing the orientation of the curve to make
H > 0, i.e., γ is strictly convex.

Differentiating |x|2 gives

(|x|2)′ = 2〈x, γ′〉 = 4
H ′

H
.

Thus H = Ce
|x|2
4 for some constant C > 0.

Since the curve is strictly convex, we introduce a new variable θ by θ =
arccos〈E1, n〉.

Differentiating with respect to the arclength parameter gives

∂sθ = −H,

Hθ = −H ′

H
= −〈x, γ′〉

2
,
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and

(5.1) Hθθ =
∂sHθ

−H
=

1− 2H(H − λ)

2H
=

1

2H
−H + λ.

Multiplying the above equation by 2Hθ, we get

∂θ(H
2
θ +H2 − logH − 2λH) = 0.

Therefore, the quantity

E = H2
θ +H2 − logH − 2λH

is a constant.
Consider the function f(t) = t2 − log t− 2λt, t > 0. It is easy to verify that

f(t) ≥ f
(λ+

√
λ2 + 2

2

)
.

Hence,

E ≥ f
(λ+

√
λ2 + 2

2

)
.

If E = f(λ+
√
λ2+2
2 ), then H is constant and γ must be a round circle.

Now we assume that E > f(λ+
√
λ2+2
2 ). Note that H = Ce

|x|2
4 and H ≤ |x/2|+

|λ|. Then H has an upper bound and |x| is bounded. By the embeddedness and
completeness of γ, we conclude that γ must be closed, simple, and strictly convex.

If γ is not a round circle, then we consider the critical points of the curvature

H. By our assumption that E > f(λ+
√
λ2+2
2 ), when Hθ = 0, we have Hθθ =

1
2H −H + λ �= 0. So the critical points are not degenerate. By the compactness of
the curve, they are finite and isolated.

Without loss of generality, we may assume H(0) = Hmax and H(θ̄) is the first
subsequent critical point of H for θ̄ > 0. Combining the fact that the curvature is
strictly decreasing in the interval [0, θ̄] with the second-order ODE of the function
H is symmetric with respect to θ = 0 and θ = θ̄, we conclude that H(θ̄) must be
the minimum of the curvature.

By the four-vertex theorem, we know that γ has at least four pieces like the
one described above. Since our curve is closed and embedded, the curvature H is
periodic with period T < π and T

2 = θ̄.
Next, we will evaluate an integral to produce a contradiction.
Since Hθθ = 1

2H −H + λ, we have

(H2)θθθ + 4(H2)θ =
2Hθ

H
+ 6λHθ.

Now we consider the following integral:

2

∫ T
2

0

sin 2θ
Hθ

H
dθ =

∫ T
2

0

sin 2θ
[
(H2)θθθ + 4(H2)θ − 6λHθ

]
dθ.

Integration by parts gives

2

∫ T
2

0

sin 2θ
Hθ

H
dθ =sin 2θ(H2)θθ

∣∣T
2

0
− 2

∫ T
2

0

cos 2θ(H2)θθdθ + 4

∫ T
2

0

sin 2θ(H2)θdθ

− 6λ

∫ T
2

0

sin 2θHθdθ.
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Hence,

2

∫ T
2

0

sin 2θ
Hθ

H
dθ = 2 sinT

[
H2

θ (
T

2
) +H(

T

2
)Hθθ(

T

2
)
]
− 2 cos 2θ(H2)θ

∣∣T
2

0

− 6λ

∫ T
2

0

sin 2θHθdθ

= 2 sinTH(
T

2
)Hθθ(

T

2
)− 6λ

∫ T
2

0

sin 2θHθdθ.

By (5.1) and Hθ(0) = Hθ(
T
2 ) = 0, we get

(5.2) 2

∫ T
2

0

sin 2θ
Hθ

H
dθ = 2 sinT

[1
2
−H2(

T

2
) + λH(

T

2
)
]
− 6λ

∫ T
2

0

sin 2θHθdθ.

Since H is decreasing from 0 to T
2 and sin 2θ is nonnegative, the left-hand side of

(5.2) is nonpositive. For the right-hand side, the first term is nonnegative since
H(T2 ) is a minimum, and λ ≥ 0 implies the second term is nonpositive. So the
right-hand side of (5.2) is nonnegative, and this gives a contradiction. Therefore,
we conclude that γ is a round circle. �

Remark 5.1. For the noncompact case, we do not need the condition λ ≥ 0 to prove
it is a line, and we do need λ ≥ 0 for the closed case. When λ < 0, there exist some
embedded λ-curves which are not round circles; see [4].
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