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ABSTRACT. We study A-hypersurfaces that are critical points of a Gaussian
|2
weighted area functional fE e~ 4 dA for compact variations that preserve

weighted volume. First, we prove various gap and rigidity theorems for com-
plete A-hypersurfaces in terms of the norm of the second fundamental form
|A|. Second, we show that in one dimension, the only smooth complete and
embedded A-hypersurfaces in R? with A > 0 are lines and round circles. More-
over, we establish a Bernstein-type theorem for A-hypersurfaces which states
that smooth A-hypersurfaces that are entire graphs with polynomial volume
growth are hyperplanes. All the results can be viewed as generalizations of
results for self-shrinkers.

1. INTRODUCTION

We follow the notation of [6] and call a hypersurface ¥ C R**! a \-hypersurface
if it satisfies

(1.1) H- =,

where A is any constant, H is the mean curvature, n is the outward pointing unit
normal, and x is the position vector.

A-hypersurfaces were first studied by McGonagle and Ross in [I9], where they
investigated the following isoperimetric type problem in a Gaussian weighted Eu-
clidean space:

2

Let 41(X) be the weighted area functional defined by pu(X) = i e= 5 dA for any
hypersurface ¥* C R"*!. Consider the variational problem of minimizing pu(X)
among all ¥ enclosing a fixed Gaussian weighted volume. Note that the variational
problem is not to consider ¥ enclosing a specific fixed weighted volume, but to
consider variations that preserve the weighted volume.

It turns out that critical points of this variational problem are A-hypersurfaces
and the only smooth stable ones are hyperplanes; see [19].

In [6], Cheng and Wei introduced the notation of A-hypersurfaces by study-
ing the weighted volume-preserving mean curvature flow. They proved that -
hypersurfaces are critical points of the weighted area functional for the weighted
volume-preserving variations. Moreover, they defined an F-functional of A-hyper-
surfaces and studied the F-stability, which extends a result of Colding and Minicozzi
[10].
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Example 1.1. We give three examples of A-hypersurfaces in R3:
(1) The sphere S?(r) with radius r = VA2 +4 — \.
(2) The cylinder S'(r) x R, where S*(r) has radius VA2 +2 — .
(3) The hyperplane in R3.

Note that when A = 0, A\-hypersurfaces are just self-shrinkers and they can be
viewed as a generalization of self-shrinkers in some sense.

It is well known that self-shrinkers play a key role in the study of mean curva-
ture flow (“MCF”), since they describe the singularity models of the MCF. In one
dimension, smooth complete embedded self-shrinking curves are totally understood
and they are just lines and round circles by the work of Abresch and Langer [IJ.
In higher dimensions, self-shrinkers are more complicated and there are only a few
examples; see [2], [16], [20], and [2I]. There are many classification and rigidity
results of self-shrinkers under certain assumptions. Ecker and Huisken [I3] proved
that if a self-shrinker is an entire graph with polynomial volume growth, then it is a
hyperplane. Later, Wang [22] removed the condition of polynomial volume growth.
In [1I0], Colding and Minicozzi proved that the only smooth complete embedded
self-shrinkers with polynomial volume growth and H > 0 in R**! are generalized
cylinders S* x R"—,

In this paper, we study A\-hypersurfaces from three aspects: gap and rigidity
results, the one-dimensional case, and the entire graphic case.

First, partially motivated by the work of Chern, do Carmo, and Kobayashi [§]
on minimal submanifolds of a sphere with the second fundamental form of constant
length, we consider smooth closed embedded A\-hypersurfaces ¥? C R? with |A| =
constant and A > 0. We prove that they are just round spheres. It can be thought
of as a generalization of the result that any smooth self-shrinker in R? with |A| =
constant is a generalized cylinder; see [12] and [14].

Theorem 1.2. Let ¥? C R? be a smooth closed and embedded \-hypersurface
with A > 0. If the second fundamental form of ¥2 is of constant length, i.e.,
|A| = constant, then %2 is a round sphere.

The proof of Theorem has two key ingredients. The first ingredient is to
consider the point where the norm of the position vector |z| achieves its minimum.
This will give that the genus is 0. The second ingredient is an interesting result
from [I5] that any smooth closed special W-surface of genus 0 is a round sphere.

The second main result is the following gap theorem for A-hypersurfaces in terms
of the norm of the second fundamental form |A|.

Theorem 1.3. If X" C R"*! is a smooth complete embedded \-hypersurface sat-

(z,n)

isfying H — =~ = X with polynomial volume growth, which satisfies
N2 19
(1.2) |A] < )‘+|/\‘7

then ¥ s one of the following:

(1) a round sphere S™,

(2) a cylinder S x R* ™k for 1 <k<n-—1,

(3) a hyperplane in R" 1.
Remark 1.4. Note that when A = 0, then ¥ is a self-shrinker satisfying |A[> < 1/2.
So this theorem implies the gap theorem of Cao and Li [3] in the codimension one
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case. Cheng, Ogata, and Wei [5] obtained a gap theorem for A-hypersurfaces in
terms of |A| and H, which also generalizes Cao and Li’s result.

We also give the following Bernstein-type theorem for A-hypersurfaces, which
generalizes Ecker and Huisken’s result [13].

Theorem 1.5. If a A\-hypersurface X" C R"! is an entire graph with polynomial

volume growth satisfying H — ®Tn) = )\, then X is a hyperplane.

In the last part, we turn to the one-dimensional case. Following an argument
in [18], we show that just as self-shrinkers in R?, the only smooth complete and
embedded A-hypersurfaces (A-curves) in R? with A > 0 are lines and round circles.

Theorem 1.6. Any smooth complete embedded \-hypersurface (A-curve) v in R?

satisfying H — @ = X with A > 0 must either be a line or a round circle.

In contrast to embedded self-shrinking curves, the dynamical pictures suggest
that there exist some embedded A-curves with A < 0 which are not round circles.
There also exist Abresch-Langer-type curves for immersed A-curves; see [4] for more
details.

Remark 1.7. A-hypersurfaces with A > 0 are special cases of hypersurfaces with

non-negative rescaled mean curvature, i.e., H — %(x,n> > 0. Such hypersurfaces

behave nicely under the rescaled mean curvature flow. In particular, if ¥y is a

closed hypersurface with nonnegative rescaled mean curvature, then the nonnega-

tive rescaled mean curvature is preserved under the rescaled mean curvature flow.
1

Moreover, if H — 5(x,n) > 0 holds at least at one point of ¥, then the rescaled

mean curvature flow will develop a singularity in finite time; see [9] for more details.

2. BACKGROUND AND PRELIMINARIES

In this section, we recall some background and collect several useful formulas
for A-hypersurfaces. Throughout this paper, we always assume hypersurfaces to
be smooth complete embedded, without boundary, and with polynomial volume
growth.

2.1. Notion and conventions. Let ¥ C R"*! be a hypersurface. Then Vg,
div, and A are the gradient, divergence, and Laplacian, respectively, on 3. n is the
outward unit normal, H=divyn is the mean curvature, A is the second fundamental
form, and x is the position vector. With this convection, the mean curvature H is
n/r on the sphere S® C R"*! of radius r. If ¢; is an orthonormal frame for ¥, then
the coefficients of the second fundamental form are defined to be a;; = (Ve,e;, n).

2.2. Simons-type identity. Now we will derive a Simons-type identity for A-
hypersurfaces which plays a key role in our proof of Theorem [[L3l First, recall the
operators £ and L from [10] defined by
1
L=A- V),

B 1 5 1
L=A 2<x,v->+|A|+2.
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Lemma 2.1. If X" C R™*! is a A-hypersurface satisfying H — % = ), then

(2.1) LA=A—-)\A%
(2.2) LH = H + )\ AJ]?,
1
(2.3) LA = 2(5 - \A|2)|A|2 — 2A(A2, A) + 2|V A2

Remark 2.2. More general results of the above formulas were already obtained by
Colding and Minicozzi; see Proposition 1.2 in [IT]. For completeness we also include
a proof here. Note that when A = 0, these formulas are just Simons’ equations for
self-shrinkers in [10].

Proof of Lemma 2] Recall that for a general hypersurface, the second fundamen-
tal form A satisfies

(2.4) AA = —|A|PA — HA? — Hessy.

Now we fix a point p € X and choose a local orthonormal frame e; for ¥ such that
its tangential covariant derivatives vanish. So at this point, we have V., e; = a;;n.
Thus,

2Hessg(ei,ej) = Ve; Ve, (r,m) = (T, —aer);
(2.5) = —akj (T, e) — aij — Aikajr (T, N)
= —(VyrA)(ei,e;) — Alei, ej) — (x,n) A% (e, e5).

Combining (24) with (Z3]) gives
_ 1 1 2) 4 _ (z,m)\ o 2
LA=AA 2ver+(2+|A| )A_A (H . )A — A \A2
This gives (2] and taking the trace gives ([2:2)). For (23], we have that
LIAP? =2(LA, A) +2|VA|?
1
— 9| A[2 — 2\(A2, A) — 2(5 + |A\2)|A|2 +2[VAP
1
- 2(5 - |A|2) A2 — 2\(A2, A) + 2|V AP
This completes the proof. O

We also need the following lemma.
Lemma 2.3. If ¥ C R"*! is a smooth \-hypersurface, then
Llz|* = 2n — |z|* — 2\ (2, n).
Proof. Recall that for any hypersurface, we have Ax = —Hn. Therefore,
Llz|? = Alz]* — %(x,V\xF} =2(Az,z) + 2|Vz|* — 272
= —2H(x,n) +2n — [27|?
=2n — |z|* — 2\(z, n).
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2.3. Weighted integral estimates for |A|. In this subsection, we prove a result
which will justify the integration when hypersurfaces are noncompact and with
bounded |A]|.

Proposition 2.4. If ¥ C R"™ is a complete \-hypersurface with polynomial
volume growth satisfying |A| < Cy, then

/ |VA|267% < o0
)

The proof of Proposition 2.4 relies on the following two lemmas from [10] which
show that the linear operator £ is self-adjoint in a weighted L? space.

Lemma 2.5 ([10]). If ¥ C R™™ is a hypersurface, u is a C* function with compact
support, and v is a C? function, then

/u(ﬁv)e*# = —/(Vu,Vv)e*‘zf.
b by

Lemma 2.6 ([10]). Suppose that ¥ C R"™L is a complete hypersurface without
boundary. If u,v are C? functions with

2

/ (|uVo] + [Vu|[Vo| + [ulv|)e” i+ < 00,
)

/u(ﬁv)e_% = —/(Vu,Vv}e_‘zi .
b )

Proof of Proposition [Z4l By Lemma [ZT] and |A| < Cy, we have

then we get

£1AP = 2(5 ~ [AP) AP —20(4%, 4) + 2|V AP
(2.6)
> 2(5 - |A|2) A2 — 2|A\[|APP + 2| VA2 > 2|VAP? —

where C' is a positive constant depending only on A and Cy. We allow C' to change
from line to line. For any smooth function ¢ with compact support, we integrate

(Z8) against ¢
By Lemma 25 we obtain that
=2 [ 614172,V ]4]e

2

/¢ (VAP - C)e= .

Using the absorbing inequality ea’ —|— = > 2ab gives

(2.7) / (6?|V |41 + <] AP|VoP) / G (VAP — C)e

Now we choose |¢| < 1, [V¢| < 1, and € = 1/2. Combining this with |[VA| > |[V|A]|,
we see that (2.7 gives
> [ vapeE

/ (4|A]* + O)e

The conclusion follows from the monotone convergence theorem and the fact that
3 has polynomial volume growth. ]

A direct consequence of Proposition 2.4land Lemma [2.6]is the following corollary.
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Corollary 2.7. If X" C R™*! is a complete \-hypersurface with polynomial volume
growth satisfying |A| < Cy, then

/ ClAReS o,
>

3. CLOSED A-HYPERSURFACES WITH THE SECOND FUNDAMENTAL FORM
OF CONSTANT LENGTH

This section is devoted to proving Theorem Recall that if ¥2 c R3 is a
smooth complete embedded self-shrinker with |A| = constant, then one can show
that X is a generalized cylinder S¥ x R2=* for some k < 2; see [12] and [14]. One way
to prove this is to consider the point where the norm of position vector |z| achieves
its minimum. For A-hypersurfaces, we will also use this idea to prove Theorem
In addition, we need some important results from [I5].

First, we recall the following ingredients from [I5].

Definition 3.1. A surface in R? is called a special Weingarten surface (special
W-surface) if its Gauss curvature and mean curvature K and H, are connected
by an identity

F(K,H)=0
in which F satisfies the following condition:

e The function F(K, H) is defined and of class C? on the portion 4K < H?
of the (K, H)-plane and satisfies

Fy+HFx #0 when 4K = H?.

In [15], Hartman and Wintner proved the following theorem for special W-
surfaces.

Theorem 3.2 ([I5]). Let S be a (small piece of a) special W -surface of class C?.
Then, unless S is part of a plane or a sphere, the umbilical points (if any) are
isolated and their indices are negative.

A direct consequence is the following result which serves as a key ingredient in
the proof of Theorem

Theorem 3.3 ([15]). If a closed orientable surface S of genus 0 is a special W -
surface of class C2, then S is a round sphere.

One may easily check that a closed surface with |A| = constant is a special
W-surface. Hence, by Theorem B.3] we have the following corollary.

Corollary 3.4. Let X2 C R3 be a smooth closed embedded surface of genus 0. If
|A| = constant, then ¥ is a round sphere.

3.1. Proof of Theorem By Corollary B4l in order to prove Theorem [L2]
all we need to show is that any closed A-hypersurface with constant |A| has genus
0. In the proof of Theorem [[.2] we also need the following gap result for closed
A-hypersurfaces. The proof will be given in Section

!In [I5], they use the average rather than the sum of the principal curvatures.
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Theorem 3.5. Let ¥ C R"*! be a smooth closed \-hypersurface with X > 0. If
Y satisfies

2
(3.1) AP < § 4 AAEVEE2,

then X is a round sphere with radius VA2 + 2n — .

Now, we are ready to prove Theorem

Proof of Theorem [L2l First, by the Gauss—Bonnet Formula, the Minkowski Inte-
gral Formulas and the Stokes’ theorem, we have

(3.2) /2H2 = /Z |A]2 + 87(1 — g),
/EH<£E, n) = 2Area(X),

/(x,n) = 3Volume(?),
)

where g is the genus of ¥ and (Q is the region enclosed by X.
Combining above identities, we deduce that

(3.3) /ZH2 > (A + 1)/Z = (A\? + 1)Area(X).

Next, we consider the point p € ¥ where |z| achieves its minimum. By Lemma 23]
at point p, we have

S 2N A+
< 5 .

At point p, we can choose a local orthonormal frame {e1, ea} such that the second
fundamental form a;; = \;d;; for 4, j = 1,2. Thus, we have

(3.5) |VH\2 = (a111 + a221)2 + (a112 + 61222)2~

Since |A|> = constant, we see that

(3.4) H?(p)

(3'6) a11a111 + @22a221 = G11G112 + A22a222 = 0.
Note that at point p, |VH| = 0. This implies

a1 + ag1 = aiie + agze = 0.
Combining this with (B3) and ([B.6]), we get
ai1(a1r — aze) = azz(ai — aze) = 0.
If a11 = agg, then by B4), we have
H? 24X+ A/ +4
< 1 :

AP = =
2

By Theorem [B5] this implies that ¥ is a round sphere.
If a111 = age = 0, then |[VA|? = 0. Hence,

L e 2 _ 2
(5 - 141) 14 = A(4%, 4).
Thus, we have

1
(1412 = 5) 142 = —\42, 4) < AlAP.
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Therefore,

14+ X2+ 2VA2 42

|A? <
2

Combining this with (3:2)) and B3] gives
T+ A2+ A2 +2
(2)§/H2§ + +2\/ +2,
b

(A2 +1)Area rea(X) + 8n(1 — g).

Observe that

14+ A2+ A2 42

Al +2 + ;
then we get that the genus g = 0. By Corollary [3.4] we conclude that ¥ is a round
sphere. This completes the proof. ([l

Remark 3.6. Note that our method does not apply to higher dimensions. It is
desirable that one may remove the conditions of closedness and A > 0 to prove that
any A\-hypersurface ¥? C R? with |A| = constant is a generalized cylinder. We also
conjecture that in higher dimensions, all A-hypersurfaces with |A| = constant must
be generalized cylinders.

4. GAP THEOREMS FOR A-HYPERSURFACES

In this section, we prove the gap theorems for A\-hypersurfaces.
4.1. Proof of Theorem 1.3l Now we give the proof of Theorem [[.3l
Proof of Theorem [L.3l By Lemma [Z1] we have
SLIAR = (5 — |AP) AP - M4%, 4) + |9 A7
> (5~ 1AP)IAP = [NJAP + VAP
Then Proposition 24 and Corollary 27 give
2 12

T 1 z|2 x
(4.1) O:/L|A|Qe*|4 2/ (5 — 147 — 1T [Ape +/ VAR
b b b

Note that when

VAZ 42— |}

|A| <
2

we have
1
5 = [4P = \4] > 0.

This implies that the first term of () on the right-hand side is nonnegative.
Therefore, (1)) implies that all inequalities are equalities. Moreover, we have

1
VA= (5 = 1412 = WA 14 = o.

By Theorem 4 of Laswon [I7] that every smooth hypersurface with VA = 0 splits
isometrically as a product of a sphere and a linear space, we finish the proof. [

By the proof of Theorem [[L3] we have the following gap result.
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Corollary 4.1. If ™ Cc R™t! is a smooth complete embedded \-hypersurface sat-
@ = X\ with polynomial volume growth, which satisfies

VAZ 42— |}
2 )

isfying H —

Al <
then ¥ is a hyperplane in R™H1,

4.2. Gap theorems for closed M\-hypersurfaces. In Theorem [[3] when X" is a
round sphere, this forces A = 0. We address this issue by providing the gap theorem
for closed A-hypersurfaces with A > 0, i.e., Theorem 3.5 which is used in the proof
of Theorem Now we give the proof of Theorem

Proof of Theorem BE. Since X is closed, we consider the point p where |z| achieves
its maximum. At point p, z and n are in the same direction. This implies 2H (p) =
21 + |z|(p).

By B1)), we have
lz|(p)\2 .o 5 1 AN+ VA2 +2n)
()\+ 2 ) — H2(p) < n|A| Sn(§—|— - )

This gives
(4.2) ma fo] < [z](p) < VA2 20— A
By Lemma 23] we have
Llz|* = 2n — |z|*> — 2\ (z,n).
Combining this with ([@2)), the maximum principle gives that ¥ is a round sphere.
|

4.3. A Bernstein-type theorem for A\-hypersurfaces. The aim of this subsec-
tion is to prove Theorem [[hl which generalizes Ecker and Huisken’s result [13]. The
key ingredient is that for a A-hypersurface X, the function (v, n) is an eigenfunction
of the operator L with eigenvalue 1/2, where v € R™*! is any constant vector.
Note that the result is also true for self-shrinkers. This eigenvalue result was also
obtained by McGonagle and Ross [19].

Lemma 4.2. If ¥ C R*"™! is a A\-hypersurface, then for any constant vector v €

R™!, we have

L{v,n) = %(v,n).

Proof. Set f = (v,n). Working at a fixed point p and choosing e; to be a local
orthonormal frame, we have

Ve, f = (v,Ve,n) = —a;;(v, e5).
Differentiating again and using the Codazzi equation gives that
Ve Ve, = —aijn (v, e5) — aijai{v,n).
Therefore,
(4.3) Af = (v, VH) - |A*f.

Using the equation of A-hypersurfaces, we have

(4.4) (v, VH) = (v, —%aij (x,ej)e;) = %(x,Vf}.
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Combining (£3) and (@4), we obtain that

Lf=AF - 5.V + (3 +14P)f = 3 f

We now give the proof of Theorem

Proof of Theorem [LL3l Since X is an entire graph, we can find a constant vector v
such that f = (v,n) > 0. Let w =1/f. Then we have

\i Af  2[VfP
VU:—F and AU:—F—F f3 .
By Lemma [£2] we can easily get
2
cu=|APu+-aYEL.
u

Since ¥ has polynomial volume growth, we get

(|A|2u + —2|vu|2>6_# = 0.
> u

Therefore, |A| = 0 and ¥ is a hyperplane in R"**. |

Remark 4.3. A similar result is also obtained later by Cheng and Wei [7] under
the assumption of properness instead of polynomial volume growth. Note that
they proved properness of A-hypersurfaces implies polynomial volume growth; see
Theorem 9.1 in [6].

5. EMBEDDED A-HYPERSURFACES IN R2

In this section, we will follow the argument in [I8] to show that any A-hypersurface
(M-curve) in R? with A > 0 must either be a line or a round circle, i.e., Theorem
1.6l

Proof of Theorem [LLGl Suppose s is an arclength parameter of v; then the curvature
is H=—(V,~/,n). Note that V.,,n = Hv’, so we have

2H' =V (x,n) = H(z,v').

If at some point H = 0, then H' = 0. By the uniqueness theorem of ODE, we
conclude that H = 0, and, thus, 7y is just a line. Therefore, we may assume that
H is always nonzero and possibly reversing the orientation of the curve to make
H >0, i.e., « is strictly convex.

Differentiating |z|? gives

H/

(12PY = 20e,7') = 47

2
|z

Thus H = Ce 1 for some constant C' > 0.

Since the curve is strictly convex, we introduce a new variable § by 6 =
arccos(Eq, n).

Differentiating with respect to the arclength parameter gives

8,0 = —H,

H (@)

H =
6 o 2 )
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and

_OHy 1-2HH-X) 1
- —-H 2H - 2H H+A

Multiplying the above equation by 2Hy, we get
Op(Hj + H* —log H — 2\H) = 0.

(5.1) Hogqg

Therefore, the quantity
E=Hj+ H?—logH —2\H
is a constant.
Consider the function f(t) = t? —logt — 2Xt, t > 0. It is easy to verify that

1) = f(AEE),

Hence,

£z (A5

If B = f(ArvAT£2 VQ)‘2+2), then H is constant and v must be a round circle.

Now we assume that £ > f(2HV2+2 VZ’\QH) Note that H = Ceg and H < |z/2| +
|A|]. Then H has an upper bound and |z| is bounded. By the embeddedness and
completeness of v, we conclude that « must be closed, simple, and strictly convex.

If v is not a round circle, then we consider the critical points of the curvature
H. By our assumption that E > f(2v22+2 Vz)‘2+2), when Hy = 0, we have Hypy =
% — H + X\ # 0. So the critical points are not degenerate. By the compactness of
the curve, they are finite and isolated.

Without loss of generality, we may assume H(0) = H,,q, and H () is the first
subsequent critical point of H for # > 0. Combining the fact that the curvature is
strictly decreasing in the interval [0, #] with the second-order ODE of the function
H is symmetric with respect to & = 0 and = 6, we conclude that H(#) must be
the minimum of the curvature.

By the four-vertex theorem, we know that v has at least four pieces like the
one described above. Since our curve is closed and embedded, the curvature H is
periodic with period T' < 7 and % =4.

Next, we will evaluate an integral to produce a contradiction.

Since Hgg = % — H + X\, we have

(H?)pgo + 4(H?)p = % + 6\ Hp.
Now we consider the following integral:
3 Hy £
2/ sin 20 —2.df = / sin 20 [(H%ge +A(H?)g — 6)\H9} do.
0 0
Integration by parts gives

T H, T Z z
2/ sin29ﬁ9d9:sin29(H2)99’5 —2/ 00529(H2)99d9+4/ sin 20( H?)yd0
0 0 0

— 6 / * sin 20H,do.
0
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Hence,

S

2 . He : T T T T
2/0 sm%ﬁdﬁz 251nT[H3(5)+H(5)H¢99(5)} —2cos26‘(H2)9‘0

T
— 6 / * §in 20H,do
0

oo T T 7
= 2sin TH(§)H99(5) — 6\ sin 260 Hyd6.
0

By (G.1) and Hyp(0) = Hy(L) = 0, we get

T T
z H, 1 T T z
(5.2) 2/2 sin20=Ldf = 2sin T | — H*(5) + \H(5)| —6)\/2 sin 20 Hodo.
o H 2 2 2 o

Since H is decreasing from 0 to % and sin 26 is nonnegative, the left-hand side of

(E2) is nonpositive. For the right-hand side, the first term is nonnegative since
H(L) is a minimum, and A > 0 implies the second term is nonpositive. So the

2
right-hand side of (5.2]) is nonnegative, and this gives a contradiction. Therefore,
we conclude that v is a round circle. ([l

Remark 5.1. For the noncompact case, we do not need the condition A > 0 to prove
it is a line, and we do need A > 0 for the closed case. When A < 0, there exist some
embedded A-curves which are not round circles; see [4].
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