RELATIVELY WEAKLY OPEN CONVEX COMBINATIONS OF SLICES

TROND A. ABRAHAMSEN AND VEGARD LIMA

(Communicated by Thomas Schlumprecht)

Abstract

We show that c_{0} and, in fact, $C(K)$ for any scattered compact Hausdorff space K have the property that finite convex combinations of slices of the unit ball are relatively weakly open.

1. Introduction

Let X be a (real or complex) Banach space with unit ball B_{X}, unit sphere S_{X}, and dual X^{*}. Given $x^{*} \in S_{X^{*}}$ and $\varepsilon>0$ we define a slice of B_{X} by

$$
S\left(x^{*}, \varepsilon\right):=\left\{x \in B_{X}: \operatorname{Re} x^{*}(x)>1-\varepsilon\right\},
$$

where $\operatorname{Re} x^{*}(x)$ denotes the real part of $x^{*}(x)$.
Recall the following successively stronger "big-slice concepts", defined in 3):
Definition 1.1. A Banach space X has the
(i) local diameter 2 property if every slice of B_{X} has diameter 2,
(ii) diameter 2 property if every nonempty relatively weakly open subset of B_{X} has diameter 2 ,
(iii) strong diameter 2 property if every finite convex combination of slices of B_{X} has diameter 2.

By Bourgain's lemma [7, Lemma II.1] every nonempty relatively weakly open subset of B_{X} contains a finite convex combination of slices; hence the strong diameter 2 property implies the diameter 2 property. It was shown in 4 that the two properties are not equivalent. Since a slice is relatively weakly open, the diameter 2 property implies the local diameter 2 property. Even though the converse is not true in general, as shown in [5], for some spaces it is. For example, it is known that if a Banach space X satisfies that every $x \in S_{X}$ is an extreme point of $B_{X^{* *}}$, then every nonempty relatively weakly open subset of B_{X} contains a slice by Choquet's lemma (cf., e.g., Proposition 1.3 in [1).

On a particularly sunny day at a conference at the University of Warwick in 2015, Olav Nygaard asked if the converse of Bourgain's lemma is ever true for B_{X}. The aim of this short note is to answer this question affirmatively by showing that c_{0} and, in fact, $C(K)$ for any scattered compact Hausdorff space K have the much stronger property that finite convex combinations of slices of the unit ball are relatively weakly open. See Theorems 2.3 and 2.4.

[^0]Let us note that in general it is not true that finite convex combinations of slices of the unit ball are relatively weakly open. Indeed, for some spaces there are finite convex combinations of slices of the unit ball that do not even intersect the sphere. The Banach space ℓ_{2} is one example [7, Remark IV.5]. In their proof (independent of [4) that the strong diameter 2 property is stronger than the diameter 2 property, Haller, Langemets, and Põldvere [8] show that if Z is an ℓ_{p}-sum of two Banach spaces, $Z=X \oplus_{p} Y$ with $1<p<\infty$, then for every $\lambda \in(0,1)$ there exist two slices S_{1} and S_{2} of B_{Z} and a $\beta>0$ such that $\lambda S_{1}+(1-\lambda) S_{2} \subset(1-\beta) B_{Z}$.

We should also remark that the positive part of the unit sphere of $L_{1}[0,1]$, $F=\left\{f \in L_{1}[0,1]: f \geq 0,\|f\|=1\right\}$, is another example of a closed convex bounded subset of a Banach space that satisfies a converse to Bourgain's lemma in that finite convex combinations of slices of F are relatively weakly open [7 Remark IV.5].

The notation and conventions we use are standard and follow, e.g., 6].

2. Main result

We start by recalling the following definition (see, e.g., [6] Definition 14.19]).
Definition 2.1. A compact space K is said to be scattered compact if every closed subset $L \subset K$ has an isolated point in L.

Let K be a scattered compact Hausdorff space and consider the Banach space $C(K)$ of all (complex-valued) continuous functions on K with sup-norm. Rudin [1] showed that $C(K)^{*}=\ell_{1}(K)$ in this case. Pełczyński and Semadeni 10 showed that for a compact Hausdorff space K we have $C(K)^{*}=\ell_{1}(K)$ if and only if K is scattered (= dispersed).

To prove the main result, we will need the following geometric lemma for the unit circle in the complex plane.
Lemma 2.2. Let $\alpha, \beta \in \mathbb{R}$ such that $e^{i \alpha}$ and $e^{i \beta}$ are distinct points on the unit circle with distance $d=\left|e^{i \alpha}-e^{i \beta}\right|$. If $0<\mu<\frac{1}{2}$, then the point $c=\mu e^{i \alpha}+(1-\mu) e^{i \beta}$ on the line segment between $e^{i \alpha}$ and $e^{i \beta}$ satisfies

$$
|c| \leq 1-\frac{d^{2} \mu}{4}
$$

Proof. A straightforward calculation shows that $d^{2}=2-2 \cos (\alpha-\beta)$ and that $|c|^{2}=\mu^{2}+(1-\mu)^{2}+\mu(1-\mu) 2 \cos (\alpha-\beta)$. Hence $|c|^{2}=1-d^{2} \mu(1-\mu)$. Since $\sqrt{1+x} \leq 1+\frac{x}{2}$ for $x \geq-1$ and $\mu(1-\mu) \geq \frac{\mu}{2}$ for $\mu \in\left[0, \frac{1}{2}\right]$, we get

$$
|c|=\sqrt{1-d^{2} \mu(1-\mu)} \leq 1-\frac{1}{2} d^{2} \mu(1-\mu) \leq 1-\frac{d^{2} \mu}{4}
$$

as desired.
Theorem 2.3. Let K be a scattered compact Hausdorff space. Then every finite convex combination of slices of the unit ball of $C(K)$ is relatively weakly open.
Proof. Let $\left\{S\left(f_{j}, \varepsilon_{j}\right)\right\}_{j=1}^{k}$ be slices of $B_{C(K)}$ with $f_{j} \in \ell_{1}(K),\left\|f_{j}\right\|=1$, and $\varepsilon_{j}>$ 0 for $j=1,2, \ldots, k$. Let $\lambda_{j}>0$ with $\sum_{j=1}^{k} \lambda_{j}=1$, and consider the convex combination of these slices

$$
C=\sum_{j=1}^{k} \lambda_{j} S\left(f_{j}, \varepsilon_{j}\right)
$$

Let $x=\sum_{j=1}^{k} \lambda_{j} z_{j} \in C$ with $z_{j} \in S\left(f_{j}, \varepsilon_{j}\right)$. Our goal is to find a nonempty relatively weakly open neighborhood of x that is contained in C.

Let $d=\min \left\{\operatorname{Re} f_{j}\left(z_{j}\right)-\left(1-\varepsilon_{j}\right): 1 \leq j \leq k\right\}$ and let $\eta>0$ be such that $\eta<d / 3$. Let $E \subset K$ be a finite set such that $\sum_{t \notin E}\left|f_{j}(t)\right|<\eta$ for $1 \leq j \leq k$.

Define

$$
\mathcal{U}=\left\{y \in B_{C(K)}:|y(t)-x(t)|<\delta, t \in E\right\}
$$

where $\delta>0$. Next we specify how δ is chosen.
Let $L=\max \left\{\frac{1}{\lambda_{j}}: j=1,2, \ldots, k\right\}$. Let

$$
E_{I}=\left\{t \in E: \text { there exists } 1 \leq j_{0} \leq k \text { such that }\left|z_{j_{0}}(t)\right|<1\right\}
$$

Define

$$
\delta_{I}=(1+3 L)^{-1} \min \left\{1-\left|z_{j_{0}}(t)\right|: t \in E_{I},\left|z_{j_{0}}(t)\right|<1\right\}
$$

if E_{I} is nonempty and $\delta_{I}=1$ otherwise. Let

$$
E_{I I I}=\left\{t \in E \backslash E_{I}: \text { there exists } j \neq m \text { such that } z_{j}(t) \neq z_{m}(t)\right\}
$$

and define

$$
\begin{equation*}
D=\min _{t \in E_{I I I}} \min _{z_{j}(t) \neq z_{m}(t)}\left\{\left|z_{j}(t)-z_{m}(t)\right|^{2}\right\} \tag{1}
\end{equation*}
$$

Choose $0<\rho<\min \{D / 8, \eta / 4 L\}$. Define $\delta_{I I I}=D \rho(4(1+3 L))^{-1}$ if $E_{I I I}$ is nonempty and $\delta_{I I I}=1$ otherwise. Finally we choose $\delta<\min \left\{\eta / 6 L, \delta_{I}, \delta_{I I I}\right\}$.

Let $y \in \mathcal{U}$. We will define $y_{j} \in S\left(f_{j}, \varepsilon_{j}\right), j=1,2, \ldots, k$, and show that y can be written $y=\sum_{j=1}^{k} \lambda_{j} y_{j} \in C$.

Let $\left\{\mathcal{V}_{t}\right\}_{t \in E}$ be a collection of pairwise disjoint neigborhoods for the points in E chosen such that for each $t \in E$ we have $\left|z_{j}(t)-z_{j}(s)\right|<\delta, 1 \leq j \leq k$, $|x(t)-x(s)|<\delta$, and $|y(t)-y(s)|<\delta$ for all $s \in \mathcal{V}_{t}$. If $t \in E$ is an isolated point, we let $\mathcal{V}_{t}=\{t\}$. Note that, in particular, we get $|x(s)-y(s)|<3 \delta$ for all $s \in V_{t}$.
Definition of y_{j} outside $\bigcup_{t \in E} \mathcal{V}_{t}$. For $s \in K \backslash \bigcup_{t \in E} \mathcal{V}_{t}$ we define $y_{j}(s)=y(s)$ for all $1 \leq j \leq k$.

Definition of y_{j} on $\bigcup_{t \in E} \mathcal{V}_{t}$. For each $t \in E$ the way we define y_{j} on \mathcal{V}_{t} depends on whether $t \in E_{I}, t \in E_{I I I}$, or neither, so we have to consider three cases. Let $t \in E$. Choose by Urysohn's lemma a real-valued nonnegative continuous function $n_{t} \in S_{C(K)}$ with $n_{t}(t)=1$ such that $n_{t}(s)=0$ off \mathcal{V}_{t}. Define $w(t)=y(t)-x(t)$ for all $t \in K$.
Case I. Assume $t \in E_{I}$. Then by definition of E_{I} there exists $1 \leq j_{0} \leq k$ with $\left|z_{j_{0}}(t)\right|<1$. Now, for $s \in \mathcal{V}_{t}$ let

$$
y_{j_{0}}(s)=n_{t}(s)\left[z_{j_{0}}(s)+\lambda_{j_{0}}^{-1} w(s)\right]+\left[1-n_{t}(s)\right] y(s)
$$

and for $j \neq j_{0}$ we let

$$
y_{j}(s)=n_{t}(s) z_{j}(s)+\left[1-n_{t}(s)\right] y(s) .
$$

It is straightforward to see that $\sum_{j=1}^{k} \lambda_{j} y_{j}(s)=y(s)$ and that by the choice of δ

$$
\begin{aligned}
\left|z_{j_{0}}(s)+\lambda_{j_{0}}^{-1} w(s)\right| & \leq\left|z_{j_{0}}(t)\right|+\left|z_{j_{0}}(s)-z_{j_{0}}(t)\right|+L|y(s)-x(s)| \\
& \leq\left|z_{j_{0}}(t)\right|+\delta+3 L \delta<1
\end{aligned}
$$

for all $s \in \mathcal{V}_{t}$. Thus we have $\left|y_{j}(s)\right| \leq 1$ for every $1 \leq j \leq k$.
We will need that $\left|y_{j_{0}}(t)-z_{j_{0}}(t)\right| \leq \lambda_{j_{0}}^{-1}|y(t)-x(t)|<L \delta<\eta$ and $\left|y_{j}(t)-z_{j}(t)\right|=$ 0 for $j \neq j_{0}$.

Case II. If for all $1 \leq j, m \leq k$ we have $z_{j}(t)=z_{m}(t)$ with $\left|z_{j}(t)\right|=1$, then $x(t)=z_{j}(t)$ and we can just let $y_{j}(s)=y(s)$ for all $1 \leq j \leq k$ and $s \in \mathcal{V}_{t}$.

We will need that $\left|y_{j}(t)-z_{j}(t)\right|=|y(t)-x(t)|<\delta<\eta$.
Case III. The remaining case is that $t \in E_{I I I}$; that is, $\left|z_{j}(t)\right|=1$ for all $1 \leq j \leq k$, but not all $z_{j}(t)$ are equal. Order the set $\left\{\arg z_{j}(t): 1 \leq j \leq k\right\}$ as an increasing sequence $\left\{\theta_{1}<\theta_{2}<\cdots<\theta_{q}\right\}$ and define $\theta_{0}=\theta_{q}$. We put $A_{p}=\left\{j: \arg z_{j}(t)=\theta_{p}\right\}$ and $\Lambda_{p}=\sum_{j \in A_{p}} \lambda_{j}$.

With ρ as above we define for $1 \leq p \leq q$

$$
c_{p}=\rho\left(e^{i \theta_{p-1}}-e^{i \theta_{p}}\right)
$$

Let $s \in \mathcal{V}_{t}$ and define (for $j \in A_{p}$)

$$
y_{j}(s)=n_{t}(s)\left[z_{j}(s)+\frac{c_{p}}{\Lambda_{p}}+\frac{w(s)}{q \Lambda_{p}}\right]+\left(1-n_{t}(s)\right) y(s) .
$$

We have

$$
\begin{aligned}
& \sum_{j=1}^{k} \lambda_{j} y_{j}(s)=\sum_{p=1}^{q} \sum_{j \in A_{p}} \lambda_{j} y_{j}(s) \\
& =\sum_{p=1}^{q} n_{t}(s) \sum_{j \in A_{p}} \lambda_{j} z_{j}(s)+\sum_{p=1}^{q} n_{t}(s) c_{p}+\sum_{p=1}^{q} n_{t}(s) \frac{w(s)}{q}+\left(1-n_{t}(s)\right) y(s) \\
& =n_{t}(s) \sum_{j=1}^{k} \lambda_{j} z_{j}(s)+n_{t}(s) 0+n_{t}(s) w(s)+\left(1-n_{t}(s)\right) y(s) \\
& \quad=n_{t}(s) x(s)+n_{t}(s)(y(s)-x(s))+y(s)-n_{t}(s) y(s)=y(s)
\end{aligned}
$$

With $\mu=\rho / \Lambda_{p}$

$$
z_{j}(t)+\frac{c_{p}}{\Lambda_{p}}=e^{i \theta_{p}}+\mu\left(e^{i \theta_{p-1}}-e^{i \theta_{p}}\right)=\mu e^{i \theta_{p-1}}+(1-\mu) e^{i \theta_{p}}
$$

So, by Lemma 2.2 and (1)

$$
\left|z_{j}(t)+\frac{c_{p}}{\Lambda_{p}}\right| \leq 1-\frac{\left|e^{i \theta_{p-1}}-e^{i \theta_{p}}\right|^{2} \rho}{4 \Lambda_{p}} \leq 1-\frac{D \rho}{4 \Lambda_{p}}<1-\frac{D \rho}{4}<1-(1+3 L) \delta .
$$

Hence

$$
\begin{aligned}
\left|z_{j}(s)+\frac{c_{p}}{\Lambda_{p}}+\frac{w(s)}{q \Lambda_{p}}\right| & \leq\left|z_{j}(t)+\frac{c_{p}}{\Lambda_{p}}\right|+\left|z_{j}(s)-z_{j}(t)\right|+\left|\frac{w(s)}{q \Lambda_{p}}\right| \\
& <1-(1+3 L) \delta+\delta+3 L \delta=1
\end{aligned}
$$

Thus we have $\left|y_{j}(s)\right| \leq 1$. We will also need that

$$
\left|y_{j}(t)-z_{j}(t)\right|=\left|\frac{c_{p}}{\Lambda_{p}}+\frac{w(t)}{q \Lambda_{p}}\right| \leq \rho\left|e^{i \theta_{p-1}}-e^{i \theta_{p}}\right| L+3 \delta L \leq 2 L \rho+3 L \delta \leq \eta
$$

Conclusion. So far we have defined $y_{j} \in B_{C(K)}$ and shown that $y=\sum_{j=1}^{k} \lambda_{j} y_{j}$. Note that for each $1 \leq j \leq k$ the function y_{j} is continuous on K since y_{j} is a combination of the continuous functions z_{j}, y, x, and n_{t}. Also n_{t} is zero off \mathcal{V}_{t}; hence $y_{j}=y$ on $K \backslash \bigcup_{t \in E} \mathcal{V}_{t}$.

It only remains to show that $y_{j} \in S\left(f_{j}, \varepsilon_{j}\right)$. We have

$$
\sum_{t \notin E}\left|f_{j}(t)\left(y_{j}(t)-z_{j}(t)\right)\right|<\eta\left\|y_{j}-z_{j}\right\| \leq 2 \eta
$$

and

$$
\sum_{t \in E}\left|f_{j}(t)\left(y_{j}(t)-z_{j}(t)\right)\right|<\left\|f_{j}\right\| \eta<\eta .
$$

Hence $\left|f_{j}\left(y_{j}-z_{j}\right)\right|<3 \eta$ so that

$$
\operatorname{Re} f_{j}\left(y_{j}\right) \geq \operatorname{Re} f_{j}\left(z_{j}\right)-3 \eta>\operatorname{Re} f_{j}\left(z_{j}\right)-d>1-\varepsilon_{j},
$$

and we are done.
The above theorem applies to $C[0, \alpha]$ for any infinite ordinal α and in particular to $c=C[0, \omega]$. It should be clear that the proof also works for real scalars and that it proves the following result.

Theorem 2.4. Every finite convex combination of slices of the unit ball of c_{0} is relatively weakly open.

3. Questions and remarks

We will end with some questions and remarks.
(i) Which Banach spaces satisfy that finite convex combinations of slices of the unit ball are relatively weakly open?
(ii) Which Banach spaces satisfy that finite convex combinations of slices of the unit ball contain a nonempty relatively weakly open neighborhood of some point in the combination?
(iii) Which Banach spaces satisfy that finite convex combinations of slices of the unit ball always have nonempty intersection with the sphere?
(iv) If finite convex combinations of slices of both B_{X} and B_{Y} are relatively weakly open, is the same true for the unit ball of $X \oplus_{\infty} Y$ and/or $X \oplus_{1} Y$?
It is not clear that there is a connection between having relatively weakly open convex combinations of slices and the diameter 2 properties. But we have the following observation.

Remark 3.1. Let X be an (infinite-dimensional) Banach space such that there exists a slice $S_{1}=S\left(x^{*}, \varepsilon\right)$ of B_{X} with $\operatorname{diam} S_{1}<1$. Then with $S_{2}=S\left(-x^{*}, \varepsilon\right)$ and $C=\frac{1}{2} S_{1}+\frac{1}{2} S_{2}$ it is easy to see that $C \cap S_{X}=\emptyset$; hence C is a convex combination of slices which is not relatively weakly open.

Regarding question (iii) we have the following examples of spaces where finite convex combinations of slices intersect the sphere.

Example 3.2. Finite convex combinations of slices of the unit ball of $L_{1}[0,1]$ always intersect the sphere. Here slices are given by functions $g_{j} \in S_{L_{\infty}[0,1]}$. We may assume that the g_{j} 's are simple functions and find sets $B_{j} \subset[0,1]$ with $B_{j} \cap B_{k}=\emptyset$ for $j \neq k$ and $\left\|\chi_{B_{j}} g_{j}\right\|_{\infty}$ almost 1. The functions $f_{j}=m\left(B_{j}\right)^{-1} \chi_{B_{j}}$ do the job (m is Lebesgue measure).

Example 3.3. Let X be a Banach space such that whenever $S_{j}=S\left(x_{j}^{*}, \varepsilon_{j}\right)$ with $x_{j}^{*} \in S_{X *}$ and $\varepsilon_{j}>0$ for $1 \leq j \leq k$ are slices of B_{X}, then there exists $x_{j} \in S_{j} \cap S_{X}$ and $y \in S_{X}$ such that $\left\|x_{j} \pm y\right\|=1$ and $x_{j}+y \in S_{j}$.

Spaces that satisfy this condition include $\ell_{\infty}^{c}(\Gamma)$ for Γ uncountable since this space is almost square with $\varepsilon=0$ [2, Remark 2.11]. It also includes ℓ_{∞} and $C[0,1]$ since the slices there are defined by measures of bounded variation.

If X is a space with this property, then finite convex combinations of slices of B_{X} always intersect the sphere. Indeed, let $\lambda_{j}>0$ with $\sum_{j=1}^{k} \lambda_{j}=1$ and let $S_{j}=S\left(x_{j}^{*}, \varepsilon_{j}\right)$ be slices of B_{X} with $x_{j}^{*} \in S_{X^{*}}$ and $\varepsilon_{j}>0$ for $1 \leq j \leq k$.

By assumption, there exists $x_{j} \in S_{j} \cap S_{X}$ and $y \in S_{X}$ such that $\left\|x_{j} \pm y\right\|=1$ and $x_{j}+y \in S_{j}$.

Choose $y^{*} \in S_{X^{*}}$ such that $y^{*}(y)=1$. Then

$$
1=\left\|x_{j} \pm y\right\| \geq y^{*}(y) \pm y^{*}\left(x_{j}\right)=1 \pm y^{*}\left(x_{j}\right) ;
$$

hence $y^{*}\left(x_{j}\right)=0$. Now $\sum_{j=1}^{k} \lambda_{j}\left(x_{j}+y\right) \in \sum_{j=1}^{k} \lambda_{j} S_{j}$ and

$$
\left\|\sum_{j=1}^{k} \lambda_{j}\left(x_{j}+y\right)\right\| \geq \sum_{j=1}^{k} \lambda_{j} y^{*}(y)=1 .
$$

Example 3.4. If X has the Daugavet property, then finite convex combinations of weak*-slices of $B_{X^{*}}$ intersect the sphere $S_{X^{*}}$. To see this let $x_{j} \in S_{X}$, let $\varepsilon_{j}>0$, and let $S\left(x_{j}, \varepsilon_{j}\right)$ be slices of $B_{X^{*}}$ for $1 \leq j \leq k$. Consider $\sum_{j=1}^{k} \lambda_{j} S\left(x_{j}, \varepsilon_{j}\right)$ where $\lambda_{j}>0$ and $\sum_{j=1}^{k} \lambda_{j}=1$.

By using [9, Lemma 2.12] and an induction argument we can, for $1 \leq j \leq k$, find $x_{j}^{*} \in S\left(x_{j}, \varepsilon_{j}\right) \cap S_{X^{*}}$ such that $\left\|\sum_{j=1}^{k} \lambda_{j} x_{j}^{*}\right\|=\sum_{j=1}^{k} \lambda_{j}=1$.

Acknowledgments

We thank Stanimir Troyanski and Olav Nygaard for fruitful conversations.

References

[1] Trond Arnold Abrahamsen, Petr Hájek, Olav Nygaard, Jarno Talponen, and Stanimir Troyanski, Diameter 2 properties and convexity, Studia Math. 232 (2016), no. 3, 227-242. MR 3499106
[2] Trond A. Abrahamsen, Johann Langemets, and Vegard Lima, Almost square Banach spaces, J. Math. Anal. Appl. 434 (2016), no. 2, 1549-1565. MR3415738
[3] Trond Abrahamsen, Vegard Lima, and Olav Nygaard, Remarks on diameter 2 properties, J. Convex Anal. 20 (2013), no. 2, 439-452. MR3098474
[4] María D. Acosta, Julio Becerra-Guerrero, and Ginés López-Pérez, Stability results of diameter two properties, J. Convex Anal. 22 (2015), no. 1, 1-17. MR3346177
[5] Julio Becerra Guerrero, Ginés López-Pérez, and Abraham Rueda Zoca, Big slices versus big relatively weakly open subsets in Banach spaces, J. Math. Anal. Appl. 428 (2015), no. 2, 855-865. MR3334951
[6] Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos, and Václav Zizler, Banach space theory: The basis for linear and nonlinear analysis, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2011. MR2766381
[7] N. Ghoussoub, G. Godefroy, B. Maurey, and W. Schachermayer, Some topological and geometrical structures in Banach spaces, Mem. Amer. Math. Soc. 70 (1987), no. 378, iv+116. MR 912637
[8] R. Haller and J. Langemets, Two remarks on diameter 2 properties, Proc. Est. Acad. Sci. 63 (2014), no. 1, 2-7.
[9] Vladimir M. Kadets, Roman V. Shvidkoy, Gleb G. Sirotkin, and Dirk Werner, Banach spaces with the Daugavet property, Trans. Amer. Math. Soc. 352 (2000), no. 2, 855-873. MR. 1621757
[10] A. Pełczyński and Z. Semadeni, Spaces of continuous functions. III. Spaces $C(\Omega)$ for Ω without perfect subsets, Studia Math. 18 (1959), 211-222. MR0107806
[11] Walter Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc. 8 (1957), 39-42. MR0085475

Department of Mathematics, University of Agder, Postboks 422, 4604 Kristiansand, NORWAY

Email address: trond.a.abrahamsen@uia.no
URL: http://home.uia.no/trondaa/index.php3
NTNU, Norwegian University of Science and Technology, Aalesund, Postboks 1517, N-6025 Ålesund, Norway

Current address: Department of Engineering Sciences, University of Agder, Postboks 422, 4604 Kristiansand, Norway

Email address: Vegard.Lima@uia.no

[^0]: Received by the editors September 7, 2017, and, in revised form, February 2, 2018.
 2010 Mathematics Subject Classification. Primary 46B04, 46B20.
 Key words and phrases. Convex combinations of slices, relatively weakly open set, scattered compact, diameter 2 property.

