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MODULI SPACES OF INVARIANT METRICS OF POSITIVE

SCALAR CURVATURE ON QUASITORIC MANIFOLDS
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(Communicated by Kenneth W. Bromberg)

Abstract. We show that the higher homotopy groups of the moduli space
of torus-invariant positive scalar curvature metrics on certain quasitoric man-
ifolds are nontrivial.

1. Introduction

In recent years a lot of work has been devoted to the study of the homo-
topy groups of the space of Riemannian metrics of positive scalar curvature on
a given closed, connected manifold and its moduli space; see for example the pa-
pers [BHSW10], [HSS14], [BERW14], [Wal14], [Wal13], [Wal11], [Wra16] and the
book [TW15]. As far as the moduli space is concerned, these results are usually
only for the so-called observer moduli space of positive scalar curvature metrics,
not for the naive moduli space.

The definition of the naive and the observer moduli space are as follows. The
diffeomorphism group of a manifold M acts by pullback on the space of metrics
of positive scalar curvature on M . The naive moduli space of metrics of positive
scalar curvature on M is the orbit space of this action.

The observer moduli space of metrics is the orbit space of the action of a certain
subgroup of the diffeomorphism group, the so-called observer diffeomorphism group.
It consists of those diffeomorphisms ϕ, which fix some point x0 ∈ M (independent
of ϕ) and whose differential Dx0

ϕ : Tx0
M → Tx0

M at x0 is the identity.
This group does not contain any compact Lie subgroup and therefore acts freely

on the space of metrics on M . Hence, the observer moduli space can be treated
from a homotopy theoretic viewpoint more easily than the naive moduli space.

In this paper we deal with the equivariant version of the above problem: We
assume that there is a torus T acting effectively on the manifold and that all our
metrics are invariant under this torus action. To be more specific we study invariant
metrics on so-called torus manifolds and quasitoric manifolds.

A torus manifold is a 2n-dimensional manifold with a smooth effective action of
an n-dimensional torus such that there are torus fixed points in the manifold. Here
an action of a torus T is called effective if the intersection of the isotropy groups of
all points in the manifold is the trivial group.

Such a manifold is called locally standard if it is locally weakly equivariantly
diffeomorphic to the standard representation of T = (S1)n on Cn, i.e., for each orbit
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Tx ⊂ M there is a neighborhood Tx ⊂ U ⊂ M , a diffeomorphism ϕ : U → V ⊂ Cn,
and an automorphism ψ of T such that for each t ∈ T and y ∈ U :

ϕ(ty) = ψ(t)ϕ(y).

If M is locally standard, then the orbit space of the T -action on M is naturally a
manifold with corners. M is called quasitoric if it is locally standard and M/T is
diffeomorphic to a simple convex polytope.

In this paper we use the following notation: Let M be a compact manifold. For
a compact connected Lie subgroup G of Diff(M) we denote by

• R(M,G) the space of G-invariant metrics on M .
• R+(M,G) the space of G-invariant metrics of positive scalar curvature on
M .

• D(M,G) = NDiff(M)(G)/G the normalizer of G in Diff(M) modulo G.
• M(M,G) = R(M,G)/D(M,G); here the action of D(M,G) on R(M,G)
is given by pullbacks of metrics.

• M+(M,G) = R+(M,G)/D(M,G); here the action is the restriction of the
action on R(M,G) to R+(M,G).

We equip all these spaces and groups with the C∞-topology or the quotient
topology, respectively.

With this notation our main result is as follows.

Theorem 1.1 (Theorem 4.2). There are quasitoric manifolds M of dimension 2n
such that for 0 < k < n

6 − 7, n odd, and k ≡ 0 mod 4, πk(M+)⊗Q is nontrivial,
where M+ is some component of M+(M ;T ).

We also show that if a simple combinatorial condition on the orbit polytope of a
quasitoric manifold M is satisfied, then the above theorem holds for M . We believe
that this condition holds for “most” quasitoric manifolds.

Note that M+(M ;T ) is the analogue of the naive moduli space of metrics of
positive scalar curvature in the equivariant situation and not the analogue of the
observer moduli space for which so far most results have been proven.

The idea of proof for Theorem 1.1 is similar to the ideas used in [BHSW10]:
We first show the following theorem in Section 2 which might be of independent
interest.

Theorem 1.2. Let M be a quasitoric manifold. Then R(M,T ) is a classifying
space for the family of finite subgroups of D(M,T ). Moreover, if M satisfies the
above-mentioned combinatorial condition, then M(M,T ) is a rational model for the
classifying space BD(M,T ).

The classifying map of an M -bundle with structure group D(M,T ), total space
E, and paracompact base B is then given by b �→ [g|Eb

], where g is any T -invariant
Riemannian metric on E and g|Eb

denotes the restriction of g to the fiber over
b ∈ B. The proof of Theorem 1.1 is then completed by constructing a nontrivial
bundle as above with B = Sk such that there is a metric on E whose restriction to
any fiber has positive scalar curvature.

We refer the reader to [DJ91], [BP15] and [BP02] as general references on the
notions of toric topology.
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2. The action of D(M,T ) on R(M,T ) for M a torus manifold

In this section we describe the action of D(M,T ) on R(M,T ), where M is
a torus manifold. We give sufficient criteria for the rational homotopy groups of
M(M,T ) to be isomorphic to the rational homotopy groups of the classifying space
of D(M,T ).

Lemma 2.1. Let M be a closed manifold. If T is a maximal torus in Diff(M),
then the isotropy groups of the natural D(M,T )-action on R(M,T ) are finite.

Proof. The isotropy group of the D(M,T )-action of an element g ∈ R(M,T ) is the
normalizer W of the torus T in the isometry group K of g modulo T . Since M
is compact K is a compact Lie group. Moreover, because T is a maximal torus
of K, W is the Weyl group of K which is a finite group. Therefore the statement
follows. �

For each torus manifold M there is a natural stratification of the orbit space
M/T by the identity components of the isotropy groups of the orbits. That is, the
open strata of M/T are given by the connected components of

(M/T )H = {Tx ∈ M/T ; (Tx)
0 = H}

for connected closed subgroups H of T . We call the closure of an open stratum a
closed stratum. The closed strata are naturally ordered by inclusion. We denote
by P the poset of closed strata of M/T .

There is a natural map

λ : P → {closed connected subgroups of T}
such that λ(F ) = H if F is the closure of a component of (M/T )H .

We sometimes also write λ(Tx) or λ(x) for λ(FTx), where x ∈ M , Tx ∈ M/T ,
and FTx is the minimal stratum containing Tx. Note that by this definition for
x ∈ M , λ(x) = (Tx)

0 ⊂ T is the identity component of the isotropy group of x. If
M1 ⊂ M is the preimage of a closed stratum F ⊂ M/T under the orbit map, then
we define λ(M1) = λ(F ).

We call (P, λ) the characteristic pair of M .
An automorphism of (P, λ) is a pair (f, g) such that f is an automorphism of

the poset P and g is an automorphism of the torus T so that λ(f(x)) = g(λ(x)) for
all x ∈ P. The automorphisms of (P, λ) naturally form a group Aut(P, λ).

There is a natural action of D(M,T ) on M/T which preserves the above strati-
fication. This action is given by

ϕ · (Tx) = T ϕ̃(x),

for an orbit Tx in M and an element ϕ ∈ D(M,T ) which lifts to ϕ̃ ∈ NDiff(M)T .

Moreover, we have λ(ϕ(Tx)) = ϕ̃λ(Tx)ϕ̃−1. Therefore D(M,T ) acts by automor-
phisms on the characteristic pair (P, λ).

Lemma 2.2. Let M be a torus manifold. Then there is a finite index subgroup G
of D(M,T ) which acts freely on R(M,T ). To be more precise, G is the kernel of the
natural homomorphism D(M,T ) → Aut(P, λ) ⊂ Aut(P)×Aut(T ), where (P, λ) is
the characteristic pair associated to M .

Proof. At first we show that Aut(P, λ) is a finite group. To see this note that
Aut(P) is finite because P is finite. Moreover, the natural map Aut(P, λ) → Aut(P)
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has finite kernel, because if x ∈ MT , then, by the effectiveness of the action, the
T -representation TxM is up to automorphisms of T the standard representation.
Therefore, by the slice theorem, Tx is contained in exactly n strata F1, . . . , Fn

of codimension one such that λ(F1), . . . , λ(Fn) generate T and each λ(Fi) is iso-
morphic to the circle group. These λ(Fi) are preserved by the action of the ker-
nel of Aut(P, λ) → Aut(P). Hence, this kernel is isomorphic to a subgroup of∏n

i=1 Aut(λ(Fi)) = (Z/2Z)n.
Let G be the kernel of the natural map D(M,T ) → Aut(P, λ). Then G has finite

index since Aut(P, λ) is a finite group.

Let T ⊂ H ⊂ G̃ be a compact Lie group which fixes some metric g ∈ R(M),

where G̃ is the preimage of G in NDiff(M)(T ). Then each element of H commutes

with T and fixes every x ∈ MT , because the T -fixed points are isolated by dimen-
sion reasons. Hence, the differential of the H-action on TxM gives an injective
homomorphism H → O(2n). Since T is identified with a maximal torus of O(2n)
under this map, it follows that the centralizer of T in O(2n) is T itself. Hence it

follows that H = T . Therefore G = G̃/T acts freely on R(M,T ). �

Now let M be a quasitoric manifold. Recall that by local standardness of the
action the orbit space M/T is a smooth manifold with corners, which we require
to be diffeomorphic to a simple convex polytope P . We denote by π : M → P the
orbit map.

Similarly to the automorphism group of the characteristic pair (P, λ) we define
the group Diff(M/T, λ) ⊂ Diff(M/T )×Aut(T ) of those pairs (f, g) ∈ Diff(M/T )×
Aut(T ) with λ(f(x)) = g(λ(x)) for all x ∈ M/T . Here Diff(M/T ) ∼= Diff(P )
denotes the group of all diffeomorphisms of M/T ∼= P . Here diffeomorphisms of
M/T are to be understood in the sense of smooth manifolds with corners. Then
we have the following lemma.

Lemma 2.3. For M a quasitoric manifold, the group D(M,T ) is naturally iso-
morphic to (C∞(M/T, T )/T )�Diff(M/T, λ) as topological groups.

In particular, the group G of Lemma 2.2 is homotopy equivalent to the subgroup
of all those diffeomorphisms of M/T which have the property to map each face of
M/T to itself.

Proof. First we show that the kernel of the natural map ϕ : D(M,T )→Diff(M/T, λ)
is isomorphic to C∞(M/T, T )/T . Since T is abelian, there is a natural map from
C∞(M/T, T )/T to the kernel of ϕ which is induced by the map C∞(M/T, T ) →
NDiff(M)(T ) with f �→ F , where F (x) = f(Tx)x for x ∈ M .

We show that this map is a homeomorphism. To do so, let F̃ ∈ NDiff(M)(T ) such

that F = [F̃ ] ∈ kerϕ ⊂ D(M,T ). Then F̃ maps each orbit in M to itself. Since M
is quasitoric, there is a covering of M by open invariant subsets U1, . . . , Uk which
are weakly equivariantly diffeomorphic to Cn with the standard T -action. Here the
standard action of T = (S1)n on Cn is given by componentwise multiplication.

Because F̃ maps each T -orbit to itself, the restriction of F̃ to Uj
∼= Cn is of the

form

F̃ (z1, . . . , zn) = (f1(z1, . . . , zn), . . . , fn(z1, . . . , zn)) · (z1, . . . , zn)
= (z1f1(z1, . . . , zn), . . . , znfn(z1, . . . , zn)),
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where (z1, . . . , zn) ∈ Cn and fk(z1, . . . , zn) ∈ S1 for k = 1, . . . , n. Because F̃ is also
T -equivariant, for each k, fk(z1, . . . , zn) depends only on the orbit of (z1, . . . , zn),
i.e., on (|z1|2, . . . , |zn|2).

We have to show that fk is smooth for all k.
Smoothness in points with zk 	= 0 follows from the smoothness of F̃ . We show

that fk is also smooth in points with zk = 0.
Since F̃ is smooth, by the fundamental theorem of calculus, we have for

(z1, . . . , zn) ∈ Cn,

zkfk(z1, . . . , zn)= F̃k(z1, . . . , zn)=

∫ 1

0

(Dzk F̃k(z1, . . . , zk−1, zkt, zk+1, . . . , zn))(zk) dt,

where

(Dzk F̃k(z1, . . . , zn))(z) =

(
∂F̃k

∂xk
(z1, . . . , zn),

∂F̃k

∂yk
(z1, . . . , zn)

)
(x, y)t

with zl = xl + iyl for l = 1, . . . , n and z = x+ iy, xl, x, yl, y ∈ R.
Now we have

zkfk(z1, . . . , zn) =

∫ 1

0

(Dzk F̃k(z1, . . . , zk−1, zkt, zk+1, . . . , zn))(zk) dt

=

∫ 1

0

zk(Dzk F̃k(z1, . . . , zk−1,
|zk|
zk

zkt, zk+1, . . . , zn))(1) dt

= zk

∫ 1

0

(Dzk F̃k(z1, . . . , zk−1, |zk|t, zk+1, . . . , zn))(1) dt.

Here in the second equality we have used the fact that F̃ is T -equivariant.
Since F̃ is T -equivariant, it follows that

t �→ F̃k(z1, . . . , zk−1, t, zk+1, . . . , zn), t ∈ R,

is an odd function. Hence, its t-derivative

t �→ (DzkFk(z1, . . . , zk−1, t, zk+1, . . . , zn))(1)

is an even function. Therefore the integrand in the last integral depends smoothly
on (z1, . . . , zn) and fk is smooth everywhere. Because fk is T -invariant, it induces
a smooth map on the orbit space, whose derivatives depend continuously on the
derivatives of F̃ .

Hence it is sufficient to show that there is a section to ϕ.
There is a model M ∼= ((M/T ) × T )/ ∼, where (x, t) ∼ (x′, t′) if and only if

x = x′ and t′t−1 ∈ λ(x), which is called a canonical model in the literature. But
note that it is not canonical in the sense that it does not depend on any choices.
Actually it depends on a choice of a section to the orbit map. Therefore every
(f, g) ∈ Diff(M/T, λ) of M/T lifts to a homeomorphism of M given by f × g.
One can show (see [GP13, Lemma 2.3]) that this homeomorphism is actually a
diffeomorphism (for the right choice of the section to the orbit map). Therefore we
have a section of ϕ and the first statement follows.

The second statement follows because H = C∞(M/T, T )/T is contractible be-
cause M/T is contractible. �
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By Lemma 2.3, G/H can be identified with a subgroup of the group of T -
equivariant diffeomorphisms of M . We fix this identification for the rest of this
paper.

Lemma 2.4. If in the situation of Lemma 2.2, M is quasitoric and the nat-
ural homomorphism Aut(P, λ) → Aut(P) is trivial, then πk(M(M,T )) ⊗ Q ∼=
πk(BD(M,T ))⊗Q for k > 1.

Proof. Since G acts freely and properly on R(M,T ), it follows from Ebin’s slice
theorem [Ebi70] (see also [Bou75]) that R(M,T ) → R(M,T )/G is a locally trivial
fiber bundle. Because R(M,T ) is contractible, R(M,T )/G is weakly homotopy
equivalent to BG.

Let H = C∞(M/T, T )/T be as in the proof of the previous lemma. Then H is
contractible. Hence it follows that R(M,T ) and R(M,T )/H are weakly homotopy
equivalent.

It follows from Ebin’s slice theorem that all H-orbits in R(M,T ) are closed.
Since there is a D(M,T )-invariant metric on R(M,T ), it follows that R(M,T )/H
is metriziable. Hence, R(M,T )/H is paracompact and completely regular.

The D(M,T )-invariant metric on R(M,T ) can be constructed as follows. In
his paper Ebin constructs a sequence of Hilbert manifolds Rs, s ∈ N, such that
R(M, {Id}) =

⋂
s∈N

Rs. On each Rs he constructs a Diff(M)-invariant Riemann-
ian structure. This structure induces a Diff(M)-invariant metric ds on Rs. The
restrictions of all these metrics ds to R(M, {Id}) together induce the C∞-topology
on R(M, {Id}). Therefore the metric

d(x, y) =
∑
s∈N

min{ds(x, y), 2−s}

is Diff(M)-invariant and induces the C∞-topology on R(M, {Id}).
Since Aut(P, λ) → Aut(P) is trivial, an element τ = (g, f) ∈ Aut(P, λ) is of the

form τ = (g, f) = (Id, f). Hence, there is a splitting ψ : Aut(P, λ) → D(M,T ).
Here τ acts on the canonical model((M/T ) × T )/ ∼ of M as identity on the first
factor and by f ∈ Aut(T ) on the second. To see that this is a diffeomorphism of
M , we note that there are invariant charts U ⊂ M which are weakly equivariantly
diffeomorphic to Cn such that U ∩ ((M/T )× (Z2)

n)/ ∼ is mapped to Rn ⊂ Cn. For
a construction of such charts see [GP13, Section 2]. The action of τ in this chart is
given by complex conjugation on some of the factors of Cn.

Note that H and G are normalized by K = imψ. Moreover, K commutes with
G/H in D(M,T )/H.

Since H = 〈T, imψ〉 is a compact Lie subgroup of Diff(M), there is an H-
invariant metric on M .

Therefore it follows from [Bre72, Chapter II.6] that

(R(M,T )/H)/K = R(M,T )/(H�K)

is simply connected. Moreover, by [Bre72, Theorem III.7.2], one sees that the
rational homology of (R(M,T )/H)/K vanishes in positive degrees.

Hence, by the Whitehead theorem, all rational homotopy groups of R(M,T )/
(H�K) vanish.

By Lemma 2.2, we know that the identity components of G and D(M,T ) are the
same. Therefore the higher homotopy groups of BG and BD(M,T ) are naturally
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isomorphic. Therefore, by Lemma 2.3 and Ebin’s slice theorem, it now suffices to
show that G/H acts freely on R(M,T )/(H�K).

Let g ∈ R(M,T ), h1 ∈ G, and h2 ∈ H such that h1g = τh2g with τ ∈ K. Then
we have

τ−1h1g = τ−1τh2g = h2g.

Since, by Lemma 2.1, the isotropy group of g in D(M,T ) is finite, it follows that
τ−1h1 has finite order in D(M,T )/H.

Since τ acts as the identity on the orbit space, it follows that τ−1h1 and h1

induce the same diffeomorphism on the orbit space. In particular, h1 induces a
diffeomorphism of finite order m on M/T or equivalently an action of Z/mZ on
M/T . Note that h1 maps each face of M/T to itself.

By the slice theorem, for an action of a compact abelian Lie group G on a
connected manifold M (with or without boundary), there is a unique minimal
isotropy group, i.e., a subgroup of G which is an isotropy group of some orbit in M
and is contained in all other isotropy subgroups. This subgroup is usually called
the principal isotropy subgroup of the action. The points in M whose isotropy
group is equal to the principal isotropy group form a dense open subset of M . By
the equivariant collaring thoerem, the principal isotropy group of a G-action on a
manifold with boundary is equal to the principal isotropy group of the restricted
action on the boundary. Hence, it follows by induction on the dimension of the faces
of M/T that the diffeomorphism induced by h1 on M/T is trivial. This means that
h1 is contained in H and the lemma is proved. �

The proof of the above lemma also shows that the bundle G/H → R(M,T )/(H�

K) → M(M,T ) is rationally a classifying bundle for principal G/H-bundles. We
shall describe the classifying map for bundles M → E → B with structure group
G/H, fiber M , and paracompact base B. Since G/H acts on M by T -equivariant
diffeomorphisms, the T -action on each fiber extends to a T -action on E. Hence E
is a T -space such that each fiber is T -invariant and, by paracompactness of B, we
may choose a fiberwise T -invariant Riemannian metric g on E. If E = B ×M is
trivial, we therefore have a map

E = B ×M → R(M,T )/(H�K)×M (b, x) �→ ([g|Eb
], x),

where g|Eb
denotes the restriction of g to the fiber of E over b ∈ B.

If E is only locally trivial, we still get a map

E → (R(M,T )/(H�K))×G/H M

where on the right-hand side we take the quotient of the diagonal G/H-action. This
map makes the following diagram into a pull-back square:

E ��

��

(R/(H�K))×G/H M

��
B �� M(M,T )

where the bottom map, given by b �→ [g|Eb
], is the composition of the classifying

map with the map ϕ from the classifying space BG/H = R(M,T )/G toM(M,T ) =
R(M,T )/D(M,T ). By Lemma 2.4, the map ϕ is a rational equivalence.

Now we can prove Theorem 1.2 from the introduction.
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Proof of Theorem 1.2. The second statement follows from Lemma 2.4 and the above
remarks about the classifying maps.

For the proof of the first statement we fix some notation. Let F be the family
of finite subgroups of D(M,T ), and let X be a D(M,T )-space. We assume that
X is F-numberable, that is, there exists an open covering {Uj ; j ∈ J} of X by
D(M,T )-subspaces such that:

(1) For each j ∈ J there exists an equivariant map UJ → D(M,T )/H with
H ∈ F.

(2) There exists a locally finite partition of unity (tj ; j ∈ J) subordinate to
{Uj ; j ∈ J} such that each tj : X → [0, 1] is a D(M,T )-invariant function.

We have to show that there exists an equivariant map X → R(M,T ) which is
unique up to D(M,T )-homotopy.

Since each compact Lie subgroup of NDiff(M)T is the isometry group of some
metric on M and Ebin’s slice theorem, we have equivariant embeddings of D(M,T )
/H into R(M,T ) for each finite H. Hence for each j ∈ J we have equivariant maps
Uj → R(M,T ). Using the partition of unity we can convexly combine these maps
to get an equivariant map X → R(M,T ).

The uniquesness of the map up to homotopy also follows from the convexity of
R(M,T ). �

Example 2.5. We give an example of quasitoric manifolds satisfying the assump-
tions of the previous lemma.

Let n > 3 and M0 be the projectivization of a sum of n−1 complex line bundles
E0, . . . , En−2 over CP 1 such that c1(E0) = 0 and the first Chern classes of the
other bundles are nontrivial, not equal to one, and pairwise distinct. Then M0 is
a generalized Bott manifold and in particular a quasitoric manifold over I ×Δn−2,
where I is the interval and Δn−2 denotes an n − 2-dimensional simplex. For a
general description of the combinatorics of the orbit space of a generalized Bott
manifold see for example [CMS10, Section 6].

Let M1 = CP 1 × M0 and M2 = M1#CPn be the blow up of M1 at a single
T -fixed point. The orbit space of M1 is I × I × Δn−2. The orbit space of M2 is
the orbit space of M1 with a vertex cut off, i.e., M2/T = (M1/T )#Δn, where the
connected sum is taken at a vertex.

The combinatorial types of the facets of M2/T are given as in Table 1 below.
Since the combinatorial types of facets in the lines in this table are pairwise distinct,
it follows that the lines in the table are invariant under the action of Aut(P, λ).
Therefore the facets in the first two lines are fixed by the action of this group. The
facets in lines 3 and 4 are fixed, because in each of these lines there appears one
facet F with λ(F ) = {(z, 1, . . . , 1) ∈ Tn; z ∈ S1} but the values of λ on the other
facets are distinct.

Finally the facets F1, . . . , Fn−2 in the last line are fixed, by all (f, g) ∈ Aut(P, λ)
because g must permute the subgroups λ(F1), . . . , λ(Fn−2), which are the coordi-
nate subgroups in {(1, 1)} × (S1)n−2, and must also fix the subgroups λ(F ′) with
F ′ from line 3.

Note that depending on the choices of the bundles E0, . . . , En−2, M2 can be spin
or nonspin.
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Table 1. The combinatorial types of the facets of M2/T . In the
first column the numbers of facets of these type are given. In the
last column the values of λ(F ) = {(zα1 , . . . , zαn) ∈ Tn; z ∈ S1}
are given.

combinatorial type (α1, . . . , αn)

1 Δn−1 (1, . . . , 1)
1 I × I ×Δn−3 (0, 0, 1, . . . , 1)
2 I ×Δn−2 (1, 0, 0, . . . , 0)

(0, 1, k1, . . . , kn−2)
with ki pairwise distinct and nonzero

2 I ×Δn−2 with vertex cut off (1, 0, 0, . . . , 0)
(0, 1, 0, . . . , 0)

n− 2 I × I ×Δn−3 with vertex cut off (0, 0, 0, . . . , 0, 1, 0, . . . , 0)

3. The homotopy groups of D(M,T ) for M a quasitoric manifold

In this section we show that, for some quasitoric manifolds M of dimension 2n,
n odd, the rational homotopy groups of D(M,T ) are nontrivial in certain degrees.
Let P be the orbit polytope of M .

Let Dn ↪→ P be an embedding into the interior of P such that K = P −Dn is
a collar of P . Then we have a decomposition

M = (Dn × T )
⋃

Sn−1×T

π−1(K) = (Dn × T )
⋃

Sn−1×T

N.

From this decomposition we get a homomorphism ψ : D̃iff(Dn, ∂Dn) → G/H ↪→
D(M,T ) by letting a diffeomorphism of Dn act on M in the natural way on Dn

and by the identity on T and N . Here D̃iff(Dn, ∂Dn) denotes the group of those
diffeomorphisms of Dn which are the identity on some collar neighborhood of the
boundary. By the uniqueness of collars up to isotopy, it is weakly homotopy equiva-
lent to the group Diff(Dn, ∂Dn) of all diffeomorphisms of Dn which are the identity
on the boundary.

There is also a natural map D̃iff(Dn, ∂Dn) → Diff(P ), because a diffeomorphism

in D̃iff(Dn, ∂Dn) can be extended by the identity on K to form a diffeomorphism
of P . This natural map factors as π∗ ◦ ψ, where π∗ : D(M,T ) → Diff(P ) is the
natural map induced by the orbit map.

Lemma 3.1. For 0 < k < n
6 − 8, n odd, and k ≡ −1 mod 4, the natural map

πk(Diff(Dn, ∂Dn))⊗Q ∼= πk(D̃iff(Dn, ∂Dn))⊗Q → πk(Diff(P ))⊗Q

is injective and nontrivial. In particular, ψ induces an injective nontrivial homo-
morphism on these homotopy groups.

Proof. We have exact sequences

1 → Diff(Dn, ∂Dn) → D̃iff(P ) → Diff(K),

where D̃iff(P ) is the group of diffeomorphisms of P which preserve K, and

1 → Diff(K, ∂Dn) → Diff(K) → Diff(∂Dn).
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Note that D̃iff(P ) is weakly homotopy equivalent to Diff(P ) by the uniqueness
of collars up to isotopy. Moreover, the images of the right-hand maps in the above
sequences have finite index as we now explain.

In the first sequence this is because the group of those diffeomorphisms of a sphere
which extend to diffeomorphisms of the disc has finite index in all diffeomorphisms
of the sphere.

To see that Diff(K) → Diff(∂Dn) is surjective, we have to show that every
diffeomorphism of ∂Dn extends to a diffeomorphism of K. This can be done as in
the last step of the proof of Theorem 5.1 of [Wie13].

Therefore we get exact sequences of rational homotopy groups

πk+1(Diff(P ))⊗Q →πk+1(Diff(K))⊗Q →πk(Diff(Dn, ∂Dn))⊗Q →πk(Diff(P ))⊗Q

and

πk+1(Diff(K, ∂Dn))⊗Q → πk+1(Diff(K))⊗Q → πk+1(Diff(∂Dn))⊗Q.

By Farrell and Hsiang [FH78], we have πk+1(Diff(∂Dn))⊗Q = 0.
Moreover, every family in the image of πk+1(Diff(K, ∂Dn)) → πk+1(Diff(K))

extends to a family of diffeomorphisms of P by defining the extension to be the
identity on Dn.

Therefore the map πk+1(Diff(K))⊗Q → πk(Diff(Dn, ∂Dn)⊗Q is the zero map
and the claim follows from Farrell and Hsiang [FH78]. �

4. πk(M+) is nontrivial

In this section we show that πk(M+(M,T )) is nontrivial for manifolds as in
Example 2.5.

To do so, we need the following theorem which is an equivariant version of
Theorem 2.13 of [Wal11].

Theorem 4.1. Let G be a compact Lie group. Let X be a smooth compact G-
manifold of dimension n, and let B be a compact space. Let {gb ∈ R+(X,G) :
b ∈ B} be a continuous family of invariant metrics of positive scalar curvature.
Moreover, let ι : G ×H (S(V ) × D1(W )) → X be an equivariant embedding, with
H ⊂ G compact, V,W orthogonal H-representations with dimG−dimH+dimV +
dimW = n + 1, and dimW > 2. Here S(V ) and D1(W ) denote the unit sphere
and the unit disc in V and W , respectively.

Finally let gG/H be any G-invariant metric on G/H, and let gV be any H-
invariant metric on S(V ).

Then, for some 1 > δ > 0, there is a continuous map

B → R+(X,G)

b �→ gbstd

satisfying

(1) Each metric gbstd makes the map G ×H (S(V ) × Dδ(W )) → (G/H, gG/H)
into a Riemannian submersion. Each fiber of this map is isometric to
(S(V )×Dδ(W ), gV +gtor), where gtor denotes a torpedo metric on Dδ(W ).
Moreover gbstd is the original metric outside a slightly bigger neighborhood
of G×H (S(V )× {0}).

(2) The the original map B → R+(X,G) is homotopic to the new map.
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The proof of this theorem is a direct generalization of the proof of Theorem 2.13
of [Wal11] using the methods of the proof of Theorem 2 in [Han08]. Therefore we
leave it to the reader.

Let E be the total space of a Hatcher disc bundle [Goe01] over Sk with fiber
Dn and structure group Diff(Dn, ∂Dn). Note that its classifying map Sk →
BDiff(Dn, ∂Dn) represents a nontrivial element in πk(BDiff(Dn, ∂Dn)).

Moreover, let

F = (E × T )
⋃

Sk×Sn−1×T

(Sk ×N),

where

M = (Dn × T )
⋃

Sn−1×T

π−1(K) = (Dn × T ) ∪Sn−1×T N

is a 2n-dimensional quasitoric manifold over the polytope P and K is a collar of
the boundary of P .

Let M1 ⊂ N be a characteristic submanifold. Then M1 is a submanifold of
codimension two in N which is fixed pointwise by a circle subgroup λ(M1) of T . M1

is the preimage of a facet of P under the orbit map. Denote by M̃1 an equivariant
tubular neighborhood of M1.

Then F is a bundle over Sk with fiber the quasitoric manifold M and structure
group Diff(Dn, ∂Dn). Note that F has a natural fiberwise T -action.

By Theorem 2.9 of [BHSW10], we have a metric on E with fiberwise positive
scalar curvature which is a product metric at the boundary. On T ×D2 we choose
an T ×S1-invariant metric of nonnegative scalar curvature on T ×D2, which is also
a product metric at the boundary. Here S1 acts by rotation on D2.

On (N − M̃1) × D2, there is an equivariant Morse function h without critical
orbits of co-index less than three. Indeed, in [Wie16, Proof of Theorem 2.4] we

constructed an equivariant Morse function f on M − M̃1 without handles of co-
index zero. In this construction we can arrange that the global minimum of f is
attained in a principal orbit. By restricting f to the complement of an invariant
neighborhood of this principal orbit, we get an equivariant Morse function on a
T -manifold with boundary which is equivariantly diffeomorphic to N − M̃1. This
function induces a Morse function h′ on (N − M̃1)×D2 such that

h′(x, y) = f(x) + ‖y‖2 (x, y) ∈ (N − M̃1)×D2.

We can deform this function h′ in a neighborhood of the boundary of N − M̃1 to
an equivariant Morse-function h in such a way that:

• There are no critical orbits in a neighborhood of the boundary.
• The global minimum of h is attained on (∂N)×D2.

• The global maximum of h is attained on (∂M̃1)×D2.

• The critical orbits of h are contained in (N−M̃1)×{0} and all have co-index
at least three.

Using this Morse function and Theorem 4.1 we get a fiberwise invariant metric
of positive scalar curvature on ∂((F − (Sk × M̃1))×D2).

Indeed, using the function h, we get an equivariant handle decomposition of
(N − M̃1)×D2, without handles of codimension less than three, i.e.,

(N−M̃1)×D2 = (∂N)×D2×I∪T×H1
(D(V1)×D(W1))∪· · ·∪T×Hk

(D(Vk)×D(Wk),
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such that the Hi are closed subgroups of T , the Vi and Wi are orthogonal Hi

representations with dimWi ≥ 3, and the gluing of a handle T ×Hi
(D(Vi)×D(Wi))

is performed along T ×Hi
(S(Vi)×D(Wi)).

Moreover, the restriction of the bundle ∂(E×T ×D2) → Sk to (∂E)×T ×D2 is
trivialized by assumption. So the restriction of g to the fibers of this bundle gives a
compact family of invariant metrics of positive scalar curvature on (∂N)×D2. By
Theorem 4.1, we can assume that this family is in standard form on the attaching
locus of T ×H1

(D(V1) × D(W1)) in ∂N × D2. Therefore the family of product
metrics on (∂N)×D2 × I extends to a family of invariant positive scalar curvature
metrics on

(∂N)×D2 × I ∪ T ×H1
(D(V1)×D(W1)),

which are product metrics at the boundary. Continuing in the same manner with
the other handles leads to a family of invariant metric of positive scalar curvature
on (N − M̃1)×D2 which are product metrics at the boundary. Gluing this metric
together with the metric on E× T ×D2 and restricting to the boundary leads to a
fiberwise invariant metric of positive scalar curvature on ∂((F − Sk × M̃1)×D2).

Note that Bérard-Bergery’s result [BB83] on the existence of a metric of positive
scalar curvature on the orbit space of a free torus action generalizes directly to
a family version. This is because Bérard-Bergery shows that if g is an invariant
metric of positive scalar curvature on a free S1-manifold M , then f2/ dimM−2 · g∗
has positive scalar curvature, where g∗ is the quotient metric of g and f is the
length of the S1-orbits in M . This construction clearly generalizes to families of
metrics. Moreover, the metrics on the orbit space will be invariant under every Lie
group action which is induced on M/S1 from an action on M which commutes with
S1 and leaves the metrics on M invariant (see [Wie16, Theorem 2.2] for the case of
a single metric).

We have a free action of the diagonal in λ(M1)× S1 ∼= S1 × S1 on

∂((F − (Sk × M̃1))×D2) = (Sk × ∂M̃1 ×D2)
⋃

Sk×(∂M̃1)×S1

(F − Sk × M̃1)× S1.

Here the first factor of λ(M1) × S1 acts as a subgroup of T on F and the second
factor acts on D2 by rotation.

The orbit space of this free action is

(Sk × M̃1)
⋃

Sk×(∂M̃1)

(F − Sk × M̃1),

which is clearly equivariantly diffeomorphic to F .
Hence, with the remarks from above one gets an invariant metric of fiberwise

positive scalar curvature on F in the same way as in the case of a single metric (see
[Wie16, Proof of Theorem 2.4] for details).

This metric defines an element γ in πk(M+(M,T ))⊗Q. The image of γ in

πk(M(M,T ))⊗Q ∼= πk(BD(M,T ))⊗Q

is represented by the classifying map for our Hatcher bundle E.
Therefore, it follows from the lemmas in the previous two sections that γ is

nontrivial if M is as in Example 2.5 because the classifying map of a Hatcher bundle
represents a nontrivial element in the homotopy groups of BDiff(Dn, ∂Dn).

Therefore we have proved the following theorem.
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Theorem 4.2. Let M be a quasitoric manifold of dimension 2n such that Aut(P, λ)
→ Aut(P) is trivial. Then for 0 < k < n

6−7, n odd, and k ≡ 0 mod 4, πk(M+)⊗Q

is non-trivial, where M+ is some component of M+(M ;T ).
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