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Abstract. Given a finite-dimensional real or complex Lie algebra g equipped
with a geometric structure (i.e., either an invariant metric, a symplectic or
contact structure), the aim of this work is to show that the double extension
process introduced by V. Kac allows one to generate Lie algebras equipped with
the same type of geometric structure. In particular, for an exact symplectic
Lie algebra, through a double extension process it is possible to construct new
exact symplectic Lie algebras.

1. Introduction

The double extension process appears for the first time as a couple of exercises
in the book Infinite-dimensional Lie algebras of V. Kac (see exercises 2.10 and 2.11
of [8] for more details). In fact, the first exercise (exercise 2.10 in [8]) describes
the process to construct an (n + 2)-dimensional quadratic Lie algebra, i.e., a Lie
algebra equipped with an invariant metric, from an n-dimensional quadratic Lie
algebra; while in the second exercise (labeled as exercise 2.11 in [8]) the reader
is asked to prove that every indecomposable quadratic solvable Lie algebra is a
double extension of a quadratic Lie algebra of codimension 2. A few years later,
almost simultaneously, both A. Medina and P. Revoy (see [11]), and G. Favre
and J. L. Santharoubane (see [6]) proved that this result holds for any non-simple
quadratic Lie algebra g having dimension greater than one and such that every
ideal of g degenerates. In 1991, A. Medina and P. Revoy provided an analogous
result concerning nilpotent symplectic Lie algebras (see [12]). Observe that in both
works, conditions are given for a quadratic or symplectic Lie algebra to be a double
extension of another quadratic or symplectic Lie algebra, respectively. Clearly,
this process allows one to construct families of either quadratic or symplectic Lie
algebras and, in some cases, it also allows one to recover the family of Lie algebras
in terms of a minimal ideal and successive applications of the double extension
process. These ideas described above also have been applied in the context of
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quadratic Lie superalgebras (see [2]), Poisson Lie groups (see [10]), or Lie–Kähler
groups (see [5]).

More recently, in [1] and [13] similar problems have been addressed for a contact
Lie algebra. In [13] conditions are given for a double extension of a contact Lie
algebra to be a contact Lie algebra again; moreover, it is shown that there are
contact Lie algebras that cannot be expressed as a double extension of a contact
Lie algebra of codimension 2. Thus, in general, it is not possible to talk about a
minimal contact Lie algebra from which, through the double extension process, one
can construct all the contact Lie algebras. On the other hand, in [9], Y. Khakimd-
janov, M. Goze, and A. Medina point out that every nilpotent contact Lie algebra
can be obtained by the “symplectic double extension” and the contactization. Fol-
lowing this idea, in [1] it is proved that every contact nilpotent Lie algebra having
dimension greater than 5 can be constructed from the 3-dimensional Heisenberg
Lie algebra h3, through a successive application of appropriate double extensions.

Hence, given a finite-dimensional Lie algebra g equipped either with an invariant
metric, a symplectic structure or a contact structure, the aim of this work is to
determine whether a double extension of such Lie algebra g produces a Lie algebra
equipped with the same type of geometric structure. In all cases, we provide a
positive answer, although we shall note that the answer concerning contact Lie
algebras has been addressed in [13] and for the sake of completeness we include it.

It is important to point out the difference between this work and the works
of V. Kac, A. Medina, and P. Revoy: in the construction of a quadratic double
extension of a Lie algebra g presented in both [8] and [11], it is required that the
derivation acts in a trivial way in the central element of the central extension of
g, and the same requirement is made for a symplectic double extension given in
[12]. Clearly, this produces Lie algebras having a non-trivial center. On the other
hand, in this work it is proved that for the quadratic case, the condition that the
derivation acts in a trivial way in the central element of the central extension of
g it is a necessary condition, whereas for the symplectic case it is not. Hence, we
can produce exact symplectic or Frobenius Lie algebras that do not appear in the
construction given by A. Medina and P. Revoy.

Finally, the work is presented as follows: in section 1 we provide the basic defini-
tions and the first elementary results, in section 2 we focus on determining whether
a double extension of a quadratic Lie algebra is a quadratic Lie algebra again, and
as a consequence of this, we can recover Theorem 17 from [14]. Subsequently, in
section 3 we address the problem for symplectic Lie algebras and, in particular,
we show that for an exact symplectic or Frobenius Lie algebra, through a double
extension process it is possible to construct new exact symplectic Lie algebras. Fi-
nally, following completely [13], in section 4 we study the case regarding contact
Lie algebras.

2. Preliminaries

For the sake of completeness, in this section we collect some well-known facts
about cohomology of Lie algebras and we also introduce the definitions needed to
develop the main results of this work. Here and subsequently, F will denote either
the real field R or the complex field C.
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2.1. Cohomology of Lie algebras. For this the best general reference is [4].
Let g be a finite-dimensional Lie algebra. Given a linear representation ρ : g →
gl(V ), Ck(g, V ) denotes the space of k-linear functions from g into V . As usual,
C0(g, V ) := V and C1(g, V ) = Hom(g, V ). An element φ ∈ Ck(g, V ) is called a
k-form. The exterior differential d : Ck(g, V ) → Ck+1(g, V ) is defined as follows:
for φ ∈ C0(g, V ) := V , (dφ)(x) := ρ(x)(φ), whereas for φ ∈ Ck(g, V ) with k ≥ 1,
then

(dφ)(x1, . . . , xk+1) =
1

k + 1

k+1∑
i=1

(−1)i+1ρ(xi)φ(x1, . . . , x̂i, . . . , xk+1)

+
1

k + 1

∑
i<j

(−1)i+jφ([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xk+1),

where ̂ indicates that the i-th element is removed. If dimV = 1 one can consider
the trivial representation ρ(x) ≡ 0 for all x ∈ g and in this case, Ck(g, V ) is denoted
by (Λkg)∗.

Given a Lie algebra g and a representation ρ : g → gl(V ), we define

Zk(g, V ) = Ker(d : Ck(g, V ) → Ck+1(g, V )),

Bk(g, V ) = Im(d : Ck−1(g, V ) → Ck(g, V )).

A k-form ω ∈ Zk(g, V ) is called closed or a k-cocycle, whereas a k-form η ∈
Bk(g, V ) is called exact.

The k-th group of cohomology with coefficients in the representation ρ is defined
by:

Hk(g, V ) =
Zk(g, V )

Bk(g, V )
, k ≥ 1,

H0(g, V ) = Z0(g, V ).

Let g be a finite-dimensional Lie algebra and let B : g × g → F be a non-
degenerate symmetric bilinear form on g. We say that (g, B) is a quadratic or
metric Lie algebra if B satisfies that B([x, y], z) = B(x, [y, z]) for all x, y, z ∈ g. In
this case we will say that B is an invariant scalar product or an invariant metric
on g.

Let g be a 2n-dimensional Lie algebra and let ω : g×g → F be a non-degenerate
skew-symmetric bilinear form on g. We say that (g, ω) is a symplectic Lie algebra
if ω satisfies that dω = 0, that is, if ω is a non-degenerate 2-cocycle for the scalar
cohomology of g. In this case we will say that ω is a symplectic structure on g.
Furthermore, we say that (g, ω) is a symplectic exact or Frobenius Lie algebra if
in addition there exists ϕ ∈ g∗ such that ω = dϕ. In this case ω will be called a
symplectic exact structure on g. Let g be a (2n + 1)-dimensional Lie algebra and
let α : g → F be a 1-form. We say that (g, α) is a contact Lie algebra if α satisfies
that α ∧ (dα)n �= 0. In this case we will say that α is a contact structure on g.

Here and subsequently, by a geometric structure defined on a Lie algebra g, we
will understand that the Lie algebra g is equipped with either an invariant metric,
a symplectic structure, or a contact structure.

2.2. Double extensions. Let g be a finite-dimensional Lie algebra and let θ ∈
(Λ2g)∗ be a 2-cocycle. Let 〈e〉 := Span

F
{e} be a 1-dimensional trivial Lie algebra.
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Then, letting
[x, y]θ = [x, y]g + θ(x, y)e, x, y ∈ g,

[x, e]θ = 0, x ∈ g,

the vector space gθ(e) := g⊕ 〈e〉 is clearly a Lie algebra that it is called the central
extension of g by the 2-cocycle θ.

Consider now a central extension gθ(e) of g by a 2-cocycle θ ∈ (Λ2g)∗, and let
D ∈ DerF(gθ(e)) be a derivation of gθ(e). The double extension of g by the pair
(D, θ) is defined as the semidirect product g(D, θ) := 〈D〉�gθ(e) of the abelian Lie
algebra 〈D〉 with gθ(e), where the bracket is given by

[x, y]D,θ = [x, y]θ, x, y ∈ gθ(e),

[D, x]D,θ = D(x), x ∈ gθ(e).

A direct calculation shows the following result:

Lemma 2.1. Let gθ(e) = g ⊕ 〈e〉 be a central extension of a real Lie algebra g by
a closed 2-form θ. Then the center of gθ(e) is given by

Z(gθ(e)) = (Z(g) ∩ Rad(θ))⊕ 〈e〉,
where Rad(θ) = {z ∈ g | θ(z, x) = 0 ∀x ∈ g}.

Given a central extension gθ(e) of a Lie algebra g by a closed 2-form θ, the next
result characterizes the derivations D ∈ DerF(gθ(e)).

Lemma 2.2. A linear transformation D ∈ glF(gθ(e)) consists of a 4-tuple (A, f, v, b)
∈ EndF(g)× g∗ × g× F satisfying

(2.1)
D(x) = A(x) + f(x)e for x ∈ g,

D(e) = v + be.

Moreover, such D ∈ glF(gθ(e)) is a derivation if and only if the following conditions
hold for all x, y ∈ g:

(1) dA(x, y) = θ(x, y)v (in this case d is the exterior differential for the adjoint
representation),

(2) −df(x, y) = θ(A(x), y)+θ(x,A(y))− b θ(x, y) (in this case d is the exterior
differential for the trivial representation),

(3) v ∈ Z(g) ∩ Rad(θ).

Remark 2.3. In the previous lemma suppose that θ �≡ 0; then v = 0 if and only if
A ∈ Der(g). In particular, this holds when either Z(g) = {0} or Rad(θ) = {0}.

Corollary 2.4. Let D ∈ DerR(gθ(e)) be a derivation as in Lemma 2.2 above. It
follows that

(1) D(e) ∈ Z(gθ(e)).
(2) If x ∈ Z(g) ∩ Rad(θ), then A(x) ∈ Z(g) ∩Rad(θ).
(3) If v = 0, then D is a nilpotent derivation if and only if A ∈ DerF(g) is a

nilpotent derivation and clearly, b = 0.

Lemma 2.5. Let g(D, θ) be a double extension of g by the pair (D, θ) and suppose
that D(e) �= 0. Then w ∈ Z(g(D, θ)) if and only if there exist w0 ∈ g, p, q ∈ R such
that

(1) w = w0 + pe+ qD,
(2) w0 ∈ Z(g) ∩ Rad(θ),
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(3) q = 0,
(4) D(w0 + pe) = 0.

3. Quadratic Lie algebras

The goal of this section is to determine whether a double extension of a quadratic
Lie algebra is a quadratic Lie algebra. For doing this, let g be a finite-dimensional
Lie algebra and let B = {e1, . . . , en} be a fixed basis for g. For any linear or bilinear
transformation T defined on g, we will denote by [T ] its associated matrix in the
chosen basis. A straightforward calculation shows the following result:

Lemma 3.1. Let g be a finite-dimensional Lie algebra, let B = {e1, . . . , en} be a
fixed basis for g and consider a bilinear form B : g × g → F. Then the following
statements are equivalent:

(1) B is an invariant form on g,
(2) [ad(x)]T [B] + [B][ad(x)] = 0 for all x ∈ g,
(3) [ad(ei)]

T [B] + [B][ad(ei)] = 0 for all 1 ≤ i ≤ n.

Now, consider a double extension g(D, θ) of a finite-dimensional Lie algebra g by
a pair (D, θ). In what follows adD,θ : g(D, θ) → gl(g(D, θ)) stands for the adjoint
representation of the double extension g(D, θ) of g by the pair (D, θ), whereas for
x ∈ g, θx denotes the linear function θx ∈ g∗ such that θx(y) := θ(x, y) for all y ∈ g.

Observe that fixing a basis B̂ = B ∪ {e,D} of g(D, θ), according to Lemma 2.2 one
can explicitly compute the associated matrix to any derivation of g(D, θ). Hence,

relative to basis B̂ one gets that the associated matrix of an inner derivation of
g(D, θ) is given by one of the following expressions:

[adD,θ(x)] =

⎛⎝[ad(x)] 0 −[Ax]
[θx] 0 f(x)
0 0 0

⎞⎠ for x ∈ g,

[adD,θ(e)] =

⎛⎝0 0 −v
0 0 −b
0 0 0

⎞⎠ , [adD,θ(D)] =

⎛⎝ [A] v 0
[f ]T b 0
0 0 0

⎞⎠ .

Suppose now that g is a quadratic Lie algebra, that is, g is equipped with an
invariant metric B : g × g → F. On the double extension g(D, θ) of g by the
pair (D, θ) it can be defined as a non-degenerate symmetric bilinear form BD,θ :
g(D, θ)× g(D, θ) → F as follows:

(I)

BD,θ(x, y) = B(x, y) for x, y ∈ g,

BD,θ(x, e) = BD,θ(x,D) = 0 for x ∈ g,

BD,θ(e, e) = BD,θ(D,D) = 0,

BD,θ(e,D) = BD,θ(D, e) = λ �= 0.

Clearly, the associated matrix of BD,θ with respect to the basis B̂ is given by

[BD,θ] =

⎛⎝[B] 0 0
0 0 λ
0 λ 0

⎞⎠ .

Then we can state the main theorem of this section.
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Theorem 3.2. Let g(D, θ) be a double extension of a finite-dimensional Lie algebra
g by the pair (D, θ). Let BD,θ : g(D, θ) × g(D, θ) → F be the symmetric bilinear
form defined by the equations given by (I). Then (g(D, θ), BD,θ) is a quadratic Lie
algebra if and only if f(x) = 0, D(e) = 0, and θ(x, y) = 1

λB(Ax, y) for all x, y ∈ g.

Proof. Let B̂ = {e1, . . . , en, e,D} be a basis of g(D, θ). From Lemma 3.1 it follows
that (g(D, θ), BD,θ) is a quadratic Lie algebra if and only if the next conditions are
satisfied:

(1) λ[θx] = [x]T [A]T [B],
(2) f(x) = 0,
(3) v = 0,
(4) b = 0,
(5) [A]T [B] + [B][A] = 0.

Let gθ(e) be the central extension of g by the 2-cocycle θ. Observe that conditions
(3) and (4) are equivalent to the fact that the derivation D ∈ Der(gθ(e)) acts
trivially on the center Z(gθ(e)) of the central extension gθ(e), that is, D(e) = 0.
Moreover, since v = 0, from Lemma 2.2 follows that A ∈ Der(g). On the other
hand, equation (1) is equivalent to λθ(x, y) = B(Ax, y) for all x, y ∈ g and since
θ ∈ (Λ2g)∗ is a 2-cocyle, A is skew-symmetric with respect to B, but this is precisely
equation (5). �
Remark 3.3. Given a quadratic Lie algebra (g, B), it is well known that there exists
a one-to-one correspondence between 2-cocycles θ ∈ (Λ2g)∗ and skew-symmetric
derivations D ∈ Der(g) with respect to the bilinear form B. Since the invariant
metric B : g×g → F is non-degenerate, the correspondence is obtained considering
θ(x, y) = B(Dx, y) for all x, y ∈ g. Moreover, θ is non-degenerate if and only if D
is invertible.

The following result is a direct consequence of Theorem 3.2 above.

Corollary 3.4. If (g(D, θ), BD,θ) is a quadratic Lie algebra, then

(1) Rad(θ) = KerA,
(2) w ∈ Z(g(D, θ)) if and only if there exist w0 ∈ g, p, q ∈ R such that w =

w0 + pe+ qD and
(a) w0 ∈ Rad(θ),
(b) adg(w0) = −qA.

(3) 〈e〉 ⊂ Z(g(D, θ)). Moreover, 〈e〉 is an isotropic ideal.

On the the other hand, the proof of the next result follows immediately from
Exercise 2.10 of [8].

Theorem 3.5. Let n ≥ 5 and (h,Φ) be an n-dimensional quadratic Lie algebra hav-
ing a 1-dimensional central isotropic ideal. Then, there exists an (n−2)-dimensional
quadratic Lie algebra (g, B), a 2-cocycle θ ∈ (Λ2g)∗ and a derivation D ∈ Der(gθ(e))
of the central extension gθ(e) of g by θ such that (h,Φ) is isometrically isomorphic
to (g(D, θ), BD,θ), where g(D, θ) is the double extension of g by a pair (D, θ) and
BD,θ : g(D, θ)×g(D, θ) → F is the invariant metric defined on g(D, θ) by equations
(I).

Remark 3.6. From Theorem 3.5 above it follows that for n ≥ 1, a (2n + 3)-
dimensional quadratic Lie algebra having a 1-dimensional central isotropic ideal
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is isometrically isomorphic to a double extension of a (2n + 1)-dimensional qua-
dratic Lie algebra. Observe that if one is restricted to the class of nilpotent Lie
algebras endowed with either a symplectic or a contact structure, analogous results
can be obtained since, in both cases, there exists a 1-dimensional central isotropic
ideal. However, this is not necessarily true for the general case.

3.1. Example. Consider the quadratic Lie algebra (R2n, B) where R2n is the 2n-
dimensional abelian Lie algebra and B : R2n × R2n → R is the usual invariant
metric on R

2n. On the other hand, consider also θ : R
2n × R

2n → R as the
usual symplectic form on R2n. Clearly, θ is a 2-cocycle for the scalar cohomology
of R2n and hence, letting 〈z〉 be a 1-dimensional trivial Lie subalgebra, one can
take the central extension R2n

θ (z) of R2n by θ. Observe that R2n
θ (z) is just the

(2n+ 1)-dimensional Heisenberg Lie algebra, that is, h2n+1 = R
2n
θ (z). Choose now

a derivation D ∈ Der(R2n
θ (z)) of the Heisenberg Lie algebra R2n

θ (z) in order to
construct the double extension R2n(D, θ) of R2n by the pair (D, θ). Hence, as a
consequence of Theorem 3.2 we get the next result:

Theorem 3.7 (See [14], Theorem 17). R2n(D, θ) is a quadratic Lie algebra if and
only if Ker(D) = 〈z〉, where Z(R2n

θ (z)) = 〈z〉.

Proof. From Remark 3.3 it follows that the restriction D|R2n : R2n → R2n is an
invertible transformation D|R2n and therefore, Ker(D) = 〈z〉. Moreover, D|R2n ∈
sp(2n,R). �

4. Symplectic Lie algebras

As we did in section 2, we shall determine whether a double extension of a
symplectic Lie algebra is a symplectic Lie algebra again. In particular, we shall
show that for an exact symplectic Lie algebra, through a double extension process
it is possible to construct new exact symplectic Lie algebras.

Proposition 4.1. Let g be a finite-dimensional symplectic Lie algebra with a sym-
plectic structure ω ∈ (Λ2g)∗, and let θ ∈ (Λ2g)∗. Then for almost all λ ∈ F with
the exception of a finite number of values, ω + λθ is a symplectic structure on g,
i.e.,

(ω + λθ)n �= 0.

Proof. Let {e1, . . . , e2n} be a basis for g and let {e1, . . . , e2n} be its dual basis. Since
ω ∈ (Λ2g)∗ is a symplectic structure on g, it follows that ωn = a0 e1 ∧ · · · ∧ e2n for
some a0 �= 0. On the other hand, for each k ∈ {1, . . . , n}, ωn−k∧θk = ak e1∧· · ·∧e2n
with ak ∈ F. Hence,

(ω + λθ)n =

n∑
k=0

(
n

k

)
λk ωn−k ∧ θk

=
(
a0 +

n∑
k=1

(
n

k

)
ak λk

)
(e1 ∧ · · · ∧ e2n).

Let p(x) = a0 +
∑n

k=1

(
n
k

)
akx

k ∈ F[x] be a non-zero polynomial of degree n.
Since p(x) has at most n roots, there exists λ ∈ F such that p(λ) �= 0. Therefore,
for such λ ∈ F, (ω + λθ)n �= 0. �
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Theorem 4.2. Let g be a finite-dimensional Frobenius Lie algebra with an exact
symplectic structure given by ω = dα, α ∈ g∗. Given a 2-cocycle θ ∈ (Λ2g)∗,
consider a central extension gθ(e) of g by θ and let β ∈ (gθ(e))

∗ be defined by β =
α+ λe∗, λ ∈ F. If there exists a derivation D ∈ Der(gθ(e)) such that β(D(e)) �= 0,
then the double extension g(D, θ) of g by the pair (D, θ) is a Frobenius Lie algebra
with exact symplectic form ωθ = dθβ for some λ ∈ F.

Proof. Let [θ] ∈ H2(g,F). Since the elements of H2(g,F) are in a one-to-one
correspondence with the isomorphism classes of central extensions of g (see [4]
for more details), if [θ] = 0 (for example if θ = −dα), then the central extension of
g by θ is isomorphic to a direct sum of Lie algebras:

gθ(e) � g⊕ 〈e〉.
Hence, defining D ∈ Der(gθ(e)) by D|g ≡ 0 and D(e) = e, it follows that

g(D, θ) � g⊕ 〈e,D〉,
where [D, e] = D(e) = e. Since 〈e,D〉 is an exact symplectic Lie algebra, it follows
that g(D, θ) is a Frobenius Lie algebra with exact symplectic form ωθ = dβ, β =
α+ e∗ and clearly, λ = 1.

Suppose now that [θ] �= 0 and let β = α + λ e∗ ∈ (g(D, θ))∗. We shall use
the Maurer-Cartan equations of g(D, θ) in order to prove that ωθ = dβ is an exact
symplectic structure for some λ ∈ F. For this we shall use the following notation: dθ
stands for the Chevalley-Eilenberg differential operator associated with the trivial
representation on g(D, θ), and d stands for the Chevalley-Eilenberg differential
operator associated with the trivial representation on g.

Let {e1, . . . , e2n, e,D} be a basis for g(D, θ) and {e1, . . . , e2n, e∗, D∗} be its dual

basis. Then α =
∑2n

i=1 αie
i for αi ∈ R and, in the chosen basis, D ∈ Der(gθ(e)) has

a matrix representation given by

[D]gθ(e) =

(
[D|g] v
uT b

)
,

where v, u ∈ F
n, b ∈ F and [D|g] is a matrix representation for D|g ∈ EndF(g), with

([D|g])ij = Dij ∈ F.
Take β = α + λ e∗ ∈ (g(D, θ))∗ and suppose that β(D(e)) �= 0. Clearly, dθβ =

dθα+ λdθe
∗ where

dθα = dα+
1

2

2n∑
i=1

(
2n∑
k=1

αkDki

)
ei ∧D∗ +

1

2

(
2n∑
i=1

αivi

)
e∗ ∧D∗,

and

dθe
∗ = −λ

2

⎛⎝ 2n∑
i<j=1

θ(ei, ej)e
i ∧ ej −

2n∑
i=1

uie
i ∧D∗ − be∗ ∧D∗

⎞⎠ .

Now, let X be the 2-form in (Λ2g)∗ given by

X = dα− λ

2

2n∑
i<j=1

θ(ei, ej)e
i ∧ ej

= dα− λ

2
θ,
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and let Y be the 2-form in (Λ2g(D, θ))∗ given by

Y =
1

2

(
2n∑
i=1

ûi(λ) e
i ∧D∗ + b̂(λ) e∗ ∧D∗

)
,

where

ûi(λ) = λui +
2n∑
k=1

αkDki,

b̂(λ) = λb+

2n∑
i=1

αivi = β(D(e)) �= 0.

Clearly, Xk = 0 for k ≥ n + 1, whereas Y k = 0 for k ≥ 2. Then dθβ can be
written as X + Y , and it follows that

(dθβ)
n+1 = (X + Y )n+1

= (n+ 1)Xn ∧ Y

=
n+ 1

2

2n∑
i=1

ûi(λ)(dα− λ

2
θ)n ∧ ei ∧D∗

+ (n+ 1)b̂(λ)(dα− λ

2
θ)n ∧ e∗ ∧D∗

= (n+ 1)b̂(λ)(dα− λ

2
θ)n ∧ e∗ ∧D∗ �= 0

because (dα− λ
2 θ)

n ∧ ei is a 2n+ 1-form on g and dim g = 2n. Hence, (dθβ)
n+1 �=

0. �

Remark 4.3. It follows from the proof of Theorem 4.2 above that if the central ex-
tension gθ(e) is trivial, i.e., [θ] = 0, then the Frobenius Lie algebra g(D, θ) obtained
from the double extension process is a direct product of the original Frobenius Lie
algebra g and the 2-dimensional affine Lie algebra spanned by 〈D, e〉 with [D, e] = e,
that is, g(D, θ) = g⊕ 〈D, e〉.

Corollary 4.4. If g(D, θ) is a Frobenius Lie algebra, then g(D, θ) is non-nilpotent.

Proof. It follows either from Lemma 1 from [3] or from Proposition 6 given in
[7]. �

Corollary 4.5. If g(D, θ) is a Frobenius Lie algebra, then N(g(D, θ)) = 0, where
N denotes the number of functionally independent invariants for the coadjoint rep-
resentation.

Proof. See [3]. �

Following the same ideas it is straightforward to prove the following result:

Theorem 4.6. Let g be a finite-dimensional symplectic Lie algebra with symplectic
structure given by ω. Given a closed 2-form θ ∈ (Λ2g)∗, consider a central extension
gθ(e) of g by θ and let β ∈ (Λ2g)∗ be defined by β = ω + λdθe

∗, λ ∈ F. If there
exists a derivation D ∈ Der(gθ(e)) such that D(e) = v + be with b �= 0, v ∈ g, then
the double extension g(D, θ) of g by the pair (D, θ) is a symplectic Lie algebra with
symplectic form β for some λ ∈ F.
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Remark 4.7. Both Theorem 4.2 and Theorem 4.6 above give conditions in order to
construct symplectic Lie algebras and Frobenius Lie algebras with trivial center.

5. Contact Lie algebras

Analogously to sections 2 and 3, the goal of this section is to determine whether
a double extension of a contact Lie algebra is a contact Lie algebra again. It is
important to point out that Proposition 5.1 and Theorem 5.2 below are studied
and proved in [13], and we shall present them for the sake of completeness of this
work.

Proposition 5.1. Let g be a finite-dimensional contact Lie algebra with a contact
structure α ∈ g∗, and let θ ∈ (Λ2g)∗. Then for almost all λ ∈ F with the exception
of a finite number of values it follows that

α ∧ (dα+ λθ)n �= 0.

Hence, we can state the main result of this section:

Theorem 5.2. Let g be a finite-dimensional contact Lie algebra with a contact
structure α ∈ g∗. Given a 2-cocycle θ ∈ (Λ2g)∗, consider a central extension gθ(e)
of g by θ and let β ∈ (gθ(e))

∗ be defined by β = α + λe∗, λ ∈ F. If there exists a
derivation D ∈ Der(gθ(e)) such that β(D(e)) �= 0, then the double extension g(D, θ)
of g by the pair (D, θ) is a contact Lie algebra with contact form β for some λ ∈ F.

Remark 5.3. From the condition β(D(e)) �= 0 it follows that e can be chosen in
such a way that D(e) is the Reeb vector of the contact form β.
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[5] Jean-Michel Dardié and Alberto Médina, Algèbres de Lie kählériennes et double extension
(French, with English summary), J. Algebra 185 (1996), no. 3, 774–795. MR1419723

[6] G. Favre and L. J. Santharoubane, Symmetric, invariant, nondegenerate bilinear form on a
Lie algebra, J. Algebra 105 (1987), no. 2, 451–464. MR873679

[7] Michel Goze and Elisabeth Remm, Contact and Frobeniusian forms on Lie groups, Differen-
tial Geom. Appl. 35 (2014), 74–94. MR3231748

[8] Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cam-
bridge, 1990. MR1104219

[9] Yu. Khakimdjanov, M. Goze, and A. Medina, Symplectic or contact structures on Lie groups,
Differential Geom. Appl. 21 (2004), no. 1, 41–54. MR2067457

[10] Alberto Medina and Philippe Revoy, Groupes de Lie Poisson et double extension (French,
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1990–1991 (Montpellier, 1990), Univ. Montpellier II, Montpellier, 1992, pp. iv, 87–105.
MR1186222
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[14] M. C. Rodŕıguez-Vallarte, G. Salgado, and O. A. Sánchez-Valenzuela, Heisenberg Lie su-
peralgebras and their invariant superorthogonal and supersymplectic forms, J. Algebra 332
(2011), 71–86. MR2774679

Facultad de Ciencias, UASLP, Av. Salvador Nava s/n, Zona Universitaria, CP 78290,

San Luis Potośı, S.L.P., México
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