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Abstract. Let f=
∑

n≥1 λf (n)n
(k1−1)/2qn and g=

∑
n≥1 λg(n)n(k2−1)/2qn

be two newforms with real Fourier coeffcients. If f and g do not have complex
multiplication and are not related by a character twist, we prove that

#{n ≤ x | λf (n) > λg(n)} � x.

1. Introduction

For an even positive integer k and a positive integer N , denote by Sk(N)new the
set of newforms of weight k, level N , and trivial nebentypus. Every f ∈ Sk(N)new

has a Fourier expansion at infinity

f(z) =
∑
n≥1

λf (n)n
(k−1)/2qn (q = e2πiz),

in the upper half-plane �(z) > 0. Lau and Wu [7] have shown that a positive
proportion of the coefficients λf (n) are positive, and a positive proportion are
negative. In this note we consider two newforms without complex multiplication
that are not related by a character twist and establish a similar result for the
difference λf (n)− λg(n). More precisely, our main result is the following.

Theorem 1.1. Let k1, k2 ≥ 2 be even integers, and let N1, N2 ≥ 1 be integers. Let
f ∈ Sk1

(N1)
new and g ∈ Sk2

(N2)
new be two newforms without complex multiplica-

tion. Assume that f �= g ⊗ χ, for any Dirichlet character χ. Then there exist two
positive constants C and x0 (both dependening only on f and g) such that for all
x ≥ x0 the following inequality holds:

#{n ≤ x | λf (n) > λg(n)} ≥ Cx.

Our approach is based on the method of B-free numbers (as outlined by Lau
and Wu in [7]), combined with a result of Kowalski, Robert and Wu [6] about
the distribution of the vanishing Fourier coefficients at prime powers. Another
important ingredient is a version of a result of Harris [4], in the form used by
Murty and Pujahari [9], about the joint Sato–Tate distribution for two newforms
(cf. Proposition 2.1), which we need to deduce the existence of two primes with
certain properties.

If, instead of considering the set of dominating coefficients over all positive in-
tegers, one restricts the analysis just to those indexed by prime numbers, then the
joint Sato–Tate distribution readily implies that the corresponding set of primes has
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density 1/2. Without such a powerful tool, the author [2] obtained a lower bound
of 1/16 for the analytic density of that set of primes using the holomorphy and the
nonvanishing only of the first few symmetric power L-functions (see Section 3 for
further discussion).

2. Results

We shall denote by F the set

F := {n | λf (n) > λg(n)}.
A key point in our proof is the existence of two primes, p′ and p′′, for which

(2.1) λf (p
′) > 0 > λg(p

′) and λf (p
′′) < λg(p

′′) < 0.

While we only need a pair (p′, p′′) as above, we note that there are infinitely many
such primes that we can choose from. In fact, as we shall later see in Proposition 2.1
(whose proof we postpone to the end of this section), the above inequalities hold
for a positive proportion of primes.

Next, we consider a set B consisting of the following primes:

(2.2) B := {p | λf (p
ν)·λg(p

ν) = 0 for some ν ≥ 1}∪{p′, p′′}∪{p | p divides N1N2}.
Let A be the set of B-free numbers, by which we mean the set of positive integers

that are not divisible by any of the elements of B. The multiplicative property of
the coefficients imply that, for every B-free number n =

∏r
i=1 p

νi
i ∈ A, we have

λf (n) =

r∏
i=1

λf (p
νi
i ) �= 0,

and similarly, λg(n) �= 0. This means that we can partition the set A into the
following three subsets:

S := {n ∈ A | λf (n) > λg(n)} = A ∩ F ,

S′ := {n ∈ A | λf (n) = λg(n) > 0 or λg(n) > λf (n) > 0},
S′′ := {n ∈ A | λf (n) = λg(n) < 0 or λf (n) < λg(n) < 0 or λf (n) < 0 < λg(n)}.

Using (2.1) we note that if n ∈ S′, then p′ ·n ∈ F , whereas if n ∈ S′′, then p′′ ·n ∈ F .
Therefore,

F ⊇ S ∪ p′S′ ∪ p′′S′′,

which implies that for x large enough

(2.3) #{n ≤ x | n ∈ F} ≥ #{n ≤ x/p′p′′ | n ∈ A}.
Refining a classical result of Serre’s, Kowalski, Robert, and Wu [6, Lemma 2.3]

have proved that

#{p ≤ x | λf (p
ν) = 0 for some ν ≥ 1} �f,ε

x

(log x)1+ε
,

for x ≥ 2 and any ε < 1
2 . This estimate ensures that the set B defined in (2.2) is

not too big, in the sense that ∑
b∈B

1

b
< ∞.

Hence, the infinite product ∏
b∈B

(
1− 1

b

)
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converges to some constant δ > 0. However, this infinite product also represents
the proportion of the positive integers that are not divisble by any of the elements
of B, so by the definition of A,

(2.4) #{n ≤ x | n ∈ A} ∼ δx as x → ∞.

In other words, the set A has positive asymptotic density δ > 0. Then, combining
(2.3) and (2.4) we get that

#{n ≤ x | n ∈ F} � x as x → ∞,

which proves Theorem 1.1.
The only thing left to show is the existence of the pair (p′, p′′) from (2.1) that

we used in our construction of the set B. Below we give a more general result in
this direction.

Proposition 2.1. Let f and g be two newforms without complex multiplication.
Assume that f �= g ⊗ χ, for any Dirichlet character χ. Then:

(i) The set {p | λf (p) > 0 > λg(p)} has density 1/4.
(ii) The set {p | λf (p) < λg(p) < 0} has density 1/8.
(iii) The set {p | λf (p) > λg(p)} has density 1/2.
(iv) The set {p | sign(λf (p)) = sign(λg(p))} has density 1/2.

Proof. The Deligne bound |λf (p)| ≤ 2 implies that there is a unique Frobenius
angle θf (p) ∈ [0, π] such that

λf (p) = 2 cos θf (p).

The Sato–Tate conjecture for non-CM elliptic modular newforms (proved by Barnet-
Lamb, Geraghty, Harris, and Taylor [1]) says that the Frobenius angles θf (p) are
equidistributed in [0, π] with respect to the probability measure

2

π
sin2(θ)dθ.

What we need for our purposes is a natural generalization of this result for the
joint distribution of two newforms. This was done by Harris [4, Theorem 5.4];1 see
also [3, Theorem 2.4] for two nonisogenous elliptic curves. In [9, Section 4], Murty
and Pujahari have extended the argument for two Hecke eigenforms, provided that
they are not twists of each other. As a result, it follows that the pairs

(θf (p), θg(p)) ∈ [0, π]× [0, π]

are uniformly distributed with respect to the product measure

4

π2
sin2(θ1) sin

2(θ2)dθ1dθ2.

Therefore, part (i) is clear once we observe that

4

π2

∫ π/2

0

∫ π

π/2

sin2(θ1) sin
2(θ2)dθ2dθ1 =

1

4
.

The remaining parts are obtained similarly. This finishes the proof of the proposi-
tion and of the main theorem.

�
1The note added in proof on page 2 of [4] clarifies that the Expected Theorems in that paper

have now been established.
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3. Concluding remarks

As was already mentioned in the introduction, without appealing to the joint
Sato–Tate distribution, one can still give a lower bound for the density of the set of
primes from part (iii) of Proposition 2.1. This was done by the author in [2], where
it is proved that if f �= g, then {p | λf (p) > λg(p)} has analytic density at least
1/16. Moreover, it is also shown that if f and g do not have complex multiplication,
and neither is a quadratic twist of the other, then the same lower bound holds for
the set {p | λ2

f (p) > λ2
g(p)}.

Similarly, the set from part (iv) was considered by Kowalski, Lau, Soundararajan,
and Wu in [5], where the analysis was also carried out without the use of the
joint Sato-Tate. Theorem 5 of [5] states that if λf (p) and λg(p) have the same
sign for every prime p, except those in a set of analytic density ≤ 1/32, then
f = g (assuming that neither f nor g has complex multiplication). This estimate
was further improved to 6/25 by Matomäki ([8, Theorem 2]), who employed the
“common” version (as opposed to the joint one) of the Sato–Tate conjecture for
non-CM elliptic modular newforms proved in [1].
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[8] Kaisa Matomäki, On signs of Fourier coefficients of cusp forms, Math. Proc. Cambridge
Philos. Soc. 152 (2012), no. 2, 207–222. MR2887873

[9] M. Ram Murty and Sudhir Pujahari, Distinguishing Hecke eigenforms, Proc. Amer. Math.
Soc. 145 (2017), no. 5, 1899–1904. MR3611306

Department of Mathematics and Statistics, University of Massachusetts Amherst,

710 N Pleasant Street, Amherst, Massachusetts 01003

Email address: chiriac@math.umass.edu

https://www.ams.org/mathscinet-getitem?mr=2827723
https://www.ams.org/mathscinet-getitem?mr=3687866
https://www.ams.org/mathscinet-getitem?mr=3286083
https://www.ams.org/mathscinet-getitem?mr=2641185
https://www.ams.org/mathscinet-getitem?mr=2726725
https://www.ams.org/mathscinet-getitem?mr=2351136
https://www.ams.org/mathscinet-getitem?mr=2551607
https://www.ams.org/mathscinet-getitem?mr=2887873
https://www.ams.org/mathscinet-getitem?mr=3611306

	1. Introduction
	2. Results
	3. Concluding remarks
	Acknowledgments
	References

