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TOPOLOGICAL RIGIDITY FAILS FOR QUOTIENTS

OF THE DAVIS COMPLEX

EMILY STARK

(Communicated by David Futer)

Abstract. A Coxeter group acts properly and cocompactly by isometries on
the Davis complex for the group; we call the quotient of the Davis complex
under this action the Davis orbicomplex for the group. We prove the set

of finite covers of the Davis orbicomplexes for the set of one-ended Coxeter
groups is not topologically rigid. We exhibit a quotient of a Davis complex by
a one-ended right-angled Coxeter group which has two finite covers that are
homotopy equivalent but not homeomorphic. We discuss consequences for the
abstract commensurability classification of Coxeter groups.

1. Introduction

The notion of topological rigidity has its roots in the setting of manifolds. A
closed manifoldM is called topologically rigid if every homotopy equivalence fromM
to another closed manifold is homotopic to a homeomorphism. A well-known exam-
ple of this phenomenon is the Poincaré Conjecture, which states that the 3-sphere
is topologically rigid and was proven by Perelman. Many lens spaces are examples
of 3-manifolds that are not topologically rigid. The Borel conjecture states that
closed aspherical manifolds are topologically rigid. The conjecture was proven for
manifolds of dimension at least five whose fundamental group is either Gromov
hyperbolic or CAT(0) by Bartels and Lück [1], building on the techniques of Farrell
and Jones [6].

The definition of topological rigidity extends from manifolds to orbifolds and
to classes of topological spaces. Background on orbifolds and orbifold homeomor-
phisms is given by Kapovich [7, Chapter 6] and Ratcliffe [12, Chapter 13]. An
orbicomplex is the union of orbifolds identified along homeomorphic suborbifolds,
and the notion of homeomorphism extends to these spaces as well.

Definition 1.1. Let X be a class of topological spaces, orbifolds, or orbicomplexes.
The class X is said to be topologically rigid if for allX1, X2 ∈ X , if π1(X1) ∼= π1(X2),
then X1 and X2 are homeomorphic.

Simplicial graphs provide a simple example of a class of spaces that is not topo-
logically rigid. More generally, for graphs of spaces with one-ended universal covers
the presence of topological rigidity is more subtle. Lafont proved that simple, thick,
n-dimensional hyperbolic piecewise-manifolds are topologically rigid for n ≥ 2 [8],
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[9], [10]. In dimension two, these spaces decompose as graphs of spaces with vertex
spaces that are compact hyperbolic surfaces with boundary, edge spaces that are
circles, and edge-to-vertex space inclusions that identify the boundary components
of the surfaces so that each boundary component is identified to at least two oth-
ers; the higher-dimensional analogues are similar. The orbicomplexes considered in
this paper also have hyperbolic fundamental groups and codimension-1 singularities
along embedded locally geodesic 1-complexes; we show that finite covers of these
spaces do not exhibit topological rigidity.

The spaces studied in this paper have fundamental groups of the following form.
If Γ is a finite simplicial graph with vertex set V Γ and edge set EΓ, the right-
angled Coxeter group WΓ with defining graph Γ has generating set V Γ and relations
s2 = 1 for all s ∈ V Γ and st = ts whenever {s, t} ∈ EΓ. If WΓ is a right-angled
Coxeter group, then WΓ acts properly and cocompactly by isometries on its Davis
complex ΣΓ. The quotient of this space under the action of the right-angled Coxeter
group WΓ is called the Davis orbicomplex DΓ := WΓ\\ΣΓ. Background on Coxeter
groups and the Davis complex is given by Davis [5]. A description of reflection
orbicomplexes related to those described here can be found in [13, Section 5.2] and
[3, Section 3].

A natural setting for questions of topological rigidity for spaces with fundamental
groups right-angled Coxeter groups and their finite-index subgroups is the set of
Davis orbicomplexes and their finite-sheeted covers, as these spaces have a natural
orbicomplex structure. If the graph Γ has no edges, so that WΓ is a free product
of groups isomorphic to Z/2Z, then the set of Davis orbicomplexes and their finite-
sheeted covers is not topologically rigid: such a group is the fundamental group of
an orbicomplex which is finitely covered by a finite simplicial graph. So, one may
ask if topological rigidity holds if one restricts to one-ended right-angled Coxeter
groups. The main result of this paper is the following.

Theorem 1.2. Let X be the set of finite covers of the Davis orbicomplexes for the
set of one-ended right-angled Coxeter groups. The set X is not topologically rigid.

To prove Theorem 1.2, we construct an example of a one-ended right-angled
Coxeter group WΓ so that if D is its Davis orbicomplex, then there exist two finite
covers of D that have the same fundamental group but are not homeomorphic. The
orbicomplex D contains a singular subspace that is finitely covered by a graph; we
find two non-homeomorphic covers of the graph that extend to covers of D so that
the covers have the same fundamental group. The construction of WΓ and D is
given in Section 2, and the finite covers are described in Section 3.

In Proposition 3.2, we employ similar ideas to produce further finite covers of
D that are quotients of the Davis complex by isomorphic torsion-free subgroups of
WΓ and so that these covers are not homeomorphic.

As shown by Crisp–Paoluzzi [2] using the work of Lafont [10], there are one-ended
right-angled Coxeter groups which are not virtually manifold groups for which the
Davis orbicomplex together with its finite-sheeted covers is topologically rigid. So,
we state the following question.

Question 1.3. For which set W of Coxeter groups is the set of Davis orbicomplexes
for groups in W together with their finite-sheeted covers topologically rigid?

Relatedly, Xie [15] proved the set of quotients of Fuchsian buildings by the action
of a cocompact lattice is topologically rigid. An interesting problem is to determine
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the set of lattices in the isometry group of a hyperbolic building which have a set
of quotients that is topologically rigid.

Definition 1.4. A class of spaces X is said to be closed under finite covers if
whenever X ∈ X , all finite-sheeted covering spaces of X are in X .

Topological rigidity of X , a class of spaces closed under finite covers, has appli-
cations in the study of the abstract commensurability classes of the fundamental
groups of spaces in X . Recall that two groups are abstractly commensurable if
they contain finite-index subgroups that are isomorphic. If X is a topologically
rigid class of spaces closed under finite covers and X1, X2 ∈ X , then π1(X1) and
π1(X2) are abstractly commensurable if and only if X1 and X2 have homeomor-
phic finite-sheeted covering spaces. Thus, in this setting, topological invariants can
be used to distinguish abstract commensurability classes. For example, this tech-
nique was employed by Crisp–Paoluzzi [2] and Dani-Stark-Thomas [3] for certain
right-angled Coxeter groups and by the author [13] for related surface group amal-
gams. A survey on the use of orbifolds in the study of commensurability classes is
given by Walsh [14], and background on commensurability classification is given by
Paoluzzi [11].

This paper was motivated by an interest in understanding the abstract commen-
surability classes of Coxeter groups. Dani–Thomas [4] provide a quasi-isometry
classification within a class of hyperbolic one-ended right-angled Coxeter groups,
and in joint work with Dani and Thomas [3], we refine their work to give an ab-
stract commensurability classification for a subclass of these groups. In particular,
it was of interest to determine whether topological rigidity holds for finite covers
of the Davis orbicomplex, which are natural spaces for right-angled Coxeter groups
and their finite-index subgroups.

2. The Davis orbicomplex

v3

v1 v2

Figure 1. The graph Γ defining the group WΓ

Definition 2.1 (The group W ). Let W = WΓ be the right-angled Coxeter group
with defining graph Γ given in Figure 1.

Construction 1 (The Davis orbicomplex D for W ). Let W be the right-angled
Coxeter group given in Definition 2.1. The Davis orbicomplex D for W has the
following form, which is illustrated in Figure 2. The space D is an orbicomplex
whose underlying space is topologically the cone on the defining graph Γ. The
space D may be viewed as a graph of spaces with vertex spaces 2-dimensional
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Figure 2. Pictured on the above right is the Davis orbicomplex
D for the right-angled Coxeter group with defining graph Γ given
in Definition 2.1. On the left is illustrated the collection P of six
right-angled reflection orbifolds that are glued to each other by
local isometries to form the Davis orbicomplex. Each edge of these
orbifolds is a reflection edge except for the two edges which are
glued to other orbifolds as indicated by the arrows. The numbers
indicate the order of the isotropy group at the orbifold point.

right-angled reflection orbifolds with boundary, and these orbifolds are identified
along their boundary components as follows.

Let P be the following collection of orbifolds, which will be the vertex spaces of
D. Define a branch of the graph Γ to be an embedded path connecting two vertices
of valence four. For a branch β, let nβ be the number of vertices of the branch
including the endpoints. So, Γ has six branches, and if β is a branch of Γ, then
nβ ∈ {5, 7}. The right-angled Coxeter group with defining graph a branch β is
the orbifold fundamental group of the following orbifold Pβ . The orbifold Pβ has
underlying space a right-angled hyperbolic (nβ + 1)-gon, nβ reflection edges, and
one non-reflection edge of length L > 0. Let P = {Pβ |β is a branch of Γ}; the six
orbifolds in P are illustrated on the left of Figure 2.

Identify the orbifolds in P along convex suborbifolds to form the orbicomplex
D as follows. For each orbifold in P, attach a 0-cell at the midpoint of each
non-reflection edge, creating two non-reflection edges of length L

2 . Label these
non-reflection edges as follows. First, label the three vertices of Γ of valence four
{v1, v2, v3} as illustrated in Figure 1. Then, label a non-reflection edge ei if the
edge is incident to the reflection edge corresponding to the vertex vi; this labeling
is indicated using arrows in Figure 2. To build the Davis orbicomplex D, identify
the middle vertex of the two non-reflection edges in each polygon in P and all
non-reflection edges of the same label as shown on the right of Figure 2.

It remains to check that the orbifold fundamental group of D is the right-angled
Coxeter group WΓ. Indeed, gluing non-reflection edges with the same label to form
a single edge creates a single reflection wall perpendicular to this edge; this gluing
corresponds to identifying the endpoints of the branches of Γ to form Γ. The claim
then follows from arguments similar to those found in [3, Section 3].
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Figure 3. Illustrated above are two orbifold covers. On the left,
the group Z/2Z acts by reflection, identifying the yellow and black
vertices, and with quotient space a reflection orbifold in P. On the
right, Z/2Z acts by rotation by π.

3. The set of finite-sheeted covers of D is not topologically rigid

The covers of D restricted to the reflection orbifolds in P are given by the
following two maps, which are illustrated in Figure 3.

Lemma 3.1. Let D2( 2, . . . , 2
︸ ︷︷ ︸

n

) denote the orbifold with underlying space a disk and

with ramification locus n cone points of order 2.

(a) Each orbifold in P with n reflection edges is covered by D2( 2, . . . , 2
︸ ︷︷ ︸
n − 1

).

(b) The orbifold D2( 2, . . . , 2
︸ ︷︷ ︸

2m

) double covers D2( 2, . . . , 2
︸ ︷︷ ︸
m + 1

).

Proof. The first covering map is realized by reflection: arrange the cone points
along a diameter of the disk and reflect across this segment. The second covering
map is realized by rotation: arrange the 2m cone points symmetrically about a
central (non-orbifold) point in the disk and rotate by π. �

Proof of Theorem 1.2. Let D ∈ X be the Davis orbicomplex defined in Construc-
tion 1 and illustrated in Figure 2. To prove the class of spaces X is not topologically
rigid, we will exhibit two covers of D with the same fundamental group that are
not homeomorphic.

The orbicomplex D has a singular subspace with underlying space a tripod
formed by gluing together the non-reflection edges of the orbifolds in P; to prove
the finite covers constructed are not homeomorphic, we prove the covers restricted
to the singular subspace are not homeomorphic. The singular subspace of D is a
1-dimensional orbicomplex with underlying space a star on three vertices and so
that each vertex of valence one is a ramification point of order 2. The singular
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Figure 4. Non-homeomorphic covers of the singular subspace, a
1-dimensional orbicomplex with ramification points of order 2. The
three graph covering maps can be realized by rotation by π about
a center point in the embedding of the graph in the plane, and the
orbifold covering map can be realized by reflection about a vertical
line in the Θ-graph.

subspace and the covers restricted to the singular subspace are drawn in Figure
4. We prove that these graph coverings can be extended to finite coverings of the
Davis orbicomplex D.

To construct two covers of D that are not homeomorphic, we first construct

covers of degree two, X2
2−→ X1

2−→ D, and then two further covers of degree two,

Y 2−→ X2 and Z 2−→ X2 so that Y and Z are not homeomorphic but are homotopy
equivalent.

We begin by describing the cover X1
2−→ D. This cover is illustrated in Figure 5.

The space X1 consists of two copies ofD
2(2, 2, 2, 2, 2, 2), labeledD1 andD2, and four

copies of D2(2, 2, 2, 2), labeled D3, D4, D5, D6. To define the identification of these
orbifolds, label the boundary circle of Di by first subdividing it into two segments
of equal length by adding vertices xi and yi. Label one oriented edge {xi, yi} by
di and the other by d′i. To form X1, identify all vertices in {xi | 1 ≤ i ≤ 6} to
form a vertex x and identify all vertices in {yi | 1 ≤ i ≤ 6} to form a vertex y.
Identify edges {d1, d2, d3, d4} to form a single edge c1; identify edges {d′1, d′2, d′5, d′6}
to form a single edge c2; and, identify edges {d′3, d′4, d5, d6} to form a single edge
c3. Then, for each i, the orbifold Di ⊂ X1 covers an orbifold Pβ ⊂ D, so that if the

boundary of Di is labeled cjc
−1
k , then this curve double-covers the non-reflection

edge of Pβ labeled e−1
j ek. These covering maps agree along the intersection of the

set {Di | 1 ≤ i ≤ 6} in X1, and hence the union of these spaces covers D, the union
of the Pβ, by degree two.

The remaining covering maps may be realized by rotation in R
3; these are illus-

trated in Figure 6. First, observe that the singular subspace of X1 is the Θ-graph,
with two vertices of valence three and the three directed edges {c1, c2, c3} connect-
ing the two vertices. This graph embeds in the plane and the boundary curves of the
disk orbifolds Di are the three curves c1c

−1
2 , c1c

−1
3 , and c2c

−1
3 . Then, the space X1

embeds in the 3-ball B3 ⊂ R
3 as illustrated in Figure 6 so that the Θ-graph embeds

in the equatorial xy-plane. The copies of D2(2, 2, 2, 2) with boundary c1c
−1
3 may

be viewed as the two hemispheres of the unit sphere. The copies of D2(2, 2, 2, 2)
with boundary c2c

−1
3 may be viewed as the two hemispheres of a sphere embedded

inside the unit sphere; likewise for the copies of D2(2, 2, 2, 2, 2, 2). The remaining
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Figure 5. Illustrated on the top row is the degree two cover
X1 → D. The space X1 contains six orbifolds, each with underly-
ing space a disk and with either four or six cone points of order
2. The orbifolds are glued along the boundary of the disks as il-
lustrated with the labeled arrows; all yellow vertices are identified,
and all black vertices are identified. The cover restricted to the
singular subspaces is illustrated below; the covering map is given
by reflection through a vertical line through the left-hand graph.

covering maps may be realized by rotations by π about the z-axis in Euclidean
space. The covering map restricted to each copy of D2(2, . . . , 2) is either exactly
2-to-1 or is the rotational covering map given in Lemma 3.1.

The two covers given in Figure 6 are not homeomorphic since their singular sub-
spaces are not homeomorphic. It remains to show that these spaces are homotopy
equivalent and hence have the same orbifold fundamental group. To see this, take
a regular neighborhood of the singular locus of Y and Z in the xy-plane to form a
surface with genus zero and with six boundary components. The homotopy from
the embedded graph to its regular neighborhood in the plane extends to homotopies
from Y to a space Y ′ and from Z to a space Z ′, where the homotopy is the identity
on the complement of the singular subspace. That is, the space Y ′ contains a surface
of genus zero and with six boundary components B1, . . . , B6. For 1 ≤ i ≤ 4, two
copies of D2(2, 2, 2, 2, 2, 2) are identified to Bi by homeomorphism of the boundary
curve of the disk orbifolds; for 5 ≤ i ≤ 6, two copies of D2(2, 2, 2, 2, 2, 2, 2, 2, 2, 2)
are identified to Bi by a homeomorphism of the boundary curve of the disk orb-
ifolds. The space Z ′ is homeomorphic to Y ′. Thus, the orbicomplexes Y and Z are
homotopy equivalent, so their orbifold fundamental groups are isomorphic. �
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X1

X2

Y Z

Figure 6. Two coverings of an orbicomplex that are not home-
omorphic, but which have the same orbifold fundamental group.
The covering maps are each given by a Z/2Z action of rotation
about the z-axis. All of the blue points are orbifold points of order
2.
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Figure 7. On the left are degree two covers given by rotation by
π about a vertical axis positioned through the surface or orbifold.
The blue points represent cone points of order 2. On the right is
the singular subspace of the orbicomplex Y .

3.1. Torsion-free covers.

Proposition 3.2. Let Y and Z be the orbicomplexes described in the proof of

Theorem 1.2 and shown in Figure 6. There exist finite covers Ŷ → Y and Ẑ → Z
so that π1(Ŷ) and π1(Ẑ) are torsion-free, π1(Ŷ) ∼= π1(Ẑ), and Ŷ and Ẑ are not
homeomorphic.

Proof. We first describe the finite cover Ŷ → Y . The orbicomplex Y has a singular
subspace the planar graph Λ, shown in Figure 7. Let d1 . . . , d6 denote the boundary
curves of the six planar regions in the complement of Λ ⊂ R

2 as marked in Figure 7.
Glued to d1 and d2 are two copies of D2(2, 2, 2, 2, 2, 2, 2, 2, 2, 2), and glued to each of
d3, . . . , d6 are two copies of D2(2, 2, 2, 2, 2, 2). As shown in Figure 7, the surface Sg,4

of genus g and four boundary components forms a degree four cover ofD2( 2, . . . , 2
︸ ︷︷ ︸

n

),

where g = 3 if n = 6 and g = 7 if n = 10. Indeed, embed the surface in R
3 so

that the boundary components are arranged symmetrically in pairs about a vertical
axis and the holes of the surface lie along the axis. Rotate by π about the vertical
axis to produce an orbifold with underlying space an annulus and with 2g+2 cone
points of order 2. Arrange the cone points symmetrically along a core curve of the
annulus and rotate by π about an axis that skewers the core curve in two non-

singular points to obtain D2( 2, . . . , 2
︸ ︷︷ ︸

n

). To form Ŷ , take four copies of the graph

Λ; for i = 1, 2, glue to the four copies of di the four boundary curves of S7,4 by
homeomorphisms; and, for i = 3, . . . , 6, glue to the four copies of di the boundary
curves of S3,4 by homeomorphisms. Since each boundary curve of Sg,4 covers the

boundary of D2( 2, . . . , 2
︸ ︷︷ ︸

n

) by degree one, Ŷ forms a degree four cover of Y .

The finite cover Ẑ → Z is constructed similarly. By analogous arguments to

those in the proof of Theorem 1.2, Ŷ and Ẑ are homotopy equivalent. The singular

subspace of Ŷ is homeomorphic to four copies of the singular subspace of Y ; likewise,

the singular subspace of Ẑ is homeomorphic to four copies of the singular subspace

of Z. Thus, Ŷ and Ẑ are not homeomorphic. �
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