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Abstract. We prove that for infinite rank-one transformations satisfying a
property called “partial boundedness,” the only commuting transformations
are powers of the original transformation. This shows that a large class of
infinite measure-preserving rank-one transformations with bounded cuts have
trivial centralizers. We also characterize when partially bounded transforma-

tions are isomorphic to their inverse.

1. Introduction

Given an ergodic measure-preserving transformation there has been interest in
understanding the set of transformations that commute with it. For example, it is
well known that if T is an irrational rotation and T ◦ S = S ◦ T a.e., then S must
also be a rotation. In [19], Ornstein constructed mixing finite measure-preserving
transformations that commute only with their powers; these were the first examples
of mixing transformations with no roots. Later, del Junco [6] proved that the well-
known Chacón transformation commutes only with its powers. All these examples
are rank-one transformations, a rich class of transformations for the construction
of examples and counterexamples. In [17], King showed that if T is a rank-one
finite measure-preserving transformation and S commutes with T , then S must be
a limit of powers of T in the weak topology. This theorem, known as the Weak
Closure Theorem, has many interesting consequences and has also been shown for
finite measure-preserving rank-one flows [16]. It is known not to hold for rank-one
finite measure-preserving Z

2 actions [7], [8] or rank-k actions for k > 1 [18]. It
remains open for infinite measure-preserving rank-one transformations.

In the case of infinite measure-preserving, or nonsingular, transformations some
results are known. In [1], Aaronson and Nakada constructed nonsingular group
rotations with an equivalent ergodic infinite invariant measure that commute only
with their powers (having no measure-preserving factors though they have non-σ-
finite factors); these examples have nonergodic Cartesian square and include the
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Hajian-Kakutani example [13]. In [20], Rudolph and Silva constructed nonsingular
transformations satisfying the property of rational minimal self-joinings, yielding
nonsingular transformations of all Krieger types, and in particular rank-one infinite
measure-preserving transformations commuting only with their powers (and having
no nontrivial factors); these examples have ergodic Cartesian square. More recently,
Ryzhikov and Thouvenot [21] have shown that infinite rank-one transformations
that are Koopman mixing (or zero type) commute only with their powers. In [15],
Janvresse, de la Rue, and Roy prove that the infinite Chacón transformation of
[2] commutes only with its powers; this transformation is known to have infinite
ergodic index [2].

In this paper we define the class of partially bounded rank-one transformations
and show that each transformation in this class commutes only with its powers (in
this case we say that the transformation has trivial centralizer). Partial bounded-
ness can only occur in infinite measure; it defines a broad class that includes trans-
formations such as the Hajian-Kakutani transformation and the infinite Chacón
transformation. Our methods are different from those in [1], [20], [21], which use
joining arguments; further it can be shown that partially bounded transformations
are partially rigid and hence not Koopman mixing. We instead work with symbolic
properties of the transformation as started in del Junco [6]. In fact we extend to in-
finite measure the methods of Gao and Hill [11] (see also Gao-Hill [12]), who showed
that canonically bounded finite measure-preserving rank-one transformations have
trivial centralizers.

We also characterize the partially bounded transformations that are isomorphic
to their inverse. As is well known, the isomorphism question for classes of trans-
formations in ergodic theory has a long history (see [10]). Foreman, Rudolph, and
Weiss in [10] give an argument that the isomorphism problem for rank-one trans-
formations is tractable. More recently, in [14], Hill characterizes the canonically
bounded rank-one transformations that are isomorphic to their inverses. In the
last section we extend the methods of [14] to partially bounded (infinite measure-
preserving) transformations to consider the inverse isomorphism problem.

Section 2 recalls the definition of rank-one transformations and symbolic sys-
tems using rank-one words. We introduce partially bounded transformations, and
in Lemma 2.8 we describe the T–P names of these transformations. In Section 3 we
show how a large class of examples can be rewritten to satisfy the partially bounded
definition. In Proposition 3.4 we note that as in the finite measure-preserving case,
rigid transformations have uncountable centralizers. Section 4 develops in more de-
tail properties of symbolic representations. In Theorem 5.1 we show that partially
bounded rank-one transformations have trivial centralizers. Rigid, rank-one, infi-
nite measure-preserving transformations are generic by [3,5], and by Proposition 3.4
they have uncountable centralizers. Section 6 gives a theorem that characterizes
when a partially bounded transformation is isomorphic to its inverse.

2. Rank-one systems and T–P names

2.1. Notation. In this paper, we shall consider measure-preserving transforma-
tions of an infinite, σ-finite nonatomic Lebesgue measure space (X,B, λ), e.g., R
with Lebesgue measure. When we say that a transformation is invertible, that two
sets are equal, and so on, there is always a tacit “a.e.”
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We shall make use of the following notation. We shall principally be concerned
with words, i.e., finite or infinite sequences of some finite alphabet A. We denote
by �n,m� the finite subsequence of integers consisting of k such that n ≤ k < m,
and if x is some A-word, then x�n,m� denotes the finite subword of length m− n,
indexed so that x�n,m�(0) = x(n), x�n,m�(1) = x(n+1), and so on. If u is a finite
word, then |u| denotes its length. We say that a word v occurs in a word u at i
when u�i, i+ |v|� = v. If u and w are words, then by uw we mean the concatenation
of u and w. By wn we mean

wn =

n times︷ ︸︸ ︷
ww · · ·w .

Let us restrict our attention to the alphabet {0, 1} and to F , the set of all finite
words beginning and ending with 0. For u,w ∈ F , we say that u builds the word
w (which we shall also write u�w) if

w = u1a1u1a2 · · · 1aru.

We may extend this relation to infinite (respectively, bi-infinite) words in the
following way: we say that w builds W ∈ {0, 1}N if there are integers {an}n∈N

(respectively, n ∈ Z) such that

W = w1a0w1a1 · · · (respectively, W = · · · 1a−1w1a0w · · · ).
As in the finite case, if the an are all equal, we write that w simply builds W . Other
notions, such as occurrence, extend to (respectively, bi-) infinite words in the same
way.

2.2. Rank-one transformations. Rank-one transformations are an important
class of measure-preserving transformations. They are ergodic, invertible, generic in
the group of invertible measure-preserving transformations (for the infinite measure-
preserving case see [5]), and an important source of examples and counterexamples
in ergodic theory. We shall define them by the method of cutting and stacking,
although this definition is equivalent to a variety of other definitions; see [9] for
finite measure and [5] for infinite measure.

The construction is inductive and proceeds by defining a sequence of columns.
A column C = {I0, . . . , Ih−1} consists of a finite sequence of disjoint intervals of
the same length, called levels, that we order from 0 to h− 1, where h is an integer
called the height of the column. A column C defines a partial transformation
by sending level Ij to level Ij+1, j ∈ {0, . . . , h − 2}, by the unique translation
between the two intervals, so we can write Ij+1 = T (Ij) and call I0 the base of the
column. We now define the rank-one transformation corresponding to the sequence
(rn) of numbers of cuts, rn ∈ {2, 3, . . .}, and the sequence (sn) of rn-tuples of
numbers of spacers, sn(i) ∈ {0, 1, 2, . . .} for 0 ≤ i ≤ rn − 1. The base step is a
column C0 = {B0} consisting of a single interval B0 (which in the case of infinite
measure may always be assumed to be the unit interval [0, 1)). Given column
Cn = {Bn, T (Bn), . . . , T

hn−1(Bn)}, to obtain Cn+1 cut each level of Cn into rn
subintervals of equal length, ordered from left to right, place sn(i) new subintervals
(called spacers) above the ith topmost subinterval of Cn, and stack right above left
to form column Cn+1 of height

(1) hn+1 = rnhn +

rn−1∑
i=0

sn(i).
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To be more precise with the inductive step, cut Bn into rn equal-length subin-
tervals denoted Bn,i for i = 0, . . . , rn − 1. For each i = 0, . . . , rn − 1 choose new
intervals Sn,i,k (where k ranges from 0 to sn(i)− 1) of the same length as Bn,i, and
place them above Thn−1(Bn,i) to form the new i-th subcolumn

Cn,i = {Bn,i, T (Bn,i), . . . , T
hn−1(Bn,i), Sn,i,0, Sn,i,1, . . . , Sn,i,sn(i)−1}.

Extend T so that it sends Thn−1(Bn,i) to Sn,i,0, each spacer to the one above it, and
the top spacer, namely Sn,i,sn(i)−1, to the bottom of the next subcolumn, namely
Bn,i+1 if i < rn−1, and it remains undefined when i = rn−1 (the top spacer of the
last subcolumn). (Note that when i = rn−1 the spacer Sn,i,sn(i)−1 becomes the top
level of column Cn+1, and the transformation will be defined on part of this at the
next stage of the construction.) This is the process of stacking the right over the
left subcolumn and forms column Cn+1 with base Bn+1 = Bn,0 and height hn+1 as
in equation (1). We note that every level in Cn is a union of levels in Cn+1. We let
X be the union of all the levels of all the columns. We note that T is defined on all
levels of Cn except the top and Cn+1 extends the definition to part of the top level
of Cn. As the length of the levels goes to 0, in the limit this defines a transformation
on X. It is measure-preserving as levels are sent to levels of the same length and
it is invertible a.e. (by convention intervals are left-closed, right open, and if we
delete the positive orbit of 0, the transformation will be invertible everywhere). It
is ergodic, as the levels can be made arbitrarily full of any measurable sets; see,
e.g., [22].

2.3. Rank-one words. To the cutting and stacking construction of a rank-one
system we associate so-called rank-one words in the following way. Let T be con-
structed using cutting parameter (rn) and stacking parameter (sn), where we as-
sume that for all n ≥ 0, sn(rn − 1) = 0; i.e., no spacers are placed on the final
subcolumn at any stage of the construction. As we argue below it is not hard to
see that this is not a restriction. Then, we inductively define

w0 = 0 and wn+1 = wn1
sn(1) · · · 1sn(rn−2)wn.

It is immediately obvious that wn �wm for n ≤ m. We call wn the n-th rank-one
word associated to T . There is a unique infinite word W such that wn �W for
all n. The infinite word defined this way is said to be the infinite rank-one word
associated to T . It is clear that one can read the cutting and spacer parameters
from the rank-one words. We also remark that the same transformation may have
different presentations in terms of its cutting and spacer parameters.

Now we show that the fact that we require that no spacers be placed on the
final subcolumn at any stage of the construction does not restrict the definition
of rank-one transformations; we can delay the addition of the spacers on the final
subcolumn to subsequent steps in the construction. That is, we can set

• s′0(i) = s0(i) for i = 0, . . . , r0 − 2, and s′0(r0 − 1) = 0,

• for n > 0, s′n(i) =
∑n−1

k=0 sk(rk − 1) + sn(i) for i = 0, . . . , rn − 2, and
s′n(rn − 1) = 0.

The rank-one transformation defined by cutting and spacer parameters (rn) and
(s′n) will be isomorphic to the transformation defined by (rn) and (sn).

As an illustration, the construction of the infinite Chacón transformation is usu-
ally in terms of the parameters rn = 3, , sn(0) = 0, sn(1) = 1, sn(2) = 3hn + 1,
for all n ≥ 0 [2]. In the standard construction, to obtain C1 after C0 we subdivide
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the interval in C0 intro three subintervals, put one spacer above the middle subin-
terval and four spacers above the last subinterval. In the modified construction,
subdivide the subinterval in C0 into three subintervals, put a single spacer in the
middle subinterval, and no spacer above the last subinterval; this gives a column
C ′

1 of height 4. Next subdivide each level of C ′
1 into three subintervals and now

put four spacers on top of the first subinterval, four plus one on top of the second
subinterval, and none on the last subinterval. (Note that the top level of C ′

1 is the
same as the last subinterval of C ′

0.) This process defines the following rank-one
words:

w0 = 0,

w1 = w01
s′0(0)w01

s′0(1)w0 = 0010,

w2 = w11
s′1(0)w11

s′1(1)w1 = 001011110010111110010.

Note that in this case, |wn| = hn, where hn indicates the height parameter of the
modified construction, as we have not added any spacers to the final subcolumn.

2.4. T–P names. Each point x ∈ X also has an associated infinite T–P name
for any finite partition P of X. For our purposes, the desired partition of X is
P = {B0, X \B0}.

Definition 2.5. The T–P name of x is the bi-infinite sequence of 0s and 1s denoted
by Θ(x) and defined for i ∈ Z by

Θ(x)(i) =

{
0 if T i(x) ∈ B0,

1 if T i(x) /∈ B0.

We observe that if T is any rank-one transformation and P = {B0, X \ B0},
then any rank-one word wn builds Θ(x) for a.e. x ∈ X. Moreover there is no first
or last occurrence of wn in Θ(x) for a.e. x ∈ X. We desire that the T–P name
so-generated be unique for a.e. x ∈ X, i.e., that Θ be injective. We prove this for
the following subclass of rank-one transformations.

Definition 2.6. A rank-one transformation T is said to be partially bounded if
it admits cutting and spacer parameters (rn) and (sn) with no spacers added to
the final subcolumn at any stage and satisfies the following property: There are
integers R > 0 and S > 0 such that for all n ≥ N , for some integer N ,

(1) rn < R;
(2) |sn(i)− sn(j)| < S, for 0 ≤ i, j < rn − 1;
(3) sn(i) ≥ |wn|, for 0 ≤ i < rn − 1.

Note that by condition (3) all partially bounded transformations act on infinite
measure spaces. We may and do assume without loss of generality that N = 0.

Definition 2.7. It follows from the definition of T–P names that if T i(x) ∈ Bn,
then the T–P name of x has an occurrence of wn at i. We say that such an
occurrence of wn is expected ; otherwise, if T i(x) /∈ Bn, it is called unexpected.
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Lemma 2.8. Let T be a partially bounded rank-one transformation, and consider
the partition P = {B0, X \ B0}. Let (wn) denote the sequence of rank-one words
corresponding to the partially bounded parameters. Then:

(1) The map Θ that sends a point to its T − P name is injective.
(2) All occurrences of wn in Θ(x) are expected.

Proof. Statement (1) says exactly that the collection {Tn(B0), T
n(X \ B0)}n∈Z

separates points. If x and y are distinct points, then there exists some column Cm

where x and y belong to different levels. Suppose without loss of generality that x
belongs to a lower level than y. Choose the smallest n ≥ 1 such that Tn(x) belongs
to the top level of Cm. Then by condition (3) of partial boundedness, Tn(x) will
be in the spacers so that Tn(x) ∈ [0, 1) and Tn(y) �∈ [0, 1).

Statement (2) follows immediately from condition (3) in the definition of partial
boundedness. �

We observe that, given an infinite rank-one word W coming from the cutting
and spacer parameters of the rank-one transformation T , it is possible to generate
a symbolic system (S(W ),M , μ, σ) in the following way: let

S(W ) :=
{
x ∈ {0, 1}Z : (∀ n,m)(∃ n′,m′)

(
x�n,m� = W �n′,m′�

)}
;

in other words, every finite subsequence of x is a subsequence of W . We set
σ(x)(i) = x(i+ 1); i.e., σ is the shift operator. We define the cylinder sets

Ewn,i := {x ∈ S(W ) : x has an expected occurrence of wn at i}.
Then Ewn,0 corresponds to the base level Bn of the n-th column, and Ewn,i cor-
responds to T−i(Bn) (recall that every occurrence of wn is expected for partially
bounded transformations). To obtain a measure, define μ(Ew0,0) = 1 and extend
μ uniquely to a Borel σ-finite atomless shift-invariant measure on X; this is the
same as the push-forward measure from the geometric construction (as we choose
to always start with the unit interval). Then Θ will be an isomorphism between X
and S(W ) for all partially bounded transformations; we use this isomorphism to
identify X with the symbolic space and T with the shift.

3. Examples

A wide collection of infinite rank-one transformations falls into the class of par-
tially bounded transformations, including the infinite Chacón transformation [2]
and the infinite Hajian-Kakutani [13] transformation (defined by rn = 2, sn(1) = 0,
sn(2) = 2hn + 1). As outlined in Section 2.3, these transformations have an alter-
native presentation with no spacers on the final subcolumn. In fact, when using the
cutting and stacking construction notation, all rank-one transformations that have
bounded cuts (rn) and uniformly bounded spacers on the first rn − 1 columns but
having a very large number of spacers added on the last column can be shown to
have a presentation as a partially bounded transformation. The formal statement
goes as follows:

Lemma 3.1. A rank-one transformation with cutting parameters (rn) and spacer
parameters (sn) satisfying for sufficiently large n,

(1) rn ≤ R,
(2) sn(i) < S for 0 ≤ i ≤ rn − 2,
(3) sn(rn − 1) ≥ hn+1/2
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has an isomorphic presentation in terms of the parameters rn and

s′n(i) = sn(i) +
n−1∑
k=0

sk(rk − 1) for 0 ≤ i ≤ rn − 2 and s′n(rn − 1) = 0,

which is partially bounded.

Proof. By assumption, for all sufficiently large n, we have rn ≤ R and |s′n(i) −
s′n(j)| = |sn(i) − sn(j)| < S. Let (wn) denote the sequence of rank-one words
associated to the parameters (rn) and (s′n). Then for all 0 ≤ i ≤ rn − 2,

|wn+1| ≤ hn+1 − sn(rn − 1) ≤ sn(rn − 1) ≤ s′n+1(i). �

We now study a second class of transformations.

Definition 3.2. For an invertible measure-preserving transformation T of X, by
C(T ) we denote the centralizer of T , i.e., the set of all invertible measure-preserving
transformations of X commuting with T . If C(T ) = {Tn}n∈Z, then T is said to
have trivial centralizer.

Definition 3.3. Given (X,B, μ, T ), a σ-finite Lebesgue measure space with a
measure-preserving transformation T , if there is an increasing sequence of integers
nk such that for all sets A of finite measure,

lim
k→∞

μ[Tnk(A)
A] = 0

we say that T is rigid.

The following proposition is well known in the finite measure-preserving case,
and essentially the same proof in King [17] holds for infinite measure-preserving
transformations.

Proposition 3.4. All rigid transformations have uncountable centralizer.

These results suffice to establish the nontriviality of Theorem 5.1. Many common
examples of infinite rank-one transformations are partially bounded and hence not
rigid. For example, the Hajian-Kakutani transformation defined in [2] is not rigid,
giving another proof of Proposition 2.3 in [4].

Remark 3.5. Conditions (1) and (3) in the definition of partially bounded trans-
formations, or close equivalents, are necessary in the proof of Theorem 5.1; with-
out them, it is not difficult to construct examples which are rigid and hence have
uncountable centralizer. The authors are unaware of any transformation with non-
trivial centralizer which satisfies conditions (1) and (3) but not condition (2).

4. Preliminaries

In this section and Section 5 we shall work in the following setup: we have a
partially bounded rank-one transformation T acting on an infinite, σ-finite Lebesgue
space X and a measure-preserving transformation S such that S ◦ T = T ◦ S a.e.
The transformation T comes equipped with parameters (rn), (sn), where we assume
sn(rn − 1) = 0, and rank-one words wn. Moreover, by Lemma 2.8, we need not
distinguish between a point x ∈ X and the T–P name of x, Θ(x). We fix κ ∈ N so
that

|wκ| > S.
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x

S(x)

wn

wκ

i

ρx,i

Figure 1. An illustration of a good occurrence of wn in x.

We shall take n > κ to be fixed (what n is will be determined later). We extend ar-
guments of del Junco [6] and Gao and Hill [12] to partially bounded transformations
to show that S must be a power of T .

The following notions will be the key to translating information about when
S(x) looks like a translate of x locally to information about when the same is true
globally.

Definition 4.1. An occurrence of wn at i in x is called good if there exists an
occurrence of wκ at i in S(x); otherwise the occurrence is called bad.

If a copy of wn at i in x is good, then there is a unique copy of wn in S(x) that
contains the wκ at position i. We shall write the beginning position of this wn as
i − ρx,i, where 0 ≤ ρx,i ≤ |wn| − |wκ| (see Figure 1). The following proposition is
the crucial element in many of the arguments to come (see Figure 2).

Proposition 4.2. Let x ∈ X. Suppose that there is a good occurrence of wn at i
in x. Consider the string wn1

awn that occurs at i in x and the string wn1
bwn that

occurs at i− ρx,i in S(x). Then the next copy of wn in x occurring at i+ |wn|+ a
is good if and only if a = b.

Proof. If a = b, then clearly the next copy of wn in x will be good. Suppose that
a �= b. Write a = sm1

(�1) and b = sm2
(�2) for somem1,m2 ≥ n and �1 ∈ �0, rm1

−1�,
�2 ∈ �0, rm2

− 1�. We consider the various cases:

Case 1. Suppose m1 = m2. Then by condition (2) in Definition 2.6, 0 < |a−b| < S.
Since there is an occurrence of wκ at i + |wn| + b in S(x) and |wκ| > S, the copy
of wn at i+ |wn|+ a in x must be bad.

Case 2. Suppose m1 < m2. Then by condition (3), there must be a 1 at i+ |wn|+a
in S(x) since sm2

(�2) > sm1
(�1) + ρx,i. Hence the copy of wn at i + |wn| + a in x

is bad.

Case 3. Suppose m1 > m2. Consider the copy of wm1
that contains the copy of wn

at i− ρx,i in S(x). By condition (3), this copy must end at some j < i+ |wn|+ a.
Then there is a long stretch of 1’s of length sm1

(�3) that begins at j + 1 in S(x)
and which, by condition (2), will end after position i+ |wn|+ a. It follows that the
occurrence of wn at i+ |wn|+ a in x is bad. �
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x

S(x)

wn wn

wn

1a

1bwκ

i

ρx,i

Figure 2. An illustration of the situation in Proposition 4.2: if
the left wn is good, then the next wn is good if and only if a = b.

Remark 4.3. An analogous argument proves that if a copy of wn is good, then the
“previous” copy of wn is good if and only if a = b (where now a and b denote the
lengths of the stretches of 1’s to the left).

The following lemma gives us a condition we use to show that S must be a power
of T .

Lemma 4.4. Fix x ∈ X and n ∈ N with n > k. If every copy of wn in x is good,
then there is � ∈ N ∪ {0} such that

S(x) = T �(x).

Proof. Start with some good occurrence of wn at some i in x. Then there is an
occurrence of wn at i−ρx,i in S(x). Consider the next copy of wn in x (at i+|wn|+a
in the notation used in Proposition 4.2). Since it is good, Proposition 4.2 implies
that the next copy of wn in S(x) occurs at i − ρx,i + |wn|. We can repeat this
argument for all the copies of wn occurring to the right of the wn we started out
with. Moreover, by Remark 4.3, we can do the same for the copies of wn occurring
to the left. This proves that S(x) = T ρx,i(x), and we can set � = ρx,i. Here we use
the fact that there is no first or last occurrence of wn in x. �

5. Proof of the main theorem

We are now equipped to prove our main result.

Theorem 5.1. If T is a partially bounded rank-one transformation, any transfor-
mation S′ ∈ C(T ) is a power of T .

For m > n, we shall say that a copy of wm is totally good if every wn that occurs
in it is good; we also say that a copy of wm is totally bad if every wn that occurs in
it is bad. Suppose that x has a totally good occurrence of wm at i. Then S(x) has
an occurrence of wn at i − ρx,i. Moreover, by repeated application of Proposition
4.2, S(x) has an occurrence of wm at i− ρx,i (see Figure 3). The following lemma
is the analogue of Proposition 4.2 for totally good occurrences, and its proof is very
similar.

Lemma 5.2. Let x ∈ X. Suppose that there is a totally good occurrence of wm at i
in x. Write wm1awm for the string beginning at i in x and wm1bwm for the string
beginning at i− ρx,i in S(x). Then the “next” wm occurring at i+ |wm|+ a in x is
totally good if a = b and is totally bad if a �= b.
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Proof. If a = b, then clearly the next wm will be totally good. Now suppose that
a �= b. Write a = sm1

(�1) and �1 ∈ �0, rm1
− 1�, �2 ∈ �0, rm2

− 1�. We distinguish
three cases:

Case 1. Suppose that m1 = m2. By condition (2) of Definition 2.6, 0 < |a−b| < S.
Since |wκ| > S, all the wn composing the wm at i+ |wm|+ a in x will be bad.

Case 2. Suppose that m1 < m2. Then by condition (3) of Definition 2.6, there
is a long stretch of 1’s in S(x) that begins at i − ρx,i + |wm| so that all the wn’s
composing the wm at i+ |wm|+ a in x will be bad.

Case 3. Suppose thatm1 > m2. Consider the copy of wm1
that contains the copy of

wn at i−ρx,i in S(x). By condition (3), this copy must end at some j < i+|wm|+a.
Then there is a long stretch of 1’s of length sm1

(�3) that begins at j + 1 in S(x)
and which, by conditions (2) and (3), will cause all the wn composing the following
copy of wm to be bad. �

Proof of Theorem 5.1. Using that the sets

(2) Ewn,i = {x ∈ X : x has an occurrence of wn at i} = T i(Bn)

are dense in the measure algebra, we can find n > k such that

μ[Ewn,i ∩ (S′)−1(Ewκ,0)]

μ[Ewn,i]
> 1− 1

2R+ 1
.

Let S = S′ ◦ T−i. Then S commutes with T , and S is a power of T if and only if
S′ is a power of T . Moreover, by equation (2),

Ewn,i ∩ (S′)−1(Ewκ,0) = T−i(Ewn,0 ∩ S−1(Ewκ,0)).

Thus,
μ[Ewn,0 ∩ S−1(Ewκ,0)]

μ[Ewn,i]
> 1− 1

2R+ 1
.

Note that T i(x) ∈ Ewn,0 ∩ S−1(Ewκ,0) exactly when x has a good copy of wn at i
(with respect to S). Thus by the Hopf ratio ergodic theorem, for a.e. x ∈ X,

(3) lim
N→∞

#|{good occurrences of wn in x�0, N�}|
#|{occurrences of wn in x�0, N�}| > 1− 1

2R+ 1
.

We prove that there cannot be a bad occurrence of wn for a.e. x. If there is
a bad occurrence of wn in x, then there must exist a stretch of d consecutive bad
occurrences of wn, preceded by at least 2R · d good occurrences of wn and followed

x

S(x)

wn wn wn wn

wn wn wn wn

i

ρx,i ρx,i ρx,i ρx,i

wm

Figure 3. An illustration of a totally good occurrence of wm in x.
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bad good bad good bad

d-many copies

≥ 2R · d-many copies

Figure 4. An illustration of the stretch of copies considered in
the proof of Theorem 5.1.

by at least one good occurrence of wn. Otherwise, inequality (3) would fail. (See
Figure 4.) We need to show that such a situation is impossible.

Choose m > n so that

#|{copies of wn in wm−1}| ≤ d < #|{copies of wn in wm}|.
Thus the number of wn in wm is at most R · d. It follows that there is an entire
copy of wm contained in the stretch of 2R · d good occurrences of wn. Thus, this
wm must be totally good. By Lemma 5.2, the next wm must be either totally good
or totally bad. If it is good, then the next wm must be either totally good or totally
bad, and so on. We shall only reach a totally bad copy of wm when we get to the
stretch of d bad copies of wn. However, since d is less than the number of copies of
wn in wm, a totally bad copy of wm would require more than d bad copies of wn.
This yields a contradiction.

By Lemma 4.4, we obtain that for a.e. x, S(x) = T �(x) for some � possibly
depending on x. We conclude the proof by noting that for each � ∈ Z, the sets
A� = {x ∈ X : S(x) = T �(x)} are invariant under T by commutativity of S and T ,
and X =

⋃
�∈Z

An. So by ergodicity, one of them has null complement. Therefore,
S = T ρ a.e. for some ρ. �

Remark 5.3. We note that when S is measure-preserving, our proof does not require
S to be invertible. Also, when S is nonsingular and invertible, by [5], since T is
rank-one, S must be measure-preserving.

Remark 5.4. We have also extended our arguments to show that a class of infinite
rank-one flows, which we call partially bounded, have trivial centralizers. In this
context, the T–P names of points are maps from R into {0, 1} instead of being
maps from Z into {0, 1}. The details will appear in a forthcoming paper, along with
further generalizations to partially bounded Z

d-actions and canonically bounded
flows.

6. Partially bounded transformations isomorphic to their inverse

In this section we extend the methods of [14] to characterize when a partially
bounded transformation is isomorphic to its inverse. Since we have already assumed
that sn(rn − 1) = 0, from this point on, we shall adopt the convention that the
spacer parameter (sn) is a sequence of (rn − 1)-tuples instead of rn-tuples. Thus,
sn = (sn(0), sn(1), . . . , sn(rn − 2)). We prove the following theorem.

Theorem 6.1. Let T be a partially bounded rank-one transformation with param-
eters (rn) and (sn). Then T is isomorphic to T−1 if and only if there exists
N ∈ N such that for all n ≥ N , sn = sn (where sn denotes the reverse of sn,
i.e., sn(i) = sn(rn − 2− i)).
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Definition 6.2. Let s and s′ be two finite sequences of integers of the same length.
We say that s and s′ are incompatible if there does not exist an integer c such that
s is a substring of s′cs′. This is a symmetric relation.

Proposition 6.3. Suppose (X,μ, T ) and (Y, ν, S) are two rank-one systems with
respective parameters (rn), (sn), and (rn), (s

′
n) (with no spacers added to the last

subcolumn). Let (vn) and (wn) be the corresponding sequences of rank-one words.
If for some n, sn and s′n are incompatible, then the string

wn1
sn(0)wn1

sn(1) · · · 1sn(rn−2)wn

cannot occur in any y ∈ Y .

The next proposition is a direct generalization of Proposition 2.1 in [14]; it
provides sufficient conditions on pairs of rank-one transformations to guarantee
nonisomorphism.

Proposition 6.4. Let (X,μ, T ) and (Y, ν, S) be two rank-one systems, and let
(rn), (sn), and (r′n), (s

′
n) be their respective cutting and spacer parameters. Write

(vn) and (wn) for their respective sequences of rank-one words. Suppose the follow-
ing hold:

(1) For all n, rn = r′n and
∑rn−2

i=0 sn(i) =
∑r′n−2

i=0 s′n(i). In particular, |vn| =
|wn| for all n. (We say that the parameters are commensurable.)

(2) There is S > 0 such that for all n and 0 ≤ i, j < rn−1, |sn(i)−s′n(j)| < S.
(3) For all n and 0 ≤ i, j < rn − 1, sn(i) ≥ |vn|, and s′n(i) ≥ |wn|.
(4) There exists a subsequence of rank-one words (vn�

) and (wn�
) with corre-

sponding cutting and spacer parameters (q�), (t�), and (q�), (t′�), respec-
tively, such that for some Q > 0 and infinite set M ⊂ N we have for all
� ∈ M, q� < Q and t� and t′� are incompatible.

Then X and Y are not isomorphic.

Proof. Assume for contradiction that there exists an isomorphism φ : X → Y so
that φ ◦ T = S ◦ φ. Choose k such that |vκ| = |wκ| > S. Then we can find n = n�

with � ∈ M, n > k, and j ∈ Z such that

(4)
μ[Evn,j ∩ φ−1(Ewκ,0)]

μ[Evn,j ]
> 1− 1

R
.

Let k, n ∈ N and j ∈ Z be as above. Similarly to what we have defined before, say
that an occurrence of vn at i ∈ Z in x ∈ X is good if there exists an occurrence
of wκ at i − j in φ(x); otherwise vn is called bad. Note that this copy of wκ in
φ(x) must be contained in a (unique) copy of wn beginning at i− j − ρx,i for some
0 ≤ ρx,i ≤ |wn|− |wκ|. We have that x has a good occurrence of vn at j if and only
if x ∈ Evn,j ∩ φ−1(Ewκ,0).

Moreover, for each i ∈ Z, x has a good occurrence of vn at i + j if and only if
T i(x) ∈ Evn,j ∩ φ−1(Ewκ,0). By Hopf’s Ratio Ergodic Theorem, we conclude that
for a.e. x ∈ X,

lim
N→∞

#|{good occurrences of vn in x�0, N�}|
#|{occurrences of vn in x�0, N�}| > 1− 1

R
.

Say that an occurrence of vm = vn�+1
at i ∈ Z in x ∈ X is totally good if all

the vn = vn�
composing it are good. By inequality (4), almost every x ∈ X must

contain a totally good occurrence of vm.
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Claim 6.4.1. Suppose the string vn1
avn occurs at i ∈ Z in x ∈ X and that the first

vn at i is good. We have a string of the form wn1
bwn occurring at i − j − ρx,i in

φ(x). Then the next copy of vn at i+ |vn|+ a is good if and only if a = b.

The proof of the claim is similar to the proof of Proposition 4.2 and we leave it
to the reader.

Let x ∈ X contain a totally good occurrence of

vm = vn1
t�(0)vn1

t�(1) · · · 1t�(q�−2)vn.

By repeatedly applying the claim, we conclude that there must be a string of the
form

wn1
t�(0)wn1

t�(1) · · · 1t�(q�−2)wn

in φ(x). But this contradicts the assumption that t� and t′� are incompatible, by
Proposition 6.3. �

We shall need the following lemma, which appears in [14] as Lemma 2.2. Given
two finite sequences s1 = (s1(0), . . . , s1(r1−2)) and s2 = (s2(0), . . . , s2(r2−2)), we
define s2 ∗ s1 to be the following sequence of length r1r2 − 1:

s2 ∗ s1 := s1s2(0)s1s2(1) · · · s2(r2 − 2)s1.

Note that s2 ∗ s1 is just the spacer parameter term obtained by replacing two
consecutive stages in the construction of a rank-one transformation by a single one.
It is easy to check that ∗ is an associative operation.

Lemma 6.5. Let s1 = (s1(0), . . . , s1(r1 − 2)) and s2 = (s2(0), . . . , s2(r2 − 2)).
Suppose that s1 �= s1 and that s2 is not constant. Then s2 ∗ s1 and s2 ∗ s1 are
incompatible.

We are now ready to prove Theorem 6.1. The backwards direction is easy:
observe that for any rank-one system (X,μ, T ) with parameters (rn) and (sn),
(X,μ, T−1) is isomorphic to the rank-one system (X,μ, T ) with parameters (rn)
and (sn). Thus if the condition in Theorem 6.1 holds, then a possible isomorphism φ
between (X,μ, T ) and (X,μ, T ) is the one where φ(x) is obtained by replacing every
expected occurrence of vN in x by an occurrence of v′N . This is an example of the
stable isomorphisms discussed in [12] and is in particular a topological isomorphism
(which also gives an isomorphism of the Borel systems). Clearly, it is also a finitary
isomorphism.

We establish the forward direction of the theorem below.

Proof of Theorem 6.1. Let (X,μ, T ) be a partially bounded rank-one system with
parameters (rn) and (sn) and associated rank-one words (vn). Suppose that sn �= sn
for infinitely many n. Let (Y, ν, T ) be the rank-one system with parameters (rn) and
(sn), which is isomorphic to the inverse of (X,μ, T ). We wish to apply Proposition
6.4 to show that X and Y are not isomorphic. The only nontrivial condition to
check is the existence of a subsequence of (u�) = (vn�

) of (vn) satisfying the criteria
in condition (4), which we do below.

Let u0 = v0 = 0. Suppose that u2m has been defined as vk. Let n > k such that
sn �= sn. Define u2m+1 = vn and u2m+2 = vn+3. In this way, we have obtained
a new sequence of rank-one words (u�) of (X,μ, T ); let (q�) and (t�) be the new
cutting and spacer parameters. We check that there exists Q > 0 and an infinite
set M ⊂ N such that q� < Q and t� and t� are incompatible for all � ∈ M. Let M
be the set of odd positive integers. Then for all � ∈ M we have:
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• q� = rn+2 · rn+1 · rn < R3,
• t� = (sn+2 ∗ sn+1) ∗ sn.

We can take Q = R3. Moreover, using condition (3) in the definition of partial
boundedness, we see that sn+2 ∗ sn+1 is not constant. Since sn �= sn, Lemma 6.5

implies that (sn+2 ∗ sn+1) ∗ sn and (sn+2 ∗ sn+1) ∗ sn are incompatible. In other
words, t� and t� are incompatible, which concludes the proof. �
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