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ON ASYMPTOTIC VARIANCE OF WHOLE-PLANE SLE
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(Communicated by Jeremy T. Tyson)

Dedicated to Professor Michel Zinsmeister on the occasion of his 60th birthday

Abstract. In this paper we rigorously compute the average McMullen as-
ymptotic variance for the logarithmic derivative of the interior whole-plane
Schramm–Loewner evolution SLE2. Combined with some earlier results on
the integral mean spectrum by B. Duplantier, Chi T. P. Nguyen, Nga T. T.
Nguyen, and M. Zinsmeister (see also B. Duplantier, Hieu X. Ho, Binh T.
Le, and M. Zinsmeister (2015 and 2017)), we prove an analogue of McMullen
dimension formula.

1. Introduction

1.1. Schramm–Loewner evolution SLE. In his seminal paper [13] O. Schramm
defined Stochastic Loewner evolution (now called Schramm–Loewner evolution) by
taking a Brownian motion as a driving function in the sense of classical Loewner
theory. In the following definition, the stochastic setting is carried out for the radial
Loewner equation in the unit disc.

Definition 1.1. The radial Schramm–Loewner evolution (of parameter κ), denoted
by SLEκ, in the unit disc is the solution of the stochastic PDE:

(1.1)
∂ft(z)

∂t
= −z

∂ft(z)

∂z

λ(t) + z

λ(t)− z
, f0(z) = z,

where λ(t) := ei
√
κBt with Bt being the standard one-dimensional Brownian motion

and κ being a nonnegative parameter.

Let Ωt = ft(D), and let gt : Ωt → D be the inverse function of ft; then gt(z) is
the unique solution of the stochastic ODE

(1.2)
∂gt(z)

∂t
= gt(z)

λ(t) + gt(z)

λ(t)− gt(z)
, g0(z) = z.

There is another variant of SLE, called whole-plane Schramm–Loewner evolu-
tion, that is the solution of the equation

(1.3)
∂ft(z)

∂t
= z

∂ft(z)

∂z

λ(t) + z

λ(t)− z
,

with the same random driving function λ(t) := ei
√
κBt . Actually, this variant is the

studying object of this paper. An introduction to SLE processes can be found in
[14] (see also [8]).
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Rohde and Schramm [12] proved that the Schamm–Loewner evolution processes
are almost surely generated by a curve for κ �= 8. In the whole-plane SLE case,
it means that there is a continuous curve γ : [0,+∞) → C, joining a point γ(0)
in C to ∞ and not containing 0, such that Ωt is the unbounded component of
C \ γ([t,+∞)). Moreover, there are phase transitions in parameter κ, namely, the
curve is almost surely simple (does not intersect itself) for κ ≤ 4, the curve has
double points for 4 < κ < 8, and when κ ≥ 8 the curve is a space-filling curve.
These curves are also proved or conjectured to be the scaling limit of some two-
dimensional lattice models in statistical mechanics, for instance, κ = 2 corresponds
to the loop-erased random walk, SLEκ with κ = 8/3 is conjectured to be the scaling
limit of self-avoiding random walks, κ = 4 corresponds to the path of the harmonic
explorer and contour lines of the Gaussian free field, SLEκ with κ = 6 is the scaling
limit of critical percolation on the triangular lattice, etc.

As was remarked in [8, Remark 4.18 and Section 4.3], if U : (−∞,+∞) → R is
a continuous function, then (1.1) with λ(t) = eiU(t) can be solved for time variable
t ∈ (−∞,+∞) or, equivalently, (1.2) can be solved for t ∈ (−∞,+∞). In equation
(1.1) of the definition of interior radial SLE, one may consider the driving function

λ(t) = ei
√
κBt with a two-side Brownian motion Bt,−∞ < t < +∞. By following

the same arguments, one can have an analogue of Lemma 1 in [2] (where the authors
deal with the exterior radial SLE defined in the complement of the closed unit disc)
for the interior version, i.e., the processes ft = g−1

t and g−t have the same law (up

to conjugation by ei
√
kBt) (see also [5]). We redefine a radial SLE as

(1.4) f̃t(z) := g−t(z)
(law)
= e−i

√
kBtg−1

t (ei
√
kBt), t ∈ R.

Then the (conjugate, inverse) radial SLE process f̃t satisfies the ODE

(1.5)
∂f̃t(z)

∂t
= f̃t(z)

f̃t(z) + λ(t)

f̃t(z)− λ(t)
, f̃0(z) = z.

The fact that f̃ is a solution of an ODE instead of a PDE is suitable for our
calculations in Section 2, the main part of the present paper. In that part, a
martingale argument is used. Let us introduce two crucial ingredients of that
method. The first one is an important property of the radial SLE process f̃t, the
so-called Markov property, due to the Markov property of Brownian motion Bt.

Lemma 1.2 (Markov property).

(1.6) f̃t(z) = λ(s)f̃t−s(f̃s(z)/λ(s)).

The second one is a relation between the whole-plane SLE and the radial SLE
f̃t.

Lemma 1.3. The limit in law, limt→+∞ etf̃t(z), exists and has the same law as
the (time zero) interior whole-plane random map f0(z):

lim
t→+∞

etf̃t(z)
(law)
= f0(z).

These two lemmas above are, respectively, interior versions of Lemmas 2 and 3
in [2] (see also [1]). Their proofs can also be found in [5].
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1.2. McMullen’s question and its Minkowski dimension version. The orig-
inal question of McMullen is stated for analytic families of conformal maps on the
complement of the unit disc. Let us introduce a version where conformal mappings
are defined on the unit disc.

Let (φt), t ∈ U, be a general analytic family of conformal maps on the unit disc
with φ0 = id and φt(0) = 0 ∀t ∈ U , where U is a neighborhood of 0. Then one may
write

φt(z) =

∫ z

0

elogφ′
t(u)du, z ∈ D.

The function b(z) = ∂
∂z

∂
∂tφt(z)|t=0 = ∂

∂t (log φ
′
t(z))|t=0 belongs to the Bloch space

B which is defined by

B = {b holomorphic in D, sup
D

(1− |z|2)|b′(z)| < ∞}.

McMullen [10] asked under what conditions on the family (φt) it is true that

(1.7) 2
d2

dt2
dimH(φt(∂D))

∣∣∣∣
t=0

= σ2(b),

where dimH(φt(∂D)) is the Hausdorff dimension of φt(∂D) and σ2(b) is McMullen’s
asymptotic variance of the Bloch function b given by

σ2(b) = lim sup
r→1−

1

2π| log(1− r)|

∫ 2π

0

|b(reiθ)|2dθ.

Another version of McMullen’s question was proposed and considered for the first
time by THN. Le and M. Zinsmeister [7]. In this version, the Hausdorff dimension
is replaced by the Minkovski dimension in (1.7), i.e., they dealt with the relation

(1.8) 2
d2

dt2
dimM (φt(∂D))

∣∣∣∣
t=0

= σ2(b),

where dimM (φt(∂D)) stands for the Minkovski dimension of φt(∂D). They consid-
ered analytic families (φt) defined in term of a Bloch function b as

(1.9) φt(z) =

∫ z

0

etb(u)du.

There exists a neighborhood U of 0 such that if t ∈ U , then φt is a conformal map
with quasiconformal extension, and then equation (1.8) is rewritten as

(1.10) 2
d2

dt2
dimM (φt(∂D))

∣∣∣∣
t=0

= lim sup
r→1−

1

2π| log(1− r)|

∫ 2π

0

|b(reiθ)|2dθ.

For the definition and properties of Hausdorff dimension and Minkovski dimension,
we refer the reader to any standard textbooks on dimension, for instance [6].

By using a probability argument M. Zinsmeister and THN. Le [7] described a
relatively large class of functions in B for which the family (φt) defined by (1.9)
satisfies (1.10). Namely, they proved that

(1.11) lim
p→0

4β(p, φ)

p2
= lim sup

r→1−

1

2π| log(1− r)|

∫ 2π

0

|b(reiθ)|2dθ
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which is, in this setting, equivalent to (1.10), due to a consequence of Corollary
10.18 in [11]. Here β(p, φ) is the integral means spectrum of φ, φ′(z) = exp(b(z)),
defined by

(1.12) β(p, φ) = lim sup
r→1−

log(
∫ 2π

0
|φ′(reiθ)|pdθ)

| log(1− r)| , p ∈ R.

Let us note that in the same paper, the authors also constructed a Bloch function
b for which the McMullen relation (1.10) does not hold.

1.3. Main results. In the above setting by THN. Le and M. Zinsmeister, we
consider b := log f ′, where f is the interior whole-plane SLEκ map at time 0, and
show that (1.11) holds in a sense of expectation for κ = 2. Namely, this paper aims
to prove the following theorem.

Theorem 1.4. Let f := f0 be the interior whole-plane SLEκ map at time 0, and
let β̄(p) be the average integral means spectrum of f defined by

β̄(p) = lim sup
r→1−

log(
∫ 2π

0
E(|f ′(reiθ)|p)dθ)

| log(1− r)| , p ∈ R.

For κ = 2,

(1.13) lim
p→0

4β̄(p)

p2
= lim

r→1−

1

2π| log(1− r)|

∫ 2π

0

E(| log f ′(reiθ)|2)dθ =
4

9
.

The number 4
9 comes from the explicit formula of the average integral mean spec-

trum β̄(p) for κ = 2. In fact, this explicit formula was obtained by B. Duplantier,
TPC. Nguyen, TTN. Nguyen, M. Zinsmeister [5] (see also [4]) for all nonnegative
κ.

Proposition 1.1. Let f := f0 be the interior whole-plane SLEκ map at time 0,
and let β̄(p) be the average integral means spectrum of f . Then

(1.14) β̄(p) =

⎧⎪⎨⎪⎩
βtip(p, κ) p < p′0(κ),

β0(p, κ) p′0(κ) ≤ p < p∗(κ),

β1(p, κ) p∗(κ) ≤ p ≤ min{p̂(κ), p(κ)},

where

βtip(p, κ) = −p− 1 +
1

4
(4 + κ−

√
(4 + κ)2 − 8κp),(1.15)

β0(p, κ) = −p+
4 + κ

4κ
(4 + κ−

√
(4 + κ)2 − 8κp),(1.16)

β1(p, κ) = 3p− 1

2
− 1

2

√
1 + 2κp(1.17)

and

p′0(κ) = −1− 3κ

8
,(1.18)

p∗(κ) =
1

32κ

(√
2(4 + κ)2 + 4− 6

)(√
2(4 + κ)2 + 4 + 2

)
,(1.19)

p̂(κ) = 1 +
κ

2
, p(κ) =

(6 + κ)(2 + κ)

8κ
.(1.20)
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It follows that the development of β̄ at p = 0 is

(1.21) β̄(p) =
2κ

(4 + κ)2
p2 + o(p2).

2. Asymptotic variance of whole-plane SLE

The aim of this section is to prove Theorem 1.4. The average integral means
spectrum of the interior whole-plane SLEκ has the development at p = 0 as (1.21).
In particular, for κ = 2,

(2.1) lim
p→0

4β̄(p)

p2
=

4

9
.

Therefore, in order to prove Theorem 1.4, we will show that the right-hand side
of (1.13) takes the value 4

9 . For this purpose, we will proceed using the two fol-
lowing steps: First, we use martingale techniques to derive an equation satisfied
by E(| log f ′(z)|2) for all κ > 0. Then we solve the equation obtained in the first
step for κ = 2 by a consideration of the series form of the solution. An explicit
expression of E(| log f ′(z)|2) will be obtained to verify the relation (1.13).

2.1. Logarithmic expectation of whole-plane SLE. In this section, we present
results concerning the logarithmic expectation F (z) := E(log f ′(z)). These results
include a differential equation satisfied by F and the formula of the derivative of
F (hence F ). They will be used in the next sections to derive an equation obeyed
by the second logarithmic moment E(| log f ′(z)|2) and to find the solutions of this
equation.

Proposition 2.1. Let f := f0 be the interior whole-plane SLEκ map at time 0,
and let F (z) = E(log f ′(z)). Then F satisfies the equation

(2.2) −κ

2
z2∂2

zzF + z
(z + 1

z − 1
− κ

2

)
∂zF + 2

(
1− 1

(z − 1)2

)
= 0.

It follows that

(2.3) ∂zF (z) = E

(f ′′(z)

f ′(z)

)
=

4

κ

(1− z)
κ
4

z
2
κ+1

∫ z

0

u
2
κ (u− 2)

(1− u)
4
κ+2

du.

Proof. Let us first introduce the time-dependent, auxiliary function

(2.4) F̃ (z, t) := E(log f̃t(z)),

where f̃t is the reverse radial SLEκ process (1.4). As a consequence of Lemma 1.3,
the function F is the limit

(2.5) lim
t→+∞

(t+ F̃ (z, t)) = F (z).

We now consider the conditional expectation

(2.6) Ms := E(log f̃ ′
t |Fs),

where Fs denotes the σ-algebra generated by {Bτ : τ ≤ s}. Thanks to the Markov

property of SLE, log f̃ ′
t(z) may be written as

(2.7) log f̃ ′
t(z) = log f̃ ′

s(z) + log f̃ ′
t−s(zs), zs :=

f̃s(z)

λ(s)
.
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Then

(2.8) Ms = log f̃ ′
s(z) + F̃ (τ, zs),

where τ := t− s and F̃ (t, z) := E(log f̃ ′
t(z)). We know that (Ms)t≥s≥0 is a martin-

gale. This fact implies that the ds-drift term of the Itô derivative of Ms vanishes,
which permits us to obtain an equation satisfied by F̃ . We now calculate that
ds-drift term.

By regarding Ms as a stochastic process governed by the two processes log f̃ ′
s(z)

and zs, the Itô derivative of Ms is determined by

(2.9) dMs = d log f̃ ′
s(z)− ∂τ F̃ ds+ ∂zs F̃ dzs +

1

2
∂2
zszs F̃ dzsdzs.

Since the Itô differentials d log f̃ ′ and dzs are written in term of ds and dBs as

d log f̃ ′
s(z) =

(
1− 2

(zs − 1)2

)
ds,(2.10)

dzs, = zs

(zs + 1

zs − 1
− κ

2

)
ds− i

√
κzsdBs,(2.11)

we obtain the coefficient of the drift term of dMs:

(2.12) P̃sing(D)(F̃ ) := 1− 2

(zs − 1)2
− ∂τ F̃ +

(zs + 1

zs − 1
− κ

2

)
zs∂zs F̃ − κ

2
z2s∂

2
zszs F̃ .

The vanishing of this quantity gives us the equation

(2.13) P̃sing(D)(F̃ ) = 1− 2

(zs − 1)2
−∂τ F̃+

(zs + 1

zs − 1
− κ

2

)
zs∂zs F̃− κ

2
z2s∂

2
zszs F̃ = 0.

Since E(log eτ f̃ ′
τ (z)) = τ + F̃ (z), let us rewrite (2.13) as

(2.14)
2− 2

(zs − 1)2
− ∂τE(log e

τ f̃ ′
τ ) +

(zs + 1

zs − 1
− κ

2

)
zs∂zsE(log e

τ f̃ ′
τ )

− κ

2
z2s∂

2
zszsE(log e

τ f̃ ′
τ ) = 0.

We pass to the limit in (2.14) as τ tends to +∞ by using (2.5) and then derive an
equation obeyed by F :

(2.15) 2
(
1− 1

(z − 1)2

)
+
(z + 1

z − 1
− κ

2

)
z∂zF − κ

2
z2∂zzF = 0.

In the above, we followed an argument used in [4] (see [4, proof of Preposition

2.1]). The exchange of the τ → +∞ limit and partial derivation of E(log eτ f̃ ′
τ ) with

respect to z is justified by the fact that the τ -family log eτ f̃ ′
τ is normal. This family

is thus equicontinuous and so, together with the existence of the limit (2.5), is
uniformly convergent on compact sets of D. In addition, in order to obtain (2.15),

we has also used the fact limτ→+∞ ∂τE(log e
τ f̃ ′

τ ) = 0. The Schramm–Loewner
equation (1.5) gives us the following:

(2.16)
∂

∂τ
log eτ f̃ ′

τ (z) =
2f̃τ (z)− 4f̃τ (z)λ(τ )

(f̃τ (z)− λ(τ ))2
.

By means of classical Koebe theorems for the function z 
→ eτ f̃τ (z) of class S, the
right-hand side is bounded by C(z)e−τ , with C defined in D. This allows us to
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exchange the expectation and the τ -derivative as well as justify the vanishing of
the above limit.

After eliminating the factor z in (2.15), it yields an equivalent equation

(2.17) −κ

2
z∂2

zzF +
(z + 1

z − 1
− κ

2

)
∂zF +

2(z − 2)

(z − 1)2
= 0.

This equation is an ODE of order one of ∂zF with the initial condition ∂zF (0) =
−8
2+κ , obtained by substituting z = 0 into (2.17). One may use the integrating factor

method to solve this equation and get the expression (2.3) of ∂zF . �
From Proposition 2.1, simple formulas of ∂zF (z) can be obtained for particular

cases. For example, in the case of κ = 2,

(2.18) ∂zF (z) = −4

3
+

2

3

1

z − 1
,

for κ = 1,

(2.19) ∂zF (z) =
7

15
z − 28

15
+

4

5

1

z − 1
,

and for κ = 4, by putting w :=
√
z,

(2.20) ∂zF (z) =
w2 − 1

8w3

(10w − 6w3

(w2 − 1)2
+ 5 log

1− w

1 + w

)
.

The explicit formula of F is obtained for certain values of κ by integrating both
sides of (2.3). Let us note that with κ = 2

(2.21) F (z) = −4

3
z +

2

3
log(1− z).

Remark 2.1. If κ = 2
n , then

(2.22) F (z) = Pn(z) +
2n

2n+ 1
log(1− z),

where Pn is a polynomial of degree n.

Remark 2.2. For general κ,

(2.23) ∂zF (z) ∼ 4

4 + κ

1

z − 1
, z → 1,

so

(2.24) F (z) ∼ 4

4 + κ
log(1− z), z → 1.

2.2. Second logarithmic moment of whole-plane SLE. In order to obtain
the value of the average asymptotic variance of the Bloch function log f ′, we need
the integral means on circles {|z| = r} of the second moduli logarithmic moment
E(| log f ′|2). For this purpose, we continue following the martingale argument to
arrive at an equation satisfied by G(z) := E(| log f ′(z)|2). Next, we rewrite G as

(2.25) G(z, z̄) = F (z)F (z) +R(z, z̄)

and show that R is the solution of a differential equation which may, intuitively, be
easier to deal with than one satisfied by G.

We now consider the martingale (Ns)t≥s≥0 defined by

(2.26) Ns := E(| log f̃ ′
t |2|Fs).
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Recall that the martingale argument is based on the fact that the ds-drift term in
the Itô derivative of a martingale vanishes. As in the preceding section, we first
calculate the ds term of Ns to find an equation of the auxiliary function G̃ which
is defined as following

(2.27) G̃(t, z, z̄) := E(| log f̃ ′
t(z)|2),

where f̃t is the reverse radial SLEκ process (1.4).
We rewrite Ns by using the Markov property of SLE as

(2.28) Ns = | log f̃ ′
s(z)|2 + G̃(τ, zs, z̄s) + log f̃ ′

s(z)F̃ (τ, zs) + log f̃ ′
s(z)F̃ (τ, zs).

F̃ is defined in the preceding section by (2.4).
For reasons of concision, we hereafter denote by Cds(Xs) the coefficient of ds in

the Itô derivative dXs of a stochastic processe Xs. Thanks to the linearity of the
Itô derivative, one can perform the ds term of dNs as the sum of those of the three
terms on the right-hand side of (2.28). Since the coefficients of ds in d| log f̃ ′

s(z)|2,
d log f̃ ′

s(z)F̃ (τ, zs), and dlog f̃ ′
s(z)F̃ (τ, zs) are, respectively,

∂s log f̃
′
t(z)log f̃

′
t(z) + log f̃ ′

t(z)∂slog f̃
′
t(z),

∂s log f̃
′
t(z)F̃ (τ, zs) + log f̃ ′

t(z)Cds
(
F̃ (τ, zs)

)
,

∂slog f̃ ′
t(z)F̃ (τ, zs) + log f̃ ′

t(z)Cds(F̃ (τ, zs)),

the ds-coefficient of dNs is obtained as

Cds(G̃(τ, zs, z̄s)) + ∂s log f̃
′
t(z)F̃ (τ, zs) + ∂slog f̃ ′

t(z)F̃ (τ, zs)(2.29)

+ log f̃ ′
t(z)(∂s log f̃

′
t(z) + Cds(F̃ (τ, zs))

+ log f̃ ′
t(z)(∂slog f̃

′
t(z) + Cds

(
F̃ (τ, zs)

)
.

Note that ∂s log f̃
′
t(z)+Cds(F̃ (τ, zs)) and ∂slog f̃ ′

t(z)+Cds
(
F̃ (τ, zs)

)
vanish because

the first is the coefficient of the ds-drift term in the Itô derivative of the martingale
(Ms)t≥s≥0 defined by (2.6) while the second is the complex conjugate of the first
one. The ds-drift term coefficient of dNs is thus reduced as

(2.30) Cds(G̃(τ, zs, z̄s)) + ∂s log f̃
′
t(z)F̃ (τ, zs) + ∂slog f̃ ′

t(z)F̃ (τ, zs).

We now expand the terms that appear in (2.30). Namely,

∂s log f̃
′
s =

∂z

[
f̃s

f̃s+λ(s)

f̃s−λ(s)

]
f̃ ′
s

=
f̃s + λ(s)

f̃s − λ(s)
− 2λ(s)f̃s

(f̃s − λ(s))2

= 1− 2

(1− zs)2
,

∂slog f̃ ′
s = 1− 2

(1− z̄s)2
.

In addition, by again applying the Itô formula to G̃(τ, zs, z̄s), we also have
(2.31)

Cds(G̃(τ, zs, z̄s)) =
zs + 1

zs − 1
zs∂zsG̃+

z̄s + 1

z̄s − 1
z̄s∂̄z̄sG̃− ∂τ G̃− κ

2
(zs∂zs − z̄s ∂̄z̄s)

2G̃.
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Let us denote the differential operator on the right-hand side of (2.31) by Pprin(D).
The quantity (2.30) then equals

(2.32) Pprin(D)(G̃) +
(
1− 2

(1− zs)2

)
F̃ (τ, zs) +

(
1− 2

(1− z̄s)2

)
F̃ (τ, zs).

We recall that this quantity vanishes since Ns is a martingale. One thus obtains
an equation satisfied by G̃:

(2.33) Pprin(D)(G̃) +
(
1− 2

(1− zs)2

)
F̃ (τ, zs) +

(
1− 2

(1− z̄s)2

)
F̃ (τ, zs) = 0.

We continue by passing to the limit in (2.33) as τ tends to +∞ and using Lemma

1.3 to arrive at an equation obeyed by G. Before doing that, let us rewrite | log f̃ ′
τ |2

as follows:

(2.34) | log f̃ ′
τ |2 = | log eτ f̃ ′

τ |2 − τ (log f̃ ′
τ + log f̃ ′

τ )− τ2.

This identity implies that

∂zsG̃ = ∂zsE(| log eτ f̃ ′
τ |2)− τ∂zs F̃ (τ, zs),(2.35)

∂z̄sG̃ = ∂z̄sE(| log eτ f̃ ′
τ |2)− τ∂z̄s F̃ (τ, zs),(2.36)

∂2
zszsG̃ = ∂2

zszsE(| log e
τ f̃ ′

τ |2)− τ∂2
zszs F̃ (τ, zs),(2.37)

∂2
z̄sz̄sG̃ = ∂2

z̄sz̄sE(| log e
τ f̃ ′

τ |2)− τ∂2
z̄sz̄s F̃ (τ, zs),(2.38)

∂2
zsz̄sG̃ = ∂2

zsz̄sE(| log e
τ f̃ ′

τ |2),(2.39)

∂τ G̃ = ∂τE(| log eτ f̃ ′
t |2)− E(log eτ f̃ ′

τ )− τ∂τ F̃ (τ, zs)− E(log eτ f̃ ′
τ )− τ∂τ F̃ (τ, zs).

(2.40)

In (2.33), by replacing the terms that appear on the left-hand side of the above
identities by their corresponding right-hand side terms, we arrive at

Pprin(D)(E(| log eτ f̃ ′
τ |2))

+ 2
(
1− 1

(1− z̄s)2

)
E(log eτ f̃ ′

τ ) + 2
(
1− 1

(1− zs)2

)
E(log eτ f̃ ′

τ )(2.41)

− τ P̃sing(D)(F̃ )(τ, zs)− τ P̃sing(D)(F̃ )(τ, zs) = 0.

Because of the fact that P̃sing(F̃ )(τ, zs) is the ds-term coefficient in dMs, which
vanishes, one can get rid of the second line of (2.41) and obtain

Pprin(D)(E(| log eτ f̃ ′
τ |2) + 2

(
1− 1

(1− z̄s)2

)
E(log eτ f̃ ′

τ )(2.42)

+ 2
(
1− 1

(1− zs)2

)
E(log eτ f̃ ′

τ ) = 0.

Finally, Lemma 1.3 is used to derive an equation satisfied by G.

Proposition 2.2. Let f := f0 be the interior whole-plane SLEκ map at time 0,
and let G(z, z̄) = E(| log f ′(z)|2). Then G satisfies the equation

(2.43) Pprin(D)(G) + 2
(
1− 1

(z̄ − 1)2

)
F (z) + 2

(
1− 1

(z − 1)2

)
F (z) = 0,

where

Pprin(D) =
z + 1

z − 1
z∂z +

z̄ + 1

z̄ − 1
z̄∂z̄ −

κ

2
(z∂z − z̄∂z̄)

2.
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We now consider the function G of the form

(2.44) G(z, z̄) = F (z)F (z) +R(z, z̄),

where F is the solution of (2.2) and F (z) is its complex conjugate. By replacing

G(z, z̄) by F (z)F (z) +R(z, z̄), the left-hand side of (2.43) becomes

Pprin(D)(R) + κzz̄∂zF∂z̄F̄(2.45)

+

[
− κ

2
z2∂2

zzF + z
(z + 1

z − 1
− κ

2

)
∂zF + 2

(
1− 1

(z − 1)2

)]
F̄

+

[
− κ

2
z2∂2

zzF + z
(z + 1

z − 1
− κ

2

)
∂zF + 2

(
1− 1

(z − 1)2

)]
F.

By (2.1), the two last lines vanish. The quantity (2.45) is thus simplified as

(2.46) Pprin(D)(R) + κzz̄∂zF∂z̄F̄ .

That leads us to the following proposition.

Proposition 2.3.

(2.47) Pprin(D)(R) = −κzz̄∂zF∂z̄F̄ .

2.3. Asymptotic variance of SLE2. The function R is analytic in the bidisk
D× D; we thus write it in a series form

(2.48) R(z, z̄) =
∑
n≥0

an,mznz̄m,

since the normalization of the SLE map f , a0,0 = 0.
The equation (2.47) gives us recurrent relations of the coefficients an,m. In the

case of κ = 2, these recurrent relations make us able to easily obtain an explicit
formula of R and thus of G (see [9] for a similar argument). Let us set κ = 2 and
use the corresponding expression (2.21) of F to derive the following equation from
(2.47):

z + 1

z − 1
z∂zR +

z̄ + 1

z̄ − 1
z̄∂z̄R− κ

2
(z∂z − z̄∂z̄)

2R(2.49)

= −2zz̄
(
− 4

3
z +

2

3
log(1− z)

)(
− 4

3
z̄ +

2

3
log(1− z̄)

)
.

After putting the series form (2.48) of R into (2.49) and identifying the two sides
of the equation, we obtain

a1,0 = a0,1 = a2,0 = a0,2 = 0, a1,1 = 4, a2,2 =
14

9
,

an,m =
1

(n−m)2 + n+m

[(
(n−m− 1)2 − n+m+ 1

)
an−1,m

+

(
(n−m+ 1)2 + n−m+ 1

)
an,m−1 +

(
− (n−m)2 + n+m− 2

)
an−1,m−1

]
.
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By using the inductive method, we can prove that

a1,1 = 4,(2.50)

an,n =
4

3

(
4

n2
+

1

3n

)
∀n ≥ 2,(2.51)

an,n+1 = an+1,n =
−8

3n(n+ 1)
∀n ≥ 1,(2.52)

an,m = 0 otherwise.(2.53)

These identities are equivalent to
(2.54)

R(z, z̄) =
4

3

[
−4

3
zz̄+

2(z + z̄)

zz̄

∫ zz̄

0

log(1−u)du−4

∫ zz̄

0

log(1− u)

u
du−1

3
log(1−zz̄)

]
,

and hence

G(z, z̄) =

(
− 4

3
z +

2

3
log(1− z)

)(
− 4

3
z̄ +

2

3
log(1− z̄)

)(2.55)

+
4

3

[
− 4

3
zz̄ +

2(z + z̄)

zz̄

∫ zz̄

0

log(1− u)du− 4

∫ zz̄

0

log(1− u)

u
du− 1

3
log(1− zz̄)

]
.

Equation (2.55) directly implies the main result of this section.

Proposition 2.4. Let f := f0 be the interior whole-plane SLE2 map at time 0.
Then

(2.56) lim
r→1−

1

2π| log(1− r)|

∫ 2π

0

E(| log f ′(reiθ)|2)dθ =
4

9
.

Proof. By using the Maclaurin expansion of the logarithmic function log(1− z),

log(1− z) = −
∞∑

n=1

zn

n
, |z| < 1,

one rewrites the function G(z, z̄) (2.55) as

G(z, z̄) =
8

9

(
z

∞∑
n=1

z̄n

n
+ z̄

∞∑
n=1

zn

n

)
+

4

9

∞∑
n=1

zn

n

∞∑
n=1

z̄n

n

−8

3
(z + z̄)

∞∑
n=1

(zz̄)n

n(n+ 1)
+

16

3

∞∑
n=1

(zz̄)n

n2
− 4

9
log(1− zz̄).(2.57)

Plancherel’s theorem then yields

(2.58)
1

2π

∫ 2π

0

E(| log f ′(reiθ)|2)dθ =
16

9
r2 +

52

9

∞∑
n=1

r2n

n2
− 4

9
log(1− r2), r < 1.
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It follows that

lim
r→1−

1

2π| log(1− r)|

∫ 2π

0

E(| log f ′(reiθ)|2)dθ

= lim
r→1−

16
9 r2 + 52

9

∑∞
n=1

r2n

n2 − 4
9 log(1− r2)

− log(1− r)
(2.59)

=
4

9
.

�

We believe that the relation (1.13) is true for SLEκ with an abitrary κ > 0.
However, this is still an open problem.
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