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GENERATING FUNCTION

FOR THE BANNAI-ITO POLYNOMIALS

GEOFFROY BERGERON, LUC VINET, AND SATOSHI TSUJIMOTO

(Communicated by Mourad Ismail)

Abstract. A generating function for the Bannai-Ito polynomials is derived
using the fact that these polynomials are known to be essentially the Racah
or 6j coefficients of the osp(1|2) Lie superalgebra. The derivation is carried in
a realization of the recoupling problem in terms of three Dunkl oscillators.

1. Introduction

In a previous paper [2], generating functions for the dual -1 Hahn polynomials
were derived using the Clebsch-Gordan problem of the osp(1|2) Lie superalgebra.
In the present case, we exploit again the fact that osp(1|2) is the dynamical algebra
of a parabosonic or Dunkl oscillator. The generating function of the Bannai-Ito
polynomials is found by using the wavefunctions of this system and recalling [5]
that the Racah coefficients for osp(1|2) are given in terms of these polynomials.

Related approaches using wavefunction realizations of dynamical algebra to de-
rive identities for orthogonal polynomials have been presented previously [8, 9, 12,
13]. In particular, [3] uses manipulations of wavefunctions similar to the ones that
will be presented here to derive an integral representation of recoupling coefficients.

1.1. The Bannai-Ito polynomials. The Bannai-Ito polynomials, introduced in
[1], denoted here by Bn(x), depend on four parameters {r1, r2, ρ1, ρ2} and can be
defined [11], see also [14], as the functions diagonalizing the difference operator

(x− ρ1)(x− ρ2)

2x
(I − Px) +

(x− r1 + 1/2)(x− r2 + 1/2)

2x+ 1
(PxDx − I),

where Px is the reflection operator acting on functions of x as Pxf(x) = f(−x)
and Dx is the forward shift operator acting as Dxf(x) = f(x − 1) and with the
eigenvalues λn given by

λn =

⎧⎨⎩
n

2
for n even,

r1 + r2 − ρ1 − ρ2 −
n+ 1

2
for n odd.
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They satisfy a three-term recurrence relation

xBn(x) = Bn+1(x) + (ρ1 − an − cn)Bn(x) + an−1cnBn−1(x),

with coefficients

(1.1) an =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(n+ 2ρ1 − 2r1 + 1)(n+ 2ρ1 − 2r2 + 1)

4(n+ ρ1 + ρ2 − r1 − r2 + 1)
for n even,

(n+ 2ρ1 + 2ρ2 − 2r1 − 2r2 + 1)(n+ 2ρ1 + 2ρ2 + 1)

4(n+ ρ1 + ρ2 − r1 − r2 + 1)
for n odd,

(1.2) cn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−n(n− 2r1 − 2r2)

4(n+ ρ1 + ρ2 − r1 − r2)
for n even,

−(n+ 2ρ2 − 2r2)(n+ 2ρ2 − 2r1)

4(n+ ρ1 + ρ2 − r1 − r2)
for n odd,

and initial conditions B−1(x) = 0, B0(x) = 1. The possible choices of truncation
conditions for the recurrence relation are, for N even,

(1.3) 2(ri − ρk) = N + 1, i, k = 1, 2,

and, for N odd,

(1.4) ρ1 + ρ2 = −(N + 1)/2 or r1 + r2 = (N + 1)/2.

In this work, the truncation conditions used are

(1.5) 2(r2 − ρ1) = N + 1 for N even, ρ1 + ρ2 = −(N + 1)/2 for N odd.

The orthogonality of the Bannai-Ito polynomials

(1.6)
N∑

S=0

wSBn(xS)Bm(xS) = hNδnm, S = 0, . . . , N,

is with respect to a discrete measure of weights wS on the grid xS , for S = 2s+p ∈
{0, . . . , N} and p ∈ {0, 1}, with normalization hN where

(1.7) wS =
(−1)p(ρ1 − r1 + 1/2)s+p(ρ1 − r2 + 1/2)s+p(ρ1 + ρ2 + 1)s
(ρ1 + r1 + 1/2)s+p(ρ1 + r2 + 1/2)s+p(1)s(ρ1 − ρ2 + 1)s

,

with (a)m = a(a+ 1) . . . (a+m− 1) the rising Pochhammer symbol, and

xS =
(−1)S(S + 2ρ1 + 1/2)− 1/2

2
,(1.8)

hN =

⎧⎪⎪⎨⎪⎪⎩
(2ρ1 + 1)N/2(r1 − ρ2 + 1/2)N/2

(ρ1 − ρ2 + 1)N/2(ρ1 + r1 + 1/2)N/2
, N even,

(2ρ1 + 1)(N+1)/2(r1 + r2)(N+1)/2

(ρ1 + r1 + 1/2)(N+1)/2(ρ1 + r2 + 1/2)(N+1)/2
, N odd,

(1.9)

where N = |ρ2 + r2|+ r2 − ρ2 − 2ρ1 − 1.
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1.2. The osp(1|2) algebra. The osp(1|2) algebra is generated by two odd elements
K± and one even elementK0, relative to a Z2-grading. The presentation used in this
paper makes this grading explicit by the introduction of a grade involution operator
R that commutes/anticommutes with the even/odd elements of the algebra. This
presentation, also referred to as the sl−1(2) algebra [10] in the literature, is given
by the four generators K0, K±, and R together with the relations

[K0,K±] = ±K±, [K0, R] = 0, {K+,K−} = 2K0, {K±, R} = 0, R2 = 1,

(1.10)

with [a, b] = ab− ba and {a, b} = ab+ ba. The Casimir operator for the algebra as
presented in (1.10) is given by

C = (K+K− −K0 + 1/2)R.(1.11)

The irreducible positive-discrete series representations of osp(1|2) are then la-
beled by two numbers (μ, ε) where μ ≥ 0 and ε = ±1. The actions of the generators
on the orthonormal basis vectors |n, μ, ε〉 with n ∈ N are

K0 |n, μ, ε〉 = (n+ μ+ 1/2) |n, μ, ε〉, R|n, μ, ε〉 = ε (−1)n |n, μ, ε〉,

K+ |n, μ, ε〉 =
√
[n+ 1]μ |n+ 1, μ, ε〉, K− |n, μ, ε〉 =

√
[n]μ |n− 1, μ, ε〉,

(1.12)

where [n]μ = n+μ(1−(−1)n). In these representations, the Casimir (1.11) assumes
the value

C|n, μ, ε〉 = −εμ|n, μ, ε〉.

1.3. Realization as a dynamical algebra. The presentation (1.10) of osp(1|2)
can be realized [6, 7] in terms of operators acting on functions of a real variable x.
Let Px denote the parity operator acting on functions as Pxf(x) = f(−x). The
Z2-Dunkl derivative is defined by

Dx = ∂x +
μ

x
(1− Px).

The osp(1|2) algebra is realized under the following identification of the generators:

K0 = −1

2
D

2
x +

1

2
x2, K± =

1√
2
(x∓Dx), R = Px.(1.13)

This casts osp(1|2) as the dynamical algebra of the parabose oscillator [10] whose
HamiltonianH is the operator that realizesK0. It follows that the position operator
and its associated eigenvectors are

X =
1√
2
(K+ +K−), X|x, μ, ε〉 = x|x, μ, ε〉.(1.14)

The representation basis (1.12) corresponds to the energy eigenstates with eigen-
values E = n+ μ+ 1/2 and can be modeled by the wavefunctions Ψμ,ε

n (x) defined
through

Ψμ,ε
n (x) = 〈x, μ, ε|n, μ, ε〉.(1.15)
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1.4. The Racah problem of osp(1|2). The osp(1|2) algebra also forms a Hopf
algebra [4] where the coproduct Δ is given in the presentation (1.10) as

(1.16) Δ(K0) = K0⊗1+1⊗K0, Δ(R) = R⊗R, Δ(K±) = K±⊗R+1⊗K±.

This Hopf algebra structure induces an action of osp(1|2) on tensor products of
modules. Consider the following threefold tensor product of irreducible representa-
tions:

(μ1, ε1)⊗ (μ2, ε2)⊗ (μ3, ε3).(1.17)

One can decompose this product of representations in a direct sum of irreducible
representations in two different ways, corresponding to the order in which the co-
product is used to induce an action of osp(1|2) on (1.17), either Δ ⊗ 1 ◦ Δ or
1 ⊗ Δ ◦ Δ. Both cases specify an algebra homomorphism osp(1|2) → osp(1|2) ⊗
osp(1|2)⊗osp(1|2) and an associated decomposition of threefold tensor products of
representations into direct sums of irreducible representations

(μ1, ε1)⊗ (μ2, ε2)⊗ (μ3, ε3)
Δ⊗1◦Δ∼=

⊕
u

(μ(12)3(u), ε(12)3(u)),

1⊗Δ◦Δ∼=
⊕
v

(μ1(23)(v), ε1(23)(v)).

(1.18)

In fact, by the coassociativity of the coproduct, we have that two irreducible rep-
resentations connected in such a way are isomorphic

(μ(12)3, ε(12)3) ∼= (μ1(23), ε1(23))(1.19)

and thus, we will only keep the notation distinguishing the two in the labels when
relevant.

The basis constructed as in (1.12) for these representations does not uniquely
determine the map (1.18) on the basis vectors themselves, but a canonical choice
of supplementary labels exists that removes the degeneracy. One demands that
the basis vectors of (μ(12)3, ε(12)3), (respectively, (μ1(23), ε1(23))), diagonalize the
intermediate Casimir operator C12 = Δ(C) ⊗ 1, (resp., C23 = 1 ⊗ Δ(C)). Thus,
denoting the action of Δ⊗ 1 ◦Δ = 1⊗Δ ◦Δ on generators A ∈ osp(1|2) by

Δ⊗ 1 ◦Δ : A �→ Â ∈ osp(1|2)⊗ osp(1|2)⊗ osp(1|2),(1.20)

and knowing the two modules (μ(12)3, ε(12)3) and (μ1(23), ε1(23)) are identical as
osp(1|2) representations, we have that basis vectors for both satisfy

K̂0 |n123〉 = (n123 + μ123 + 1/2) |n123〉, R̂ |n123〉 = ε123 (−1)n123 |n123〉,

K̂+ |n123〉 =
√
[n123 + 1]μ123

|n123 + 1〉, K̂− |n123〉 =
√
[n123]μ123

|n123 − 1〉,

Ĉ |n123〉 = −μ123 ε123 |n123〉,

(1.21)

where |n123〉 stands for either |n(12)3, μ(12)3, ε(12)3〉 or |n1(23), μ1(23), ε1(23)〉. The
degeneracy is then lifted through the actions of the intermediate Casimirs

C12 |n(12)3, μ(12)3, ε(12)3〉 = −μ12 ε12 |n(12)3, μ(12)3, ε(12)3〉,(1.22a)

C23 |n1(23), μ1(23), ε1(23)〉 = −μ23 ε23 |n1(23), μ1(23), ε1(23)〉.(1.22b)
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These bases are not the same since [C12, C23] 
= 0. The osp(1|2) Racah problem
consists in determining the overlaps R between the two bases (1.21)

R = 〈n(12)3, μ(12)3, ε(12)3|n1(23), μ1(23), ε1(23)〉.(1.23)

1.5. Outline. We will first explain the realization of the Racah problem in terms of
a system of three parabose harmonic oscillators and will indicate how this realization
relates to generating functions in section 2. Section 3 gives the explicit expressions
of the angular wavefunctions in each parity case of the parameters and a derivation
of their asymptotic form in the relevant limits. Finally, section 4 contains the
derivation of the generating functions and is followed by a brief conclusion.

2. Realization of the Racah decomposition

The Racah problem of osp(1|2) can be expressed within the dynamical algebra
realization by considering three uncoupled parabose oscillators in the Cartesian
coordinates {x, y, z}. The total Hamiltonian for this system is simply the sum of
the separate Hamiltonians

Hxyz = Hx +Hy +Hz = K0 ⊗ 1⊗ 1 + 1⊗K0 ⊗ 1 + 1⊗ 1⊗K0 = K̂0.

The Schrödinger equation Hxyz |ψ〉 = Exyz|ψ〉 manifestly separates in the Cartesian
coordinates. In [7], it was shown that it also separates in spherical coordinates. This
separation is associated to the symmetries generated by the intermediate Casimir
operators C12 and C23. In fact, the spherical wavefunctions are constructed [4]
using the basis (1.21). Not surprisingly then, the Racah problem is directly related
to the different possible choices in the construction of the spherical coordinates.

2.1. Spherical coordinates realization. The position operator X introduced in
(1.14) can naturally be extended to a set of three operators acting on the threefold
tensor product of irreducible representations as

X = X ⊗ 1⊗ 1, Y = 1⊗X ⊗ 1, Z = 1⊗ 1⊗X,

where the X operator in the right-hand side is the one defined in (1.14). From
these, one can define the radial operator X2 + Y 2 + Z2. It commutes [6] with the
intermediate Casimirs C12 and C23. Thus, the two bases introduced in (1.21) do
not differ in their radial parts and the Racah problem is entirely determined by the
angular wavefunctions. We may as well take the radius to be fixed and consider
the Racah problem on a fixed eigenspace of the radial operator X̂2.

The angular wavefunctions will be defined as the functions satisfying (1.22a) or
(1.22b) under the action of the osp(1|2) algebra in the coordinate realization and
under the constraint x2 + y2 + z2 = 1, where x, y, and z are the eigenvalues of the
X, Y , and Z operators, respectively. As such, these functions are defined on the
two-dimensional sphere and can be parametrized by two angles θ and φ. We choose
these angles to be related to the Cartesian coordinates as usual through

x = sin θ cosφ, y = sin θ sinφ, z = cos θ.(2.1)

Using these relations, the realization (1.13) of osp(1|2) can be expressed as differ-
ential operators in the angular coordinates [7]. The angular wavefunctions are then
given by

Yμ(12)3,ε(12)3
n(12)3 (θ, φ) = 〈θ, φ |n(12)3, μ(12)3, ε(12)3〉 with x2 + y2 + z2 = 1.
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A similar expression is defined for the other basis with a different set of angular
variables {α, β} by

Zμ1(23),ε1(23)
n1(23) (α, β) = 〈α, β |n1(23), μ1(23), ε1(23)〉 with x2 + y2 + z2 = 1.

It is possible to relate the second set of variables to the first by observing that a
permutation of the terms in the threefold tensor product of irreducible representa-
tions (1.17) maps the basis (1.22a) to (1.22b). Explicitly, this permutation is the
cycle ( 1 2 3 ) acting on the Cartesian coordinates {x, y, z}. In terms of the angular
variables, this corresponds to the relations

sinα cosβ = sin θ sinφ, sinα sinβ = cos θ, cosα = sin θ cosφ.(2.2)

In view of (1.19), the decomposition of these angular wavefunctions onto each other
exists and will have the Racah coefficients as overlaps

Zμ1(23),ε1(23)
n1(23)

(α(θ, φ), β(θ, φ)) =
∑

RYμ(12)3,ε(12)3
n(12)3

(θ, φ),(2.3)

where α(θ, φ) and β(θ, φ) are obtained from (2.2).

2.2. Exact form of the decomposition. Let us now make details explicit. First
consider a basis vector of (1.17), which we here denote by

|n1, μ1, ε1〉⊗|n2, μ2, ε2〉⊗|n3, μ3, ε3〉.
In view of (1.18), we may write a decomposition of the form

|n1, μ1, ε1〉⊗|n2, μ2, ε2〉⊗|n3, μ3, ε3〉 =
∑
u

Cu |n123, μ123, ε123〉u.(2.4)

For this equality to hold given the action of K̂0 and R̂ and knowing that the
representation parameters μ123 and ε123 cannot depend on the basis label n123 one
obtains the following relations:

n123 = n1 + n2 + n3 −N, μ123 = μ1 + μ2 + μ3 + 1 +N, ε123 = ε1ε2ε3(−1)N ,

(2.5)

where N ∈ [0, n1 + n2 + n3] ⊂ N. The difference between the two bases (1.22a)
and (1.22b) arises when considering the operators C12 and C23. Being intermediate
Casimirs, these operators satisfy

[C12,Δ(A)⊗ 1] = 0 = [C23, 1⊗Δ(A)] ∀ A ∈ osp(1|2).
Demanding their diagonalization as in (1.22a) or (1.22b) requires the decomposi-
tion (2.4) to solve the Clebsch-Gordan problem [2], if one focuses only on the first
or second pair of terms in the tensor product (1.17). It is known that the parame-
ters involved in the Clebsch-Gordan decomposition into the product representation
(μi, εi)⊗ (μj , εj) must verify, for ni + nj ≥ q ∈ N,

nij = ni + nj − q, μij = μi + μj + q + 1/2, εij = εiεj(−1)q,(2.6)

corresponding to the diagonalization of the intermediate Casimir Cij . Rewriting
(2.5) in view of (2.6), one has that the labels of basis vectors in (2.4) with non-
vanishing overlap and where |n123, μ123, ε123〉 diagonalizes Cij are related by the
following equations:

n123 = nij + nk − l, μ123 = μij + μk + 1/2 + l, ε123 = εijεk(−1)l,(2.7)

l = N − q, N ∈ [0, n1 + n2 + n3] ⊂ N, =⇒ q ∈ [0, N ] ⊂ N,(2.8)
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where i, j ∈ {(1, 2), (2, 3)} and i, j 
= k ∈ {1, 2, 3} index the terms of the threefold
tensor product (1.17).

For given values of μ1, μ2, μ3, ε1, ε2, ε3, and N , the parameters μ123 and ε123 are
fixed and, since l ≥ 0, there are N +1 ways of choosing q. Thus, the decomposition
of the tensor product of three irreducible osp(1|2) representations can be expressed
as

(μ1, ε1)⊗ (μ2, ε2)⊗ (μ3, ε3) ∼=
∞⊕

N=0

N⊕
q=0

(μ123(N), ε123(N))q,

where q indexes as in (2.6) the possible eigenvalues of the intermediate Casimir Cij .
Consider now the Racah coefficients R as given in (1.23) where both basis vec-

tors come from one of the two different decompositions (1.18) of the same threefold
tensor product of irreducible representations (1.17). As the two modules in consid-
eration are identical as osp(1|2) modules, the Racah coefficients vanish if the labels
of the basis vectors differ. The only free parameter in non-zero coefficients is the
value of the intermediate Casimirs. Thus, writing as K and S those free parameters
indexing the values of the intermediate Casimirs for the two basis vectors in the
overlap, the Racah decomposition will explicitly be written as

|n123, μ123, ε123, μ12(S)〉 =
N∑

K=0

Rμ1,μ2,μ3

S,K,N |n123, μ123, ε123, μ23(K)〉.

This equation can be rewritten in terms of the wavefunctions. As said, the overlap
between two such wavefunctions is directly proportional to the Bannai-Ito polyno-
mials [4]:

ZN
S (α(θ, φ), β(θ, φ)) =

N∑
K=0

Rμ1,μ2,μ3

S,K,N YN
K (θ, φ),(2.9)

Rμ1,μ2,μ3

S,K,N = ΦN
S

√
wS

hNu1u2...uK
BK(xS ; ρ1, ρ2, r1, r2),(2.10)

with wS , xS and hN as in (1.7) and (1.9) and where the BK are the Bannai-Ito
polynomials. The ui are given by ui = an−1bn with an and bn as in (1.1) and
(1.2). The choice of phase ΦN

S is different from that in [4]. In this work, writing
N = 2n+ t ∈ N and S = 2s+ p with p, t ∈ {0, 1} the phase is given by

(2.11) ΦN
S = (−1)n+t(1−p).

The connection between the parameters of the threefold tensor product (1.17) and
the parameters of the Bannai-Ito polynomials in (2.10) is as follows:

ρ1 =
μ2 + μ3

2
, ρ2 =

μ1 + μ

2
, r1 =

μ3 − μ2

2
, r2 =

μ− μ1

2
,

μ = (−1)N (N + 1 + μ1 + μ2 + μ3).
(2.12)

2.3. Generating function from the Racah problem. The wavefunction real-
ization of the Racah decomposition (2.9) leads to a functional decomposition with
coefficients proportional to the Bannai-Ito polynomials [5]. To obtain generating
functions, one needs to reduce the right-hand side of (2.9) to a power series of a
single variable. As shall be explicit, the angular wavefunctions are polynomials of
trigonometric functions which reduces, under some asymptotic expansion, to their
leading terms. Monomials are obtained from the expansion by the simultaneous
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introduction of a suitable relation between the angle variables. However, this pro-
cedure must be carried while preventing the trivialization of the left-hand side of
(2.9).

In view of the form of the wavefunctions given in section 3.1, one is led to
consider the expansion |θ| → 0. To prevent a trivialization we introduce, as follows,
the finite variable z = cosα and use (2.2) under the asymptotic expansion to obtain
the following:

sinα =
√
1− z2, sin β =

1√
1− z2

, cosβ = i
z√

1− z2
.(2.13)

The finiteness of z together with (2.2) implies Im(φ) → ∞. With Im(φ) ≥ 0, one
demands that the following limits be defined and give

cosh Im(φ) sin θ → λ, sinh Im(φ) sin θ → λ,

such that compatibility with (2.2) and (2.13) is maintained and

z = λe−iRe(φ).(2.14)

Using (2.2) and (2.13), the following useful relation can be obtained under the
asymptotic limit:

sinφ ≈ i cosφ.(2.15)

Under this asymptotic limit, the decomposition (2.9) will take the form of a
generating function for the sum of two Bannai-Ito polynomials

(2.16) ZN
S (z) =

N∑
K=0

Rμ1,μ2,μ3

S,K,N YN
K (z),

where YN
K (z) is a sum of two monomials of the z variable. It should be noted, in

view of (2.14) and since the parameters λ and Re (φ) are not fixed, that z can be
any complex number.

3. Wavefunctions and their asymptotic forms

As the Racah problem is fully contained in the overlaps of angular wavefunctions,
one does not need a set of basis functions that reflects the full degeneracy of the
Hamiltonian Hxyz. We shall use instead functions of definite parity on which the
total Casimir is diagonal. This is justified by remembering that we have R 
= 0 only
when the overlap is between two basis vectors from the same eigenspace of the total
Hamiltonian. These functions form a basis of the irreducible representations (1.19)
and are sufficient for our purpose but do not reflect the full degeneracy of the initial
Shrödinger equation. This can be seen from the fact that the operators Ri , i ∈
{1, 2, 3} commute with the total Hamiltonian, but not with the total Casimir; see
[4].

3.1. Angular wavefunctions. The explicit form of the basis functions used in
this work can be obtained by solving the relevant system of Dunkl differential
equations. We assume ε123 = 1 for the rest of this work. In this case, the angular
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wavefunctions YN
K (θ, φ) for K = 0, ..., N satisfy the following equations:

ĈR̂YN
K (θ, φ) = −(N + μ1 + μ2 + μ3 + 1)YN

K (θ, φ),

R̂YN
K (θ, φ) = (−1)NYN

K (θ, φ),

C12 YN
K (θ, φ) = −(−1)K(K + μ1 + μ2)YN

K (θ, φ),

where these operators are defined on (1.17) using (1.20) and the realization (1.13).
The solutions [4] correspond to (a subset of) the wavefunctions built on the basis

(1.22a) and are given, writing N = 2n+ t, n ∈ N, and K = 2k+p ∈ {0, ..., N} with
p, t ∈ {0, 1}, by

(3.1) YN
K (θ, φ) = AK

{
BK cost θ sin2k+2p θP

(2k+2p+μ1+μ2,μ3−1/2+t)
n−k−p (cos 2θ)F+

K(φ)

+ (−1)tB−1
K cos1−t θ sin2k+1 θP

(2k+1+μ1+μ2,μ3+1/2−t)
n−k−1 (cos 2θ)F−

K(φ)
}
,

where AK and BK are

AK = (−1)tK

√
(n− k + p(t− 1))!Γ(n+ k + μ1 + μ2 + μ3 + 3/2 + pt)

Γ(n+ k + μ1 + μ2 + 1 + pt)Γ(n− k + μ3 + 1/2 + p(t− 1))
,

BK =

(
n− k + μ3 − 1/2 + t

n+ k + μ1 + μ2 + 1

)(p−t)/2

,

and where the FK functions are as follows:

F+
K(φ) = ξ+K

{
EKP

(μ2−1/2,μ1−1/2)
k+p (cos 2φ)

− (−1)pE−1
K cosφ sinφP

(μ2+1/2,μ1+1/2)
k+p−1 (cos 2φ)

}
,

(3.2)

F−
K(φ) = ξ−K

{
FK sinφP

(μ2+1/2,μ1−1/2)
k (cos 2φ)

+ (−1)pF−1
K cosφP

(μ2−1/2,μ1+1/2)
k (cos 2φ)

}
,

(3.3)

with

ξ+K =

√
(k + p)!Γ(k + μ1 + μ2 + 1 + p)

2Γ(k + μ1 + 1/2 + p)Γ(k + μ2 + 1/2 + p)
, EK =

(
k + 1

k + μ1 + μ2 + 1

)p/2

,

ξ−K =

√
k!Γ(k + μ1 + μ2 + 1)

2Γ(k + μ1 + 1/2)Γ(k + μ2 + 1/2)
, FK =

(
k + μ1 + 1/2

k + μ2 + 1/2

)p/2

.

A second wavefunction basis is obtained by reparametrizing the sphere in terms
of the angular coordinates α, β as per (2.2). These wavefunctions, denoted ZN

S (α, β)
for S = 0, ..., N , now satisfy the following equations:

ĈR̂ZN
S (α, β) = −(N + μ1 + μ2 + μ3 + 1)ZN

S (α, β),

R̂ZN
S (α, β) = (−1)NZN

S (α, β),

C23 ZN
S (α, β) = −(−1)S(S + μ2 + μ3)ZN

S (α, β),

and realize the basis defined by (1.22b). They can be written [4] in terms of the
first basis of wavefunctions YN

K as

(3.4) ZN
S (α, β) =

{
( 1 2 3 )YN

K (π − α, β) for N even,

( 1 2 3 )YN
K (α, β) for N odd,
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where ( 1 2 3 ) is the permutation cycle acting on the parameters (μ1, μ2, μ3). This
follows from the fact that this permutation induces a mapping from the basis of
(μ(12)3, ε(12)3) to the basis of (μ1(23), ε1(23)) when acting on the terms of the threefold
tensor product (1.17).

3.2. Asymptotic expansion. We now derive the asymptotic expansion intro-
duced in section 2.3 of the angular wavefunctions (3.1). One will need the leading
term and the value at 1 of Jacobi polynomials given by

P (a,b)
n (x) → 2−n

(
2n+ a+ b

n

)
xn, P (a,b)

n (1) =

(
n+ a

n

)
.

The polynomials in the FK functions (3.2), (3.3) have for variable cos 2φ → ∞ and
only their leading terms will remain. Using (2.15) in (3.2) or (3.3) while considering
only the leading term leads to

F+
K(φ) → ξ+KEK

(
2k + 2p+ μ2 + μ1 − 1

k + p

)
Ψ+ cos2k+2p φ,(3.5)

F−
K(φ) → ξ−KFK

(
2k + μ1 + μ2

k

)
Ψ− cos2k+1 φ,(3.6)

with Ψ+ and Ψ− given by

Ψ± =

⎧⎪⎪⎨⎪⎪⎩
[
1− i(−1)p k+p

k+p+μ1+μ2

(
k+μ1+μ2+1

k+1

)p]
for the case +,

[
i+ (−1)p

(
k+μ2+1/2
k+μ1+1/2

)p]
for the case − .

(3.7)

Consider now the full wavefunctions (3.1) under the asymptotic expansion. The
remaining Jacobi polynomials are evaluated at 1 as their arguments cos 2θ → 1.
The remaining cosine terms also simply become cos θ = 1. The sine terms approach
zero, but will be compensated by the FK functions which are divergent under the
asymptotic expansion. Thus, leaving the sine terms, one is led to the following
expressions for the asymptotic wavefunctions for N = 2n+ t:

(3.8) YN
K (θ, φ) → AK

{
BK

(
n+ k + p+ μ1 + μ2

n− k − p

)
F+

K(φ) sin2k+2p θ

+ (−1)tB−1
K

(
n+ t+ k + μ1 + μ2

n− k − 1 + t

)
F−

K(φ) sin2k+1 θ

}
.

We now remind the reader that from (2.2) and (2.13) we have cosφ sin θ = z. By
construction, this z variable remains finite in the asymptotic expansion. Using (3.5)
and (3.6) to rewrite (3.8) in terms of the z variable leads to, for N = 2n+ t

(3.9) YN
K (z)

= AK

{
ξ+KBKEK

(
n+ k + p+ μ1 + μ2

n− k − p

)(
2k + 2p+ μ2 + μ1 − 1

k + p

)
Ψ+z

2k+2p

+ (−1)tξ−KB−1
K FK

(
n+ t+ k + μ1 + μ2

n+ t− k − 1

)(
2k + μ1 + μ2

k

)
Ψ−z

2k+1

}
.
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4. Generating functions

In this section, we derive the main result, that is, the generating functions for the
Bannai-Ito orthogonal polynomials. The wavefunctions in their asymptotic form
being the sum of two monomials have not quite been brought to a monomial form.
Thus, two degrees of the Bannai-Ito polynomials will appear in the coefficient of
each power of the z variable. This will not yield a proper generating function.
However, once this intermediate result is obtained, it proves possible to disentangle
the resulting power series with a trick involving analysis of the complex phase of
each term. The next two subsections illustrate how the proper generating functions
can be found using this two-step approach.

4.1. Intermediate result. The asymptotic expansion given in section 2.3 is con-
structed so that the trigonometric functions of the α and β variables remain finite.1

Thus, there is no expansion to be made on the left-hand side of (2.9) as defined
in (3.4) to obtain (2.16). One only needs to rewrite the functions in terms of the
new variable z through the use of (2.13). Using standard trigonometric relations
for double angles and (2.13), we have

cos 2α = 2z2 − 1, cos 2β =
z2 + 1

z2 − 1
.

The functions of β(z) in ZN
S (z), amounting to the FK functions in (3.2) and

(3.3), now depend on the parameter S = 2s + p ∈ {0, ..., N}, p ∈ {0, 1} and have
their parameters permuted by ( 1 2 3 ) acting on {μ1, μ2, μ3}. These functions are
expressed in terms of the new variable z as

(4.1) F+
S (z) = ξ+S

[
ESP

(μ3−1/2,μ2−1/2)
s+p

(
z2 + 1

z2 − 1

)

− iz

1− z2
(−1)pE−1

S P
(μ3+1/2,μ2+1/2)
s+p−1

(
z2 + 1

z2 − 1

)]
,

(4.2) F−
S (z) =

ξ−S√
1− z2

[
FSP

(μ3+1/2,μ2−1/2)
s

(
z2 + 1

z2 − 1

)

+ iz(−1)pF−1
S P (μ3−1/2,μ2+1/2)

s

(
z2 + 1

z2 − 1

)]
.

Similarly, permuting the parameters, the angular wavefunctions (3.4) are ex-
pressed in terms of z when N = 2n+ t, n ∈ N, and t ∈ {0, 1} as

(4.3) ZN
S (z) = AS

[
ztBSP

(2s+2p+μ2+μ3,μ1−1/2+t)
n−s−p (2z2 − 1)F+

S (z)(1− z2)s+p

− z1−tB−1
S P

(2s+1+μ2+μ3,μ1+1/2−t)
n+t−s−1 (2z2 − 1)F−

S (z)(1− z2)s+1/2

]
,

where one must not forget to introduce the reflection in the α coordinate when N
is even.

1Omitting the two poles {z = 1, z = −1} of the trigonometric functions of β.
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4.2. Proper generating functions. We now turn to the problem of disentangling
the quasi-generating functions (4.3). Assuming z to be a real variable, by observing
(3.9) and (3.7), one can note that the phase information of the asymptotic wave-
functions YN

K (z) is given by Ψ+ for even powers of z and Ψ− for odd powers of
z.

To disentangle the generating functions, we want to keep only the powers of z
coming from values of K of the same parity. Thus, we only want to keep the terms
with p = 0 for the even powers of z and the terms with p = 1 for the odd powers
of z. In this case, the matched Ψ terms become

Ψ =

⎧⎪⎪⎨⎪⎪⎩
[
1− i k

k+μ1+μ2

]
for even powers of z,

[
i− k+μ2+1/2

k+μ1+1/2

]
for odd powers of z.

(4.4)

The remaining mismatched cases of Ψ are simply given by Ψ = [1 + i].
The disentangling procedure rests on the fact that an orthogonal coordinate

system of the complex plane can be devised such that one of the components of
the vectors in these coordinates is independent of the mismatched terms. More
precisely, rotating the complex plane under the multiplication by eiπ/4, one maps
the matching terms to some vectors on the unit circle and the remaining ones are
purely imaginary. Taking the real part of the result, we obtain an expression that
only involves one degree of the Bannai-Ito polynomials per power of z. Let us now
calculate the change in the normalization of each asymptotic function that this
procedure induces. The rotation in the complex plane leads to

ei
π
4 : ΨU �→ Ψ′

U = i
√
2, ΨA �→ Ψ′

A = ei
π
4 ΨA.

Taking the real part, the desired terms remain whereas the undesired ones vanish,
leading to the required disentanglement. The real part of the rotated ΨA is

Re
(
ei

π
4 ΨA

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1√
2

(
1 +

k

k + μ1 + μ2

)
for even powers of z,

−1√
2

(
1 +

k + μ2 + 1/2

k + μ1 + 1/2

)
for odd powers of z.

Using the above, the transformed asymptotic wavefunctions, written ỸN
K (z), are

then monomials in z

ỸN
K (z) = Cμ1,μ2,μ3

K,N zK ,(4.5)

where the coefficients are as follows, forK = 2k+p andN = 2n+t with p, t ∈ {0, 1}:

(4.6)

Cμ1,μ2,μ3

K,N =
(−1)p

2
√
k!(n− k + pt− p)!

[
Γ(n+ k + μ1 + μ2 + 1 + p+ t− pt)

Γ(k + μ1 + 1/2 + p)Γ(k + μ2 + 1/2 + p)

× Γ(n+ k + μ1 + μ2 + μ3 + 3/2 + pt)

Γ(n− k + μ3 + 1/2 + t(1− p))Γ(k + μ1 + μ2 + 1)

]1/2

.

Acting with the same transformation on (4.3) leads to the proper generating
function. Writing S = 2s+ p ∈ {0, ..., N} with p ∈ {0, 1} for N = 2n+ t ∈ N with
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t ∈ {0, 1}, one arrives at

(4.7) Z̃N
S (z) =

∑
u=0,1

zt+u(1− z2)s
[
(1− z2)p−u

× Uu
S P

(2s+2p+μ2+μ3,μ1−1/2+t)
n−s−p (2z2 − 1)P

(μ3−1/2+u,μ2−1/2+u)
s+p−u

(
z2+1

z2−1

)
− z Lu

S P
(2s+1+μ2+μ3,μ1+1/2−t)
n+t−s−1 (2z2 − 1)P (μ3+1/2−u,μ2−1/2+u)

s

(
z2+1

z2−1

)]
,

where

Uu
S =

(−1)pu√
2

ASBSE
1−2u
S ξ+S , Lu

S =
(−1)u(p+1)

√
2

ASB
−1
S F 1−2u

S ξ−S .

The proper generating function decomposition is then expressed as

(4.8) Z̃N
S (z) =

N∑
K=0

Rμ1,μ2,μ3

S,K,N ỸN
K (z) =

N∑
K=0

Rμ1,μ2,μ3

S,K,N Cμ1,μ2,μ3

K,N zK

with Cμ1,μ2,μ3

K,N as in (4.6) and where the Racah coefficients Rμ1,μ2,μ3

S,K,N as given in

(2.10) are proportional to the Bannai-Ito polynomials.

5. Conclusion

We have derived generating functions for the Bannai-Ito orthogonal polynomials
by exploiting the fact that these polynomials present themselves as the Racah
coefficients for the osp(1|2) Lie superalgebra. This derivation was done using an
appropriate asymptotic expansion of Dunkl oscillator wavefunctions.

As the Bannai-Ito polynomials can be obtained as a q → −1 limit of the Askey-
Wilson polynomials or q-Racah polynomials, one could ask if their generating func-
tions admit as limits the generating function derived here. However, all of the
possible generating functions for these polynomials have limits with different trun-
cation conditions for the Bannai-Ito polynomials than the ones used in this paper
and do not correspond to the result we derived.

This generating function for the Bannai-Ito polynomials might have interesting
combinatorial interpretations [1]. Various orthogonal polynomials are obtained as
limits of the Bannai-Ito polynomials. It would be interesting to investigate how
generating functions for these polynomials can be recovered from the one obtained
here.
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