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FOUR-VARIABLE EXPANDERS OVER THE PRIME FIELDS
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AND CLAUDIU VALCULESCU

(Communicated by Alexander Iosevich)

Abstract. Let Fp be a prime field of order p > 2, and let A be a set in Fp

with very small size in terms of p. In this note, we show that the number of
distinct cubic distances determined by points in A×A satisfies

|(A−A)3 + (A−A)3| � |A|8/7,
which improves a result due to Yazici, Murphy, Rudnev, and Shkredov. In
addition, we investigate some new families of expanders in four and five vari-
ables. We also give an explicit exponent of a problem of Bukh and Tsimerman,
namely, we prove that

max {|A+A|, |f(A,A)|} � |A|6/5,
where f(x, y) is a quadratic polynomial in Fp[x, y] that is not of the form
g(αx+ βy) for some univariate polynomial g.

1. Introduction

Let p > 2 be a prime, and let Fp be the finite field of order p. We denote the set
of non-zero elements in Fp by F

∗
p. We say that a k-variable function f(x1, . . . , xk)

is an expander if there are α > 1, β > 0 such that for any sets A1, . . . , Ak ⊂ Fp of
size N � pβ,

|f(A1 × · · · ×Ak)| � Nα.

We write X � Y if X ≥ CY for some positive constant C.
As far as we know, there are few known results on two-variable expanders. For

example, it has been shown by Yazici, Murphy, Rudnev, and Shkredov [1] that the
polynomial f(x, y) = x + y2 is an expander. More precisely, they proved that if
A ⊂ Fp with |A| ≤ p5/8, then

|A+A2| � |A|11/10.
The authors in [1] also indicated that the polynomial f(x, y) = x(y + 1) is an
expander. In particular, they established that |A · (A+ 1)| � |A|9/8.

These exponents have been improved in recent works. For instance, Stevens and
de Zeeuw [18] showed that |A · (A+ 1)| � |A|6/5, and Pham, Vinh, and de Zeeuw
[12] proved that |A+A2| � |A|6/5.
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Another expander in two variables has been investigated by Bourgain [6]. He
proved that if A,B ⊂ Fp with |A| = |B| = N = pε, ε > 0, and f(x, y) = x2 + xy,
then |f(A,B)| � N1+δ for some δ > 0. An explicit exponent was given by Stevens
and de Zeeuw [18], namely, they proved that |f(A,B)| � N5/4 for N ≤ p2/3. We
refer the reader to [5,9,19] and the references therein for two-variable expanders in
large sets over arbitrary finite fields.

For three-variable expanders, there are several results which have been proved
in recent years. Roche-Newton, Rudnev, and Shkredov [15] proved that

(1) |A · (A+A)| � |A|3/2, |A+A ·A| � |A|3/2,
when |A| ≤ p2/3.

In [12], Pham, Vinh, and de Zeeuw obtained a more general result. More pre-
cisely, they showed that for A,B,C ⊂ Fp with |A| = |B| = |C| = N ≤ p2/3, and
for any quadratic polynomial in three variables f(x, y, z) ∈ Fp[x, y, z] which is not
of the form g(h(x) + k(y) + l(z)), we have

(2) |f(A,B,C)| � N3/2.

We notice that one can use the inequalities (1) and (2) to obtain some results on
expanders in four variables. To see this, observe that the following estimates follow
directly from (1) and (2):

|(A−A) ·(A−A)| � |A|3/2, |A ·A+A ·A| � |A|3/2, |(A−A)2+(A−A)2| � |A|3/2.
A stronger version of the last inequality can be found in [14]. We refer the reader
to [10] for a recent improvement on the size of (A−A) · (A−A).

In this note, we extend the methods from [1,12,15] to study different expanders
in four variables over Fp.

Yazici et al. [1] proved that if A ⊂ Fp with |A| ≤ p7/12, then the number of

distinct cubic distances is at least |A|36/35. Our first theorem is an improvement of
this result.

Theorem 1.1. Let A ⊂ Fp with |A| ≤ p7/12. Then we have

|(A−A)3 + (A−A)3| � |A|8/7.

In our next two theorems, we provide two more expanders in four variables.

Theorem 1.2. Let A be a set in Fp with |A| ≤ p5/8, let f(x) ∈ Fp[x] be a quadratic
polynomial, and let g(x, y) ∈ Fp[x, y] be a quadratic polynomial with a non-zero xy-
term. Then we have

|f(A) +A+ g(A,A)| � |A|8/5.

Theorem 1.3. Let 1 ≤ N ≤ p4/7 be an integer, let h be a generator of F∗
p, and

let g(x, y) ∈ Fp[x, y] be a quadratic polynomial with a non-zero xy-term. Then we
have

|{hx + hy + g(z, t) : 1 ≤ x, y, z, t ≤ N}| � N7/4.

Different families of expanders with superquadratic growth have been studied
in recent literature. For instance, Balog, Roche-Newton, and Zhelezov [4] showed

that for any A ⊂ R we have |(A − A) · (A − A) · (A − A)| � |A|2+ 1
8 / log

17
16 |A|.

Murphy, Roche-Newton, and Shkredov [11] proved that for A ⊂ R we have |(A +
A+A+A)2+logA| � |A|2/ log |A|. In the following theorem, we obtain two more
expanders in five variables with quadratic growth.



FOUR-VARIABLE EXPANDERS OVER THE PRIME FIELDS 5027

Theorem 1.4. Let Fp be a prime field of order p. Suppose that h is a generator

of F∗
p, and 1 ≤ N ≤ p1/2 is an integer. Then the following two statements hold:

(1) |{hx(hy + hz + ht + hv) : 1 ≤ x, y, z, t, v ≤ N}| � N2,
(2) |{x(hy + hz + ht + hv) : 1 ≤ x, y, z, t, v ≤ N}| � N2.

For A ⊂ Fp, the sumset of A is the set A + A = {a + b : a, b ∈ A}, and the
product set of A is the set A · A = {a · b : a, b ∈ A}. In 2004, Bourgain, Katz, and
Tao [3] proved that if pδ < |A| < p1−δ where 0 < δ < 1/2, then

(3) max{|A+A|, |A ·A|} ≥ c|A|1+ε

for some positive constants c and ε depending only on δ. Hart, Iosevich, and
Solymosi [8] obtained bounds that give an explicit dependence of ε on δ. In [8], it
is shown that if |A+A| = m and |A ·A| = n, then

(4) |A|3 ≤ cm2n|A|
p

+ cp1/2mn,

where c is some positive constant. Inequality (4) implies a non-trivial sum-product
estimate when p1/2 � |A| � p. Vinh [21] and Garaev [7] improved the inequality
(4) and as a result, obtained a better sum-product estimate.

Theorem 1.5 ([21]). For A ⊂ Fp, suppose that |A+A| = m, and |A ·A| = n, then

|A|2 ≤ mn|A|
p

+ p1/2
√
mn.

Corollary 1.6 ([21]). For A ⊂ Fp, then there is a positive constant c such that the
following hold:

(1) If p1/2 � |A| < p2/3, then

max{|A+A|, |A ·A|} ≥ c|A|2
p1/2

.

(2) If p2/3 ≤ |A| � p, then

max{|A+A|, |A ·A|} ≥ c(p|A|)1/2.

A more general statement of Corollary 1.6 has been established by Vu [22].
Before presenting his result, we need the following definition.

Definition 1.7. A polynomial f(x, y) ∈ Fp[x, y] is degenerate if it is of the form
Q(L(x1, x2)) where Q is a one-variable polynomial and L is a linear form in x and
y.

Vu [22] proved the following theorem.

Theorem 1.8 ([22]). Let f(x, y) be a non-degenerate polynomial of degree d in
Fp[x, y]. Then for any A ⊂ Fp, we have

max {|A+A|, |f(A,A)|} � min

{
|A|3/2
dp1/4

,
p1/3|A|2/3

d1/3

}
.

We note that, in the case f(x, y) = xy, the lower bounds of Theorem 1.8 are
weaker than those of Corollary 1.6. Theorem 1.8 is only non-trivial when |A| �
p1/2, and Theorem 1.8 also holds over arbitrary finite fields Fq with q a prime
power. The reader can find a version of Theorem 1.8 over the real numbers in [17].
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When |A| ≤ √
p and f(x, y) is a non-degenerate quadratic polynomial, Bukh and

Tsimerman [5] obtained the following improvement.

Theorem 1.9 ([5]). Let f(x, y) ∈ Fp[x, y] be a non-degenerate quadratic polyno-
mial. For any A ⊂ Fp with |A| ≤ √

p, we have

(5) max{|A+A|, |f(A,A)|} � |A|1+ε

for some ε > 0.

There has been much progress on finding explicit exponents of the inequality
(3) for small sets over recent years, and the best lower bound was given by Roche-
Newton, Rudnev, and Shkredov [15]. More precisely, they showed that for A ⊂ Fp

with |A| ≤ p5/8, the sumset and the product set satisfy

max {|A+A|, |A ·A|} � |A|6/5.
In this paper, we give an explicit exponent of the inequality (5) as follows.

Theorem 1.10. Let f(x, y) ∈ Fp[x, y] be a non-degenerate quadratic polynomial.

Let A be a set in Fp with |A| ≤ p5/8; then we have

max{|A+A|, |f(A,A)|} � |A|6/5.

The rest of this paper is organized as follows. In Section 2, we mention the
main tools in our proofs. We give a proof of Theorem 1.1 in Section 3. Proofs of
Theorems 1.2, 1.3, and 1.4 are given in Section 4. In Section 5 we will give a proof
of Theorem 1.10, and present a discussion on an improvement of Theorem 1.8 for
large sets.

2. Tools

The main tool in our proofs is a point-plane incidence bound due to Rudnev [16],
but we use a strengthened version of this theorem, proved by de Zeeuw in [23]. Let
us first recall that if R is a set of points in F

3
p and S is a set of planes in F

3
p, then

the number of incidences between R and S, denoted by I(R,S), is the cardinality
of the set {(r, s) ∈ R× S : r ∈ s}.

Theorem 2.1 (Rudnev, [16]). Let R be a set of points in F
3
p and let S be a set

of planes in F
3
p, with |R| ≤ |S| and |R| � p2. Suppose that there is no line that

contains k points of R and is contained in k planes of S. Then

I(R,S) � |R|1/2|S|+ k|S|.

The following lemma is known as the Plünnecke-Ruzsa inequality. A simple and
elegant proof can be found in [13].

Lemma 2.2 (Plünnecke-Ruzsa). Let A,B be finite subsets of an abelian group such
that |A + B| ≤ K|A|. Then, for an arbitrary 0 < δ < 1, there is a non-empty set
X ⊂ A such that |X| ≥ (1− δ)|A| and for any integer k one has

(6) |X + kB| ≤
(
K

δ

)k

|X| .

To prove Theorems 1.2–1.4, we need the following two lemmas. The first one
follows from a result of Pham, Vinh, and de Zeeuw [12].
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Lemma 2.3. Let g(x, y) ∈ Fp[x, y] be a quadratic polynomial with a non-zero xy-
term. Let A,X ⊂ F with |A| ≤ |X|. Then we have

|g(A,A) +X| � min
{
|A||X|1/2, p

}
.

The second lemma we use is due to Yazici et al. and was proved in [1].

Lemma 2.4. If A,X ⊂ Fp with |X| ≤ |A|, then

|X · (A−A)| � min
{
|A||X|1/2, p

}
.

3. Proof of Theorem 1.1

We need the following result in order to prove Theorem 1.1.

Lemma 3.1. Let A,X ⊂ Fp with |A− A|2|X| ≤ p2. Then

|
{
(b− a)3 + a3 + x : a, b ∈ A, x ∈ X

}
| � min

{
|X|1/2|A|4
|A−A|3 ,

|X||A|5
|A−A|4

}
.

Proof. First note that

(b− a)3 + a3 = 3b
(
(a− b/2)2 + b2/12

)
= 3b(t2 + b2/12),(7)

where t = a − b/2. Define T = {a − b/2: a, b ∈ A}, and let E be the number of
solutions of the following equation:

(b− a)3 + a3 + x = (b′ − a′)3 + a′3 + x′, a, a′, b, b′ ∈ A, x, x′ ∈ X.

To bound E, we first define a set of points R and a set of planes S as follows:

R = {(t2, b′,−b′3/4 + x) : t ∈ T, b′ ∈ A, x ∈ X},

S = {3bX − 3t′2Y + Z = −b3/4 + x′ : t′ ∈ T, x′ ∈ X, b ∈ A}.
It is clear that |R| = |S| � |T ||A||X|, and |T | ≤ |A+A−A|.

Lemma 2.2 implies that for any 0 < δ < 1, there exists a non-empty set A′ ⊂ A
with |A′| ≥ (1− δ)|A| satisfying

|A+A−A′| � |A−A|2
|A| .

Since we can choose δ such that |A′| = Θ(|A|), 1 we can assume that |T | � |A−A|2
|A| .

This implies that

|R|, |S| � |A−A|2|X|.
By the assumption, we have |R| � p2. This allows us to apply Theorem 2.1,
assuming we can prove an upper bound on the maximum number k for which there
is a line that contains k points ofR and is contained in k planes of S. The projection
of R onto the first two coordinates is {t2 : t ∈ T}×A, so each line contains at most
max{|A|, |T |} points of R, unless it is vertical, in which case it could contain |X|
points of R. However, the planes in S contain no vertical lines, so in this case the
hypothesis of Theorem 2.1 is satisfied with k = max{|A|, |T |} � |A−A|2/|A|.

Therefore, Theorem 2.1 implies that

E � |X|3/2|A−A|3 + |X||A−A|4/|A|.

1X = Θ(Y ) means that there exist positive constants C1 and C2 such that C1Y ≤ X ≤ C2Y .
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By the Cauchy-Schwarz inequality, we have

|{(b−a)3+a3+x : a, b ∈ A, x ∈ X}| � |A|4|X|2
E

� min

{
|X|1/2|A|4
|A−A|3 ,

|X||A|5
|A−A|4

}
.

This completes the proof of the lemma. �

Proof of Theorem 1.1. Since the cubic distance function is invariant under transla-
tions, we assume that 0 ∈ A. It follows from the Plünnecke-Ruzsa inequality that
there exists a set X ⊂ (A−A)3 with |X| = Θ(|(A−A)|) such that

|X+(A−A)3+(A−A)3| = |X+2(A−A)3| � |(A−A)3 + (A−A)3|2
|(A−A)3|2 |(A−A)3|.

This implies that

|(A−A)3 + (A−A)3|2 � |A−A| · |X + (A−A)3 + (A−A)3|.
On the other hand, if |A−A|2|X| > p2, then we have |A−A| � p2/3. This implies
that |A − A| � |A|8/7 since |A| ≤ p7/12, and we are done. Thus, we may assume
|A−A|2|X| ≤ p2, and it follows from Lemma 3.1 that

|X + (A−A)3 + (A−A)3| � |A|4
|A−A|5/2 .

Therefore, we obtain

|(A−A)3 + (A−A)3|2 � |A|4
|A−A|3/2 ,

which leads to

max
{
|(A−A)3 + (A−A)3|, |A−A|

}
� |A|8/7.

This concludes the proof of the theorem. �

4. Proofs of Theorems 1.2, 1.3, and 1.4

We use the following lemmas in the proofs of Theorems 1.2-1.4.

Lemma 4.1. Let f(x) ∈ Fp[x] be a quadratic polynomial. For A ⊂ Fp with |A| ≤
p5/8, we have

|f(A) +A| � |A|6/5.

Proof. Without loss of generality, we can assume that f(x) = ax2 + bx with a 	= 0.
Consider the following equation:

(8) a(x− y)2 + b(x− y) + z = t,

with x ∈ A + f(A), y ∈ f(A), z ∈ A, and t ∈ A + f(A). Since f is a quadratic
polynomial, we have |f(A)| = Θ(|A|).

Note that for any u, v, w ∈ A, a solution of (8) is given by x = u+f(v) ∈ A+f(A),
y = f(v) ∈ f(B), z = w ∈ A, and t = w + f(u) ∈ A+ f(A). Therefore, we have

(9) |A|3 ≤ |{(x, y, z, t) ∈ (A+ f(A))× f(A)×A× (A+ f(A)) :

a(x− y)2 + b(x− y) + z = t
}∣∣ .

If we define E to be the cardinality of the following set:{
(x, y, z, x′, y′, z′) ∈ ((A+ f(A))× f(A)×A)2 : f(x− y) + z = f(x′ − y′) + z′

}
,
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then (9) together with the Cauchy-Schwarz inequality give

(10)
|A|6

|A+ f(A)| � E.

To bound E, we use Theorem 2.1 for the following point set:

R = {(ax, y′, bx+ ax2 + z − a(y′)2 + by′) : (x, y′, z) ∈ (A+ f(A))× f(A)×A}

and the following set of planes:

S = {−2yX + 2ax′Y + Z = a(x′)2 + bx′ + z′ − ay2 + by :

(x′, y, z′) ∈ (A+ f(A))× f(A)×A}.

Note that if |A + f(A)| � |A|6/5, then we are already done. Therefore, we can
assume that |A+f(A)| � |A|6/5, from which we obtain |R| = |A+f(A)||f(A)||A| �
|A|16/5 � p2, since |A| � p5/8. The projection of R onto the first two coordinates is
(A+f(A))×f(A), so each line contains at most max{|A+f(A)|, |f(A)|} = |A+f(A)|
points of R, unless it is vertical, in which case it may contain |A| points of R.
However, the planes in S contain no vertical lines, so in this case the hypothesis of
Theorem 2.1 is satisfied with k = |A+ f(A)|. Thus, Theorem 2.1 implies that

(11) E � I(R,S) � |A+ f(A)|3/2|A|3 + |A+ f(A)|2|A|2.

If |A+f(A)|2|A|2 is asymptotically larger than |A+f(A)|3/2|A|3, then |A+f(A)| �
|A|2, so we are done. Otherwise, we can assume that |A + f(A)|3/2|A|3 is larger
than |A+ f(A)|2|A|2, so combining (10) and (11) gives

|A|6
|A+ f(A)| � |A+ f(A)|3/2|A|3,

which leads to

|f(A) +A| � |A|6/5.

This completes the proof of the lemma. �

Lemma 4.2. Let Fp be a prime field of order p, and suppose that h is a generator

of F∗
p, and 1 ≤ N ≤ p2/3 is an integer. Then

|{hx + hy : 1 ≤ x, y ≤ N}| � N3/2.

Proof. Define A := {hx : 1 ≤ x ≤ N/2}, and X := {hx : 1 ≤ x ≤ N}. Then one can
check that

| {hx + hy : 1 ≤ x, y ≤ N} | � |A ·A+X|.

Thus the lemma follows directly from Lemma 2.3. �

Proofs of Theorems 1.2, 1.3, and 1.4. Theorem 1.2 follows from Lemmas 2.3 and
4.1. Theorem 1.3 follows directly from Lemmas 2.3 and 4.2. Theorem 1.4 follows
from Lemmas 2.4 and 4.2. �
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5. Proof of Theorem 1.10

To prove Theorem 1.10, we use the following lemma, which follows directly from
Lemmas 2.2 and 2.3 in [12]. We refer the reader to [12] for a detailed proof.

Lemma 5.1. Let f(x, y, z) ∈ Fp[x, y, z] be a quadratic polynomial that depends on
each variable and is not of the form g(h(x) + k(y) + l(z)). Let A,B,C ⊂ Fp with
|A| = |B| ≤ |C| and |A||B||C| � p2. Then we have∣∣{(x, y, z, x′, y′, z′) ∈ (A×B × C)2 : f(x, y, z) = f(x′, y′, z′)

}∣∣
≤ (|A||B||C|)3/2 + |A||B||C|2.

We are now ready to give a proof of Theorem 1.10.

Proof of Theorem 1.10. Without loss of generality, we assume that f(x, y) = ax2+
by2+cxy+dx+ey with a 	= 0. Let f ′(x, y, z) := f(z−x, y). Consider the following
equation:

(12) f ′(x, y, z) = t,

with x ∈ A, y ∈ A, z ∈ A+ A, t ∈ f(A,A).
Note that for any u, v, w ∈ A, a solution of (12) is given by x = u ∈ A, y = v ∈ A,

z = u+ w ∈ A+A, and t = f(w, v) ∈ f(A,A). Thus, we have

(13) |A|3 � |{(x, y, z, t) ∈ A×A× (A+A)× f(A,A) : f ′(x, y, z) = t}| .
Let E be the cardinality of the following set:{

(x, y, z, x′, y′, z′) ∈ (A×A× (A+A))2 : f ′(x, y, z) = f ′(x′, y′, z′)
}
.

Then (13) and the Cauchy-Schwarz inequality give

(14)
|A|6

|f(A,A)| � E.

Before applying Lemma 5.1, we need to show that f ′(x, y, z) is not of the form
g′(h′(x) + k′(y) + l′(z)). By the contradiction, suppose

f ′(x, y, z) = g′(h′(x) + k′(y) + l′(z)).

Then g′ is a polynomial of degree 2 since a 	= 0. Thus, h′, k′, and l′ are linear
polynomials. So we can write f ′(x, y, z) as

f ′(x, y, z) = g′(λ1x+ λ2y + λ3z + λ4)

for some λ1, λ2, λ3, λ4 ∈ Fp. Since g′ is a polynomial of degree 2, without loss of
generality, we assume that g′(x) = x2 + λ5x + λ6 for some λ5, λ6 ∈ Fp. It follows
from the definition of f ′ that

λ2
1 = λ2

3 = a, 2λ1 · λ3 = −2a.

This implies that λ1 = −λ3. Hence, f ′ can be presented as

f ′(x, y, z) = g′(λ3(z − x) + λ2y + λ4).

From here, we can rearrange the coefficients of g′ such that g′(λ3(z−x)+λ2y+λ4) =
g′′(λ3(z − x) + λ2y) for some g′′ ∈ Fp[x]. This leads to

f(z − x, y) = g′′(λ3(z − x) + λ2y),

which contradicts the assumption of the theorem.
In other words, we have that f ′(x, y, z) is not of the form g′(h′(x)+k′(y)+ l′(z)).
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If |A|2|A+A| � p2, then we have |A+A| � |A|6/5 since |A| ≤ p5/8, and we are
done. Thus we can assume that |A|2|A + A| � p2. Lemma 5.1 with B = A and
C = A+A implies that

E ≤ |A|3|A+A|3/2 + |A|2|A+ A|2.
Therefore, the theorem follows from the inequality (14). �

We note that if we use the point-plane incidence bound due to Vinh [21] for large
sets in the proofs of Lemmas 2.2 and 2.3 in [12], then we are able to obtain the
following version of Lemma 5.1 for large sets.

Lemma 5.2. Let Fq be an arbitrary finite field. Let f(x, y, z) ∈ Fq[x, y, z] be a
quadratic polynomial that depends on each variable and is not of the form

g(h(x) + k(y) + l(z)).

Let A,B,C ⊂ Fq; then we have∣∣{(x, y, z, x′, y′, z′) ∈ (A×B × C)2 : f(x, y, z) = f(x′, y′, z′)
}∣∣

≤ (|A||B||C|)2
q

+ q|A||B||C|.

One can follow identically the proof of Theorem 1.10 with Lemma 5.2 to obtain
the following improvement of Vu’s result for quadratic polynomials. We leave the
detailed proof to the reader.

Theorem 5.3. Let Fq be an arbitrary finite field. Let f(x, y) ∈ Fq[x, y] be a non-
degenerate quadratic polynomial. Let A be a set in Fq; then we have

max{|A+A|, |f(A,A)|} � min

{
|A|2
q1/2

, q1/3|A|2/3
}
.
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