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ISOTROPIC MEASURES AND MAXIMIZING ELLIPSOIDS:

BETWEEN JOHN AND LOEWNER

SHIRI ARTSTEIN-AVIDAN AND DAVID KATZIN

(Communicated by Thomas Schlumprecht)

Abstract. We define a one-parametric family of positions of a centrally sym-
metric convex body K which interpolates between the John position and the
Loewner position: for r > 0, we say that K is in maximal intersection position
of radius r if Voln(K ∩ rBn

2 ) ≥ Voln(K ∩ rTBn
2 ) for all T ∈ SLn. We show

that under mild conditions on K, each such position induces a correspond-
ing isotropic measure on the sphere, which is simply the normalized Lebesgue
measure on r−1K ∩ Sn−1. In particular, for rM satisfying rnMκn = Voln(K),
the maximal intersection position of radius rM is an M -position, so we get
an M -position with an associated isotropic measure. Lastly, we give an inter-
pretation of John’s theorem on contact points as a limit case of the measures
induced from the maximal intersection positions.

1. Introduction and main results

Given a convex body (that is, a compact convex set with non-empty interior) K
in Rn, the John ellipsoid J(K) is the maximum-volume ellipsoid contained in K.
The body K is in John position if J(K) = Bn

2 , the Euclidean unit ball. Dually,
the Loewner ellipsoid L(K) is the minimum-volume ellipsoid containing K, and
K is in Loewner position if L(K) = Bn

2 . Every convex body has a John and a
Loewner position, and these positions are unique up to orthogonal transformations.
They are dual in the sense that if 0 ∈ intK, then J(K◦) = (L(K))◦, where A◦ =
{y : 〈x, y〉 ≤ 1 ∀x ∈ A} is the dual body of A (see [1] for more details).

A finite Borel measure μ on Sn−1 is called isotropic if∫
Sn−1

〈x, θ〉2 dμ(x) = μ(Sn−1)

n

for all θ ∈ Sn−1. In 1948, Fritz John [10] showed the following:

Theorem 1.1 (John). Let K ⊂ Rn be a convex body in John position. Then there
exists an isotropic measure whose support is contained in ∂K ∩ Sn−1. Moreover,
there exists such a measure whose support is at most n(n+ 3)/2 points.

A reverse result was given by K. Ball [2], who showed that if Bn
2 ⊆ K and there

is an isotropic measure supported on ∂K ∩ Sn−1, then K is in John position. By
duality, the same result holds for a body in Loewner position.
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It turns out that John’s theorem is a special case of a general phenomenon.
Given a convex body, one may consider the family of positions of K, given by
{TK : T ∈ SLn}. Giannopoulos and Milman [8] showed that solutions to extremal
problems over the positions of a convex body often give rise to isotropic measures
and demonstrated this fact for, among others, the John position, the isotropic posi-
tion, the minimal surface area position, and an M -position. John-type results were
also extended to the general case, where ellipsoids are replaced by affine transfor-
mations of a convex body; see [9]. For more information we refer to the books [5]
and [1].

In this work, we consider a one-parametric family of extremal positions which
seems not to have been considered before:

Definition 1.2. For a centrally symmetric convex body K ⊂ Rn, the ellipsoid Er
of volume rnκn is a maximum intersection ellipsoid of volume-radius r if

Voln (K ∩ Er) ≥ Voln (K ∩ E)
for all ellipsoids E of volume rnκn, where κn = Voln(B

n
2 ). We say that K is in

maximal intersection position of radius r if rBn
2 is a maximum intersection ellipsoid

of (volume)-radius r.

In the following, Er will always denote a maximum intersection ellipsoid of
volume-radius r of K, a centrally symmetric convex body. The set of maximal
intersection positions interpolates between the John and Loewner positions: in-
deed, let rJ be a positive number satisfying Voln(J(K)) = rnJκn, and let rL be such
that Voln(L(K)) = rnLκn. Then K is in maximal intersection position of radius rJ
if and only if r−1

J K is in John position, and similarly for the Loewner position. In
other words, up to a scaling, the maximal intersection position of radius rJ is the
John position, and the maximal intersection position of radius rL is the Loewner
position.

Our first result is the following:

Theorem 1.3. Let K ⊂ Rn be a centrally symmetric convex body such that
Voln−1(∂K ∩ rSn−1) = 0 and Voln−1(K ∩ rSn−1) > 0. If K is in maximal in-
tersection position of radius r, then the restriction of the surface area measure on
the sphere to Sn−1 ∩ r−1K is an isotropic measure.

Remark 1.4. Note that the condition Voln−1(∂K ∩ rSn−1) = 0 cannot be omit-
ted. As an example, consider the convex hull of a ball and two points, e.g.,
K = conv{B2

2 ∪ (±
√
2, 0)} ⊂ R2. Here one may check that K is in John position,

and so it is in maximal intersection position of radius 1. However, the restriction of
the surface area measure to K ∩Sn−1 is clearly not isotropic, as it has more weight
in the direction of the y axis than in the direction of the x axis.

We will denote the surface area measure on the sphere by σ, and for a Borel set
A ⊂ Rn with σ(A ∩ Sn−1) > 0 we let μA denote the restriction of σ to A, i.e.,

μA(B) =
σ(B ∩A ∩ Sn−1)

σ(A ∩ Sn−1)
.

Note that if μA is isotropic and σ(Sn−1\A) > 0, then μSn−1\A is isotropic as well.
Theorem 1.3 shows that as in [8], an extremal position induces an isotropic measure.
Contrary to John’s Theorem 1.1, in our case we have an explicit description of the
isotropic measure, which is uniform on r−1K ∩ Sn−1; namely, it is μr−1K .
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Theorem 1.3 does not formally include the result of Theorem 1.1 in the case
r = rJ = 1, since for K in John position we have Sn−1 ⊂ K, so Theorem 1.3
merely states that σ is isotropic, a triviality. Nevertheless, our second result gives
a new interpretation to John’s theorem. We show that when K is in John posi-
tion, the isotropic measure which is guaranteed to exist by Theorem 1.1 may be
constructed as a limit of the isotropic measures from Theorem 1.3. In other words,
as r approaches rJ , the corresponding induced measures approach a measure of the
type described in John’s theorem:

Theorem 1.5. Let K ⊂ Rn be a centrally symmetric convex body. For every r > 1,
denote by μr the uniform probability measure on Sn−1\r−1TrK, where TrK is in
maximal intersection position of radius r. Then there exists a sequence rj ↘ 1 such
that the sequence of measures μrj weakly converges to an isotropic measure whose

support is contained in ∂K ∩ Sn−1.

A similar result holds for the Loewner position:

Theorem 1.6. Let K ⊂ Rn be a centrally symmetric convex body. For every r < 1,
denote by νr the uniform probability measure on Sn−1 ∩ r−1TrK, where TrK is in
maximal intersection position of radius r. Then there exists a sequence rj ↗ 1 such
that the sequence of measures νrj weakly converges to an isotropic measure whose

support is contained in ∂K ∩ Sn−1.

In the range [rJ , rL] there is a special radius which we denote rM , defined so that
Voln(K) = rnMκn, and for this special radius the maximal intersection position of
radius rM is an M -position. To explain what this means we need a few more
definitions and background.

In the mid-1980s, V. Milman [12] discovered the existence of a position for convex
bodies which enabled him, and the researchers following, to prove many new results
and which had a major influence on the field. This position, now called M -position,
can be described in many different and equivalent ways. We choose one such way;
for an extensive description and the many equivalences see [1].

Theorem 1.7 (Milman). There exists a universal constant C > 0 such that for
every n ∈ N and any centrally symmetric convex body K ⊂ Rn, there exists a
centrally symmetric ellipsoid E with Voln(E) = Voln(K) such that

(1.1)
Voln(K

◦ + E◦)

Voln(K◦ ∩ E◦)

Voln(K + E)
Voln(K ∩ E) ≤ Cn.

In fact, one may show that if an ellipsoid of the same volume as K satisfies any
of the four inequalities

Vol(K◦ + E◦) ≤ cn1 Voln(K), Voln(K
◦ ∩ E◦) ≥ c−n

1 Voln(K),

Vol(K + E) ≤ cn1 Voln(K), Voln(K ∩ E) ≥ c−n
1 Voln(K),

then it must satisfy inequality (1.1) with some constant C = C(c1) depending only
on c1 and not on the body K or on the dimension. For this reason, we shall use
the following simple definition for M -position:

Definition 1.8. A centrally symmetric convex body K is in M -position with con-

stant C if the centrally symmetric Euclidean ball of radius λ =
(

Vol(K)
κn

)1/n

satisfies

Voln(K ∩ λBn
2 ) ≥ C−nVoln(K).
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Since Milman’s theorem implies that there exists some universal C for which any
body has an affine image in M -position with constant C, we shall usually omit the
words “with constant C” and mention simply an “M -position”, by which we mean
an M -position with respect to the constant C guaranteed by Milman’s Theorem
1.7.

Clearly, when we maximize the volume of the intersection of K and an ellipsoid
of volume Voln(K), we get an M -ellipsoid, and when it is a Euclidean ball we get
that K is in M -position. We have then:

Corollary 1.9. Let K ⊂ Rn be a centrally symmetric convex body such that

Voln−1(∂K ∩ rMSn−1) = 0, where rM =
(

Vol(K)
κn

)1/n

. If K is in maximal in-

tersection position of radius rM , then K is in M -position, and the restriction of
the surface area measure on the sphere to Sn−1 ∩ r−1

M K is an isotropic measure.

This paper is organized as follows: in Section 2 we provide some basic results
regarding the maximal intersection position. The section concludes with a detailed
proof of the main ingredient for the proof of Theorem 1.3. In Section 3 we prove
Theorems 1.3, 1.5, and 1.6. In the last section we discuss briefly the question of
uniqueness of the maximum intersection position, a question which remains open.
We show that uniqueness would follow from a strong variant of the (B) conjecture.

2. Preliminaries

In this section we provide some results needed for the proof of the main theorems.
We start by showing that for r > 0, the maximal intersection position of radius r
does in fact exist. We will make frequent use of the following function:

Definition 2.1. For a centrally symmetric convex body K = −K ⊂ Rn, define for
every r > 0,

(2.1) m(r) = sup {Voln(K ∩ E) : E is an ellipsoid of volume rnκn} .

Our first lemma shows that a maximal intersection ellipsoid always exists:

Lemma 2.2. For every centrally symmetric convex body K ⊂ Rn and every r > 0,
the supremum in (2.1) is attained.

Proof. First note that since K = −K, the Brunn-Minkowski inequality implies that
for every x ∈ Rn and every T ∈ SLn, we have

(2.2) Voln (K ∩ (TBn
2 + x)) ≤ Voln (K ∩ TBn

2 ) ,

and so if the supremum is attained, it is attained on a centered ellipsoid. Note
that the supremum may also be attained on a non-centered ellipsoid only if we
have equality in (2.2), which is only possible if K ∩ (TBn

2 + x) and K ∩ (TBn
2 − x)

are homothetic. This occurs, for instance, in the case (TBn
2 + x) ⊂ K or K ⊂

(TBn
2 + x), i.e., when r < rJ or r > rL.

Let Ej = TjB
n
2 be a sequence of centrally symmetric ellipsoids where Tj is positive

definite with detTj = rn and Voln(K ∩ TjB
n
2 ) → m(r). If the sequence of operator

norms ‖Tj‖op grows to infinity, then, as det(Tj) is fixed, we have Voln(K∩TjB
n
2 ) →

0 �= m(r), so the set of eigenvalues of {Tj}∞j=1 must be bounded, which implies
that the ellipsoids TjB

n
2 are all contained in a compact set. It now follows from

Blaschke’s selection theorem that there exists a subsequence of ellipsoids converging



ISOTROPIC MEASURES AND MAXIMIZING ELLIPSOIDS 5383

in the Hausdorff distance to a centered ellipsoid E of volume rnκn, and, since the
map T �→ Voln(K ∩ TBn

2 ) is continuous on SLn, we have Voln(K ∩ E) = m(r). �

It will be useful to note the following simple properties of m(r):

Lemma 2.3. Let K ⊂ Rn be a centrally symmetric convex body. Then
(1) For 0 < r ≤ rJ we have m(r) = rnκn and for r ≥ rL we have m(r) =

Voln(K).
(2) The function m(r) is strictly monotone increasing in [rJ , rL].
(3) The function m(r) is continuous and moreover satisfies for t ≤ s that

m(t) ≤ m(s) ≤
(s
t

)n

m(t).

Proof. Fact (1) is trivial. For (2) let rJ ≤ t < s ≤ rL and let Et be a maximum
intersection ellipsoid of volume radius t . Then

m(t) = Voln(K ∩ Et) ≤ Voln

(
K ∩ s

t
Et
)
≤ Voln (K ∩ Es) .

If the last inequality is an equality, then K∩Et = K∩ s
tEt, which is only possible

if K ⊂ Et (which is impossible since t < rL) or if s
t Et ⊂ K (which is impossible

since s > rJ).
To prove (3) it is enough to show the right hand side inequality and to this end

simply note that

m(t) = Voln(K ∩ Et) ≥ Voln

(
K ∩ t

s
Es
)

≥ Voln

(
t

s
K ∩ t

s
Es
)

=

(
t

s

)n

Voln (K ∩ Es) =
(
t

s

)n

m(s).

�

By continuity of m(r), we have:

Lemma 2.4. Let K ⊂ Rn be a centrally symmetric convex body. As r ↘ rJ the
ellipsoids Er converge to ErJ = J(K) in the Hausdorff distance.

Proof. Since Voln(K ∩ J(K)) = Voln(J(K)) then by the continuity of m(r), both
Voln(K ∩ Er) and Voln(Er) approach m(rJ) = rnJκn as r ↘ rJ . Let Tr be a
sequence of transformations such that TrEr = Bn

2 . As in the proof of Lemma 2.3,
since Voln(K ∩ T−1

r Bn
2 ) → m(rJ) then the set Er is contained in a compact set. We

thus have a converging subsequence Erj → E with Voln(E) = Voln(K ∩ E) = rnJκn,
so E is an ellipsoid contained in K with the same volume as J(K), which is unique.
It follows that E = J(K). Since this was true for any converging subsequence, we
get that Er converges to J(K) as r ↘ rJ . �

We will make use of the following fact. The proof is a simple exercise; see e.g.,
[1, Lemma 2.1.13]:

Lemma 2.5. A Borel measure μ on Sn−1 is isotropic if and only if every A ∈
Mn(R) with Tr(A) = 0 has ∫

Sn−1

〈x,Ax〉 dμ(x) = 0.
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The following theorem is the main ingredient in the proof of Theorem 1.3:

Theorem 2.6. Let K ⊂ Rn be a convex body such that Voln−1(∂K ∩ Sn−1) = 0
and Voln−1(K ∩ Sn−1) > 0. Let A ∈ Mn(R) with Tr(A) = 0, and let V (t) : R → R
be defined by V (t) = Voln(K ∩ etABn

2 ). The derivative of V (t) satisfies

dV (t)

dt

∣∣∣∣
t=0

=

∫
Sn−1∩K

〈x,Ax〉 dσ(x),

where σ = Voln−1 is the Lebesgue surface area measure on the sphere.

We will see in the next section that Theorem 1.3 is almost a direct corollary of
Theorem 2.6. However, Remark 1.4 shows that some caution is needed, and the
assumption Voln−1(∂K ∩Sn−1) = 0 should be used. Therefore, while the following
proof is basically a direct application of fundamental results in calculus, we provide
it in detail.

Proof of Theorem 2.6. Let {ϕj}∞j=1 be a sequence of continuous functions from Rn

to R which approximate the indicator of K:

ϕj(x) =

⎧⎪⎨
⎪⎩
1 ||x||K ≤ 1− 1

j ,

gj(x) 1− 1
j ≤ ||x||K ≤ 1,

0 ||x||K ≥ 1,

where gj(x) : Rn → [0, 1] is chosen so that ϕj(x) is continuously differentiable. We
have then

d

dt

∣∣∣∣
t=0

V (t) =
d

dt

∣∣∣∣
t=0

∫
Bn

2

1intK
(
e−tAx

)
dx

=
d

dt

∣∣∣∣
t=0

∫
Bn

2

lim
j→∞

ϕj

(
e−tAx

)
dx.

We will show that the following hold in a neighborhood of t = 0:∫
Bn

2

lim
j→∞

ϕj

(
e−tAx

)
dx = lim

j→∞

∫
Bn

2

ϕj

(
e−tAx

)
dx,(2.3)

d

dt
lim
j→∞

∫
Bn

2

ϕj

(
e−tAx

)
dx = lim

j→∞

d

dt

∫
Bn

2

ϕj

(
e−tAx

)
dx,(2.4)

d

dt

∫
Bn

2

ϕj

(
e−tAx

)
dx =

∫
Bn

2

〈
∇ϕj(x),−Ae−tAx

〉
dx,(2.5)

lim
j→∞

∫
Bn

2

〈
∇ϕj(x),−AetAx

〉
dx =

∫
Sn−1∩K

〈
x,Ae−tAx

〉
dσ

+

∫
Bn

2 ∩K

Tr(Ae−tA)dx.(2.6)

Setting t = 0 in the equalities above proves the theroem.
The equality (2.3) is a direct consequence of Lebesgue’s dominated convergence

theorem, and (2.5) follows from Leibniz’s integral rule. To prove (2.4) and (2.6),
we will show the following:

Proposition 2.7. There is a neighborhood of t = 0 where the function

d

dt

∫
Bn

2

ϕj

(
e−tAx

)
dx =

∫
Bn

2

〈
∇ϕj(x),−Ae−tAx

〉
dx
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converges uniformly to∫
Bn

2 ∩K

Tr(Ae−tA)dx+

∫
Sn−1∩K

〈
x,Ae−tAx

〉
dσ.

Then, we may exchange limit and derivative and arrive at the needed conclusion.
To this end, integrate by parts to get∫

Bn
2

〈
∇ϕj(x),−Ae−tAx

〉
dx(2.7)

=

∫
Bn

2

ϕj (x)Tr(Ae−tA)dx+

∫
Sn−1

ϕj (x)
〈
x,−Ae−tAx

〉
dσ.(2.8)

The first term in (2.8) satisfies∣∣∣∣∣
∫
Bn

2

ϕj (x)Tr(Ae−tA)dx−
∫
Bn

2 ∩K

Tr(Ae−tA)dx

∣∣∣∣∣(2.9)

=
∣∣Tr(Ae−tA)

∣∣
∣∣∣∣∣
∫
Bn

2

(ϕj (x)− 1K (x)) dx

∣∣∣∣∣ .(2.10)

Since
∣∣Tr(Ae−tA)

∣∣ is bounded in a neighborhood of t = 0, the sequence∫
Bn

2

ϕj (x)Tr(Ae−tA)dx

converges uniformly to
∫
Bn

2 ∩K
Tr(Ae−tA)dx. As for the second term in (2.8):∣∣∣∣

∫
Sn−1

ϕj (x)
〈
x,−Ae−tAx

〉
dσ −

∫
Sn−1∩K

〈
x,−Ae−tAx

〉
dσ

∣∣∣∣(2.11)

=

∣∣∣∣
∫
Sn−1

ϕj (x)
〈
x,−Ae−tAx

〉
dσ −

∫
Sn−1

1K (x)
〈
x,−Ae−tAx

〉
dσ

∣∣∣∣(2.12)

=

∣∣∣∣
∫
Sn−1

(ϕj (x)− 1K (x))
〈
x,−Ae−tAx

〉
dσ

∣∣∣∣ .(2.13)

There is c > 0 such that, in a neighborhood of t = 0, for every x ∈ Sn−1, we
have

∣∣〈x,−Ae−tAx
〉∣∣ ≤ c. Furthermore, denote

Mj = {x : 1− 1

j
≤ ||x||K ≤ 1} ⊃ supp (ϕj (x)− 1K (x)) .

Then ∣∣∣∣
∫
Sn−1

(ϕj (x)− 1K (x))
〈
x,−Ae−tAx

〉
dσ

∣∣∣∣(2.14)

≤ c

∫
Sn−1

|ϕj (x)− 1K (x) dσ| ≤ cVoln−1(S
n−1 ∩Mj).(2.15)

But
cVoln−1(S

n−1 ∩Mj) → cVoln−1(S
n−1 ∩ ∂K) = 0,

and so the sequence
∫
Sn−1 ϕj (x)

〈
x,−Ae−tAx

〉
dσ converges uniformly to∫

Sn−1∩K

〈
x,−Ae−tAx

〉
dσ =

∫
Sn−1∩K

〈
x,Ae−tAx

〉
dσ

since K is centrally symmetric. Thus Proposition 2.7 is proved and with it Theorem
2.6. �
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3. Proof of the main theorems

In this section we use the results of Section 2 to provide short proofs to the three
main Theorems 1.3, 1.5, and 1.6.

As we mentioned, the proof of Theorem 1.3 follows almost directly from Theorem
2.6:

Proof of Theorem 1.3. First note that K is in maximal intersection position of
radius r if and only if r−1K is in maximal intersection position of radius 1, and so
it is enough to prove the theorem in the case r = 1.

Let W : SLn → R, W (T ) = Voln(K ∩ TBn
2 ). If In is a local maximum of W ,

then for any A ∈ Mn(R) such that trA = 0, the derivative dW (etA)
dt

∣∣∣
t=0

= dV (t)
dt

∣∣∣
t=0

is either zero or does not exist. Theorem 2.6 states that the derivative does exist
for all A, and it equals

∫
Sn−1∩K

〈x,Ax〉 dσ(x). It follows that∫
Sn−1

〈x,Ax〉 dμK =
1

Voln−1(Sn−1 ∩K)

∫
Sn−1∩K

〈x,Ax〉 dσ = 0

for all A such that trA = 0, and by Lemma 2.5, μK is isotropic. �

As we have mentioned, the result of Theorem 1.3 resembles that of John’s the-
orem (Theorem 1.1), but does not include it. However, Theorem 1.3 provides a
family of isotropic measures, the limit of which is a John-type measure.

Proof of Theorem 1.5. Let r ↘ 1. By Lemma 2.2, we may choose an intersection
maximizing ellipsoid Er for each r. By Lemma 2.4, Er → Bn

2 , and so we may choose
a sequence of positive definite transformations Tr → In such that Bn

2 = TrEr. Then
TrK is in maximal intersection position of radius r and Voln−1(∂TrK ∩ Sn−1) = 0
for almost all r. By Theorem 1.3, the probability measures on the sphere

μr(A) = μSn−1\TrK(A) =
σ (A\TrK)

σ (Sn−1\TrK)

are isotropic.
Note that Sn−1 is a compact metric space, and so the family of measures μr has

a weakly converging subsequence μj → μ where μ is a probability measure on Sn−1.
We will show that the limit measure μ is an isotropic measure whose support lies
in ∂K ∩ Sn−1.

First, weak convergence implies that∫
Sn−1

〈x, θ〉2 dμj(x) →
∫
Sn−1

〈x, θ〉2 dμ(x)

and
1

n
=

μj(S
n−1)

n
→ μ(Sn−1)

n
,

so for every θ we have
∫
Sn−1 〈x, θ〉2 dμ(x) = μ(Sn−1)

n = 1
n ; i.e., μ is isotropic.

Second, let

Uk =

{
x ∈ Sn−1 : d(x, ∂K) >

1

k

}
,

where d(·, ·) is a metric on Sn−1. The measure μj is supported on Sn−1\TrjK
where TrjK → K, and so there is M such that for any k > M there is some N(k)
such that μj(Uk) = 0 for all j > N(k). Since Uk is open, weak convergence implies
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that μ(Uk) ≤ lim inf μj(Uk) = 0, so μ(Uk) = 0 for all k > M . It follows that
μ (

⋃∞
k=M Uk) = lim

k→∞
μ(Uk) = 0, where

∞⋃
k=M

Uk = {x ∈ Sn−1 : d(x, ∂K) > 0} = Sn−1\cl∂K = Sn−1\∂K.

It follows that μ(Sn−1\∂K) = 0, and so suppμ ⊂ Sn−1 ∩ ∂K. �

The proof of Theorem 1.6 is analogous to that of Theorem 1.5, only here we use

νj(A) = μTrj
K(A) =

σ
(
A ∩ TrjK

)
σ
(
Sn−1 ∩ TrjK

) ,
which is isotropic by Theorem 1.3. In this case the measures νj satisfy νj(Uk) = 0
for all j > N(k). In other words, for a John-type measure we use a sequence of
uniform measures “outside” TrjK, whereas for a Loewner-type measure we use a
sequence of uniform measures “inside” TrjK.

4. Remarks about uniqueness following from the (B) property

We end this note with a short discussion of the possible uniqueness of the maxi-
mal intersection positions of a body K. If 0 < r < rJ or r > rL, then the maximum
intersection ellipsoid Er of volume-radius r is clearly not unique. If r = rJ or r = rL,
then Er is unique by John’s theorem. The question of uniqueness remains open for
the case rJ < r < rL, but it is implied by a variant of a well-known conjecture
which we next discuss:

Conjecture 4.1. For a centrally symmetric convex body K ⊂ Rn and a diagonal
n× n matrix Λ, the function

φ(t) = Voln
(
etΛK ∩Bn

2

)
is log-concave in t; i.e.,

(4.1) Voln

(
e

t
2ΛK ∩Bn

2

)2

≥ Voln
(
etΛK ∩Bn

2

)
Voln (K ∩Bn

2 )

for all t ∈ R and all diagonal Λ. Furthermore, equality is attained if and only if
one of the following holds: K ⊂ Bn

2 , B
n
2 ⊂ K, or Λ = λIn for some λ ∈ R.

Proposition 4.2. Assuming Conjecture 4.1 is true, if K is a centrally symmetric
convex body, the maximum intersection ellipsoid of radius r is unique for rJ < r <
rL.

Proof. Letting rJ < r < rL, assume there are two distinct maximum intersection
ellipsoids of radius r. By changing K linearly, we may assume that one of these
ellipsoids is Bn

2 , and the other is of the form eΛBn
2 , where Λ is a diagonal matrix

with trΛ = 0. Conjecture 4.1 now gives

Voln

(
K ∩ e

Λ
2 Bn

2

)
≥ Voln (K ∩Bn

2 ) ,

where maximality of Bn
2 implies equality in the above. Since rJ < r < rL, we have

K � Bn
2 and Bn

2 � K. It follows that Λ is a traceless scalar matrix; i.e., Λ is the
zero matrix and eΛ = In. �
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Conjecture 4.1 describes a (B)-type property on the Lebesgue measure on Bn
2 under

the following terminology:

Definition 4.3. Given a measure μ on Rn and a measurable set K ⊂ Rn, we say
that μ and K have the weak (B) property if the function

t �→ μ(etK)

is log-concave on R.
Denoting by diag(t1, . . . , tn) the diagonal matrix with diagonal entries t1, . . . , tn,

we will say that μ and K have the strong (B) property if the function

(t1, . . . , tn) �→ μ(ediag(t1,...,tn)K)

is log-concave on Rn.

The notion of the (B) property arises from a problem proposed by Banaszczyk
and described by Latala [11] known as the (B) conjecture (now the (B) theorem),
where, in the terminology as above, it was conjectured that the standard Gaussian
probability measure γ on Rn and any centrally symmetric convex body K ⊂ Rn

have the weak (B) property. The (B) conjecture was solved by Cordero-Erausquin,
Fradelizi, and Maurey [6], where it was shown that γ and K have in fact a strong
(B) property.

Conjecture 4.1 proposes that the uniform Lebesgue measure on Bn
2 and any

centrally symmetric convex body have the strong (B) property, with further as-
sumptions on the equality case.

Unfortunately not a lot is known about the (B) property of general measures and
even less about the equality case. We will briefly mention what is currently known:
Livne Bar-on [3] showed that in R2, the uniform Lebesgue measure on a centrally
symmetric convex body L ⊂ R2 has the weak (B) property with any centrally
symmetric convex body K ⊂ R2. This result was generalized by Saroglou [13],
where it was shown that if the log-Brunn-Minkowski inequality holds in dimension
n, then the uniform probability measure on the n-dimensional cube has the strong
(B) property, and the uniform probability measure of every centrally symmetric
convex body has the weak (B) property, with any centrally symmetric convex body
K.

The log-Brunn-Minkowski inequality states that for two centrally symmetric
convex bodies K,L ⊂ Rn, and λ ∈ [0, 1],

(4.2) Voln ((1− λ)K +o λL) ≥ Voln(K)1−λ Voln(L)
λ,

where

(1− λ)K +o λL =
⋂

u∈Sn−1

{
x : 〈x, u〉 ≤ hK(u)1−λhL(u)

λ
}
.

It was shown by Böröczky, Lutwak, Yang, and Zhang [4] that the log-Brunn-
Minkowski inequality holds for n = 2, and so together with [13] the result of [3]
is implied. In [14], Saroglou states that an unconditional log-concave measure μ
and an unconditional body K have the strong (B) property. For our purposes, it is
enough to mention that the uniform measure on Bn

2 is unconditional log-concave.
It follows that Conjecture 4.1 (without the equality case) holds whenever K is un-
conditional; i.e., (x1, . . . , xn) ∈ K implies (δ1x1, . . . , δnxn) ∈ K for any choice of
δi ∈ {−1, 1} where i = 1, . . . , n.
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Still not a lot is known on equality cases in inequalities such as (4.1). In [14],
Saroglou expands further on the relationship between the (B) property and the
log-Brunn-Minkowski and conjectures that equality in (4.2) is attained if and only
if K = K1 × · · · ×Km for some convex sets K1, . . . ,Km that cannot be written as
Cartesian products of lower dimensional sets, and L = c1K1×· · ·× cmKm for some
positive numbers c1, . . . , cm. It was shown to us by Rotem [7] that the strong (B)
property cannot hold in the most general sense for any two log-concave measures
(instead of assuming one to be uniform on a ball, say), essentially by considering
two Gaussian measures which are not mutually diagonalizable. However, these
examples do not seem to give a counterexample to Conjecture 4.1.
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