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LOCAL GRADIENT ESTIMATES FOR HEAT EQUATION

ON RCD∗(k, n) METRIC MEASURE SPACES

JIA-CHENG HUANG

(Communicated by Guofang Wei)

Abstract. In this paper, we will establish a local gradient estimate and a
Liouville type theorem for weak solutions of the heat equation on RCD∗(K,N)
metric measure spaces.

1. Introduction

Let Mn be an n-dimensional complete Riemannian manifold with Ric(Mn) �
−k, k � 0. The Li–Yau local gradient estimate states that if u is a positive solution
of the heat equation Δu = ∂tu on B2R × (0,∞), then

(1.1) sup
x∈BR

(
|∇f |2 − α · ∂tf

)
(x, t) � Cn · α2

R2

( α2

α2 − 1
+
√
kR

)
+

nα2k

2(α− 1)
+

nα2

2t

for any α > 1, f := lnu. Letting R → ∞ in (1.1), one gets a global estimate as
follows:

|∇f |2 − α∂tf � nα2k

2(α− 1)
+

nα2

2t
.

There are many extensions and improvements of Li–Yau’s gradient estimate on
smooth manifolds, including both the local version and the global version; see,
for example, [6, 7, 9, 11, 24, 25, 27, 33, 35, 38, 45, 46] for the related results. The Li–
Yau type estimates were generalized to the non-smooth setting; see, for example,
[8, 36, 44], and so on.

In 1993, Hamilton [20] proved an elliptic type (global) gradient estimate of the
heat equation. If u is a global positive solution of the heat equation with u � L on
Mn, then

|∇u|2
u2

(x, t) �
(
1

t
+ 2k

)
ln(L/u).

In 2006, Souplet and Zhang [38] proved a sharp local version of the above in-
equality. They proved that if u is a positive solution of the heat equation with
u � L on BR × [t0 − T, t0] ⊂ Mn × R, then

(1.2)
|∇u|
u

� Cn ·
(
1

R
+

1√
T

+
√
k

)(
1 + ln

L

u

)
on BR/2 × [t0 − T/2, t0].
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Our main purpose in this paper is to study the local gradient estimate of the
heat equation on the metric measure spaces with a “lower Ricci curvature bound”,
so called RCD∗(K,N) spaces.

Given K ∈ R and N ∈ [1,∞], let (X, d, μ) be a proper (i.e., closed balls with
finite radius are compact) complete metric measure space with supp(μ) = X.
In recent years, several notions of “generalized Ricci curvature � K and dimen-
sion � N” have been defined. Sturm [39] and Lott–Villani [28] introduced the
curvature-dimension condition CD(K,N) on (X, d, μ) via optimal transportation.
In 2010, Bacher-Sturm [5] introduced the reduced curvature-dimension condition
CD∗(K,N), which enjoys a local-to-global property. In 2015, for ruling out the
Finslerian cases, Ambrosio–Gigli–Savaré [1] introduced the Riemannian curvature-
dimension condition RCD(K,∞) by assuming that the Sobolev space W 1,2(X) is
a Hilbertian space. Recently, Erbar–Kuwada–Sturm [12] and Ambrosio–Mondino–
Savaré [4] introduced a finite-dimensional version of the Riemannian curvature-
dimension condition RCD∗(K,N) and proved the equivalence of the Riemannian
curvature-dimension condition and the Bochner formula of Bakry–Emery via an
abstract Γ2-calculus. Of course, when X is a Riemannian manifold, the notion
RCD∗(K,N) is equivalent to the original Ric(X) � K and dim(X) � N . When
X is an Alexandrov space with generalized (sectional) curvature bounded below in
the sense of Alexandrov, X satisfies the RCD∗(K,N) condition [34, 42].

In recent years, many important results in geometric analysis have been extended
to the RCD∗(K,N) metric measure spaces; for example, the local Li–Yau gradient
estimate for the heat equation and the local Yau gradient estimate for the harmonic
functions [44], Li–Yau–Hamilton estimates [13,21,22] and spectral gaps [23,29,36],
the existence of the universal cover for RCD∗(K,N) metric measure spaces [32],
and so on.

In this paper, we will study the local gradient estimate for the local weak solu-
tions of the heat equation on an RCD∗(K,N) metric measure space (X, d, μ). Let
Ω ⊂ X be a domain. By the RCD∗(K,N) condition, the Sobolev space W 1,2(Ω)
is a Hilbertian space. Hence, by polarization in W 1,2(Ω), one can define the in-
ner product 〈·, ·〉; see (2.5) for details. Given an interval I ⊂ R, we say that
u(x, t) ∈ W 1,2(Ω× I) is a local weak solution for the heat equation on Ω× I if

−
∫
I

∫
Ω

〈∇u,∇φ〉dμdt =
∫
I

∫
Ω

∂u

∂t
· φdμdt

for all Lipschitz functions φ with compact support in Ω× I.
In the previous works [13, 21, 23], the main tool is the Γ2-calculus for the heat

flow. But the local weak solutions u(x, t) do not form a semi-group in general. The
method of Γ2-calculus for the heat flow does not work in this case.

In Zhang-Zhu [44], the authors developed a pointwise maximum principle on met-
ric measure spaces and proved the local Li–Yau estimate on RCD∗(K,N) spaces.
Inspired by [38] and [44], we generalized the local gradient estimates (1.2) to the
RCD∗(K,N) spaces. Our first main result is the following.

Theorem 1.3. Given K � 0 and N ∈ (1,∞), let (X, d, μ) be a metric measure
space satisfying RCD∗(−K,N). Let T ∈ (0,∞), let B2R ⊂ X be a geodesic ball of
radius 2R, let B2R,T = B2R × (0, T ), and let u(x, t) ∈ W 1,2

(
B2R,T

)
be a positive

local weak solution of the heat equation on B2R,T . Suppose also that u � M . Then,
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we have

(1.4) sup
BR×(3T/4,T ]

|∇f(x, t)|
1− f(x, t)

� C ·
(√

N

R
+

1√
T

+
√
K

)
,

where f = ln(u/M). Here and in what follows, supU f means ess supU f , and C is
a universal constant (independent of N , K and R).

The constant in (1.4) is more precise than [38, eq. (1.4)]. As a consequence,
our estimate even holds for any positive solution, bounded or not, when K = 0.
Precisely,

Corollary 1.5. Given N ∈ (1,∞), let (X, d, μ) be a metric measure space satisfying
RCD∗(0, N). u is any positive solution of the heat equation on X × (0,∞). Then
there exists a constant CN such that

|∇u|
u

(x, t) � CN
1

t1/2

(
CN + ln

u(x, 2t)

u(x, t)

)
for almost all (x, t) ∈ X × (0,∞).

As a consequence of Theorem 1.3, we have the Liouville type theorem of the heat
equation. Our second main result is the following.

Theorem 1.6. Given N ∈ [1,∞), let (X, d, μ) be a metric measure space satisfying
RCD∗(0, N). Then, we have the following conclusions.

(1) Let u(x, t) be a positive weak solution of the heat equation on X × (−∞, 0].

If u = exp(o(d(x) +
√
|t|)) near infinity, then u must be a constant.

(2) Let u(x, t) be a weak solution of the heat equation on X × (−∞, 0]. If

u = o(d(x) +
√
|t|) near infinity, then u must be a constant.

We remark that the growth condition in the second statement of Theorem 1.6 is
sharp in the spatial direction, due to the example u = x.

2. Preliminaries

Let (X, d) be a proper (i.e., closed balls of finite radius are compact) complete
metric space and let μ be a Radon measure on X with supp(μ) = X. Denote by
Br(x) the open ball centered at x with radius r. For any open subset Ω ⊂ X and
any p ∈ [1,∞], we denote by Lp(Ω) := Lp(Ω, μ).

2.1. The curvature-dimension conditions.
Let P(X) be the set of all Borel probability measures on X. Let P2(X, d) be

the L2-Wasserstein space over (X, d), that is,

P2(X, d) = {ν ∈ P(X) :

∫
X

d2(x0, x)dν(x) < ∞, for some (hence, for all) x0∈X}.

Given ν1, ν2 ∈ P2(X, d), the L2-Wasserstein distance W 2(ν0, ν1) is defined by

(2.1) W 2(ν0, ν1) := inf

∫
X×X

d2(x, y)dq(x, y),

where the infimum is taken over all couplings q of ν1 and ν2. Here, we say that q is
a coupling of ν1 and ν2 if q is in P(X ×X) with marginals ν0 and ν1. A coupling
q that realizes the inf in (2.1) is called an optimal coupling of ν0 and ν1. Let

P2(X, d, μ) = {ν ∈ P2(X, d) : ν is absolutely continuous w.r.t. μ}
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and

P∞(X, d, μ) = {ν ∈ P2(X, d, μ) : ν has bounded support}.
For any ν ∈ P∞(X, d, μ), according to the Radon–Nikodym Theorem, there exists
a Borel measurable function ρ such that, for any μ-measurable set A, we have
ν(A) =

∫
A
ρdμ. We write ν = ρ · μ in the above sense.

Definition 2.2. Given K ∈ R and N ∈ [1,∞), we say that a metric measure
space (X, d, μ) satisfies the reduced curvature-dimension condition CD∗(K,N) if,
for each pair ν0 = ρ0 ·μ, ν1 = ρ1 ·μ ∈ P∞(X, d, μ), there exist an optimal coupling
q of them and a geodesic (νt := ρt · μ)t∈[0,1] in P∞(X, d, μ) connecting them such
that for all t ∈ [0, 1] and all N ′ � N :∫

X

ρ
−1/N ′

t dνt

�
∫
X×X

[
σ
(1−t)
K/N ′

(
d(x0, x1)

)
ρ
−1/N ′

0 (x0) + σ
(t)
K/N ′

(
d(x0, x1)

)
ρ
−1/N ′

1 (x1)
]
dq(x0, x1),

where

σ
(t)
k (θ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin(
√
k·tθ)

sin(
√
k·θ) , 0 < kθ2 < π2,

t, kθ2 = 0,
sinh(

√
−k·tθ)

sinh(
√
−k·θ) , kθ2 < 0,

∞, kθ2 � π2.

Given f ∈ C(X), the pointwise Lipschitz constant of f at x is defined by

Lipf(x) := lim sup
y→x

|f(y)− f(x)|
d(x, y)

,

where we put Lipf(x) = 0 if x is isolated. Clearly Lipf is μ-measurable on X.

Definition 2.3 ([3]). The Cheeger energy Ch : L2(X) → [0,∞] is defined by

Ch(f) := inf
{
lim inf
j→∞

1

2

∫
X

(Lipfj)
2dμ

}
,

where the infimum is taken over all sequences of Lipschitz functions (fj)j∈N such
that fj→f in L2(X).

Definition 2.4. We say that a metric measure space (X, d, μ) is infinitesimally
Hilbertian if the Cheeger energy Ch is quadratic; i.e., for any f, g ∈ L2(X), we
have Ch(f + g) + Ch(f − g) = 2Ch(f) + 2Ch(g). We say that (X, d, μ) satis-
fies the RCD∗(K,N) condition, for some K ∈ R and N ∈ [1,∞), if (X, d, μ) is
infinitesimally Hilbertian and satisfies the CD∗(K,N) condition.

Let (X, d, μ) be an RCD∗(K,N) metric measure space. For each f ∈ D(Ch) :=
{f ∈ L2(X) : Ch(f) < ∞}, it is shown in §4 of [3] that

Ch(f) =
1

2

∫
X

|∇f |2dμ,

where |∇f | is the minimal relaxed gradient of f . Given f, g ∈ D(Ch), it was proved
[14] that the limit

(2.5) 〈∇f,∇g〉 := lim
ε→0

|∇(f + ε · g)|2 − |∇f |2
2ε
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exists in L1(X). This inner product (2.5) is bi-linear and satisfies the Cauchy–
Schwarz inequality, the chain rule, and the Leibniz rule [14].

2.2. Sobolev spaces.
Given K ∈ R and N ∈ [1,∞), let (X, d, μ) be an RCD∗(K,N) metric measure

space. Let Ω ⊂ X be a domain. We denote by Liploc(Ω) the set of locally Lips-
chitz continuous functions on Ω, and by Lip(Ω) (resp. Lip0(Ω)) the set of Lipschitz
continuous functions on Ω (resp. with compact support in Ω).

For any 1 � p � +∞ and f ∈ Liploc(Ω), its W
1,p(Ω)-norm is defined by

‖f‖W 1,p(Ω) := ‖f‖Lp(Ω) + ‖Lipf‖Lp(Ω).

The Sobolev space W 1,p(Ω) is defined by the closure of the set{
f ∈ Liploc(Ω) : ‖f‖W 1,p(Ω) < +∞

}
under the W 1,p(Ω)-norm. The space W 1,p

0 (Ω) is defined by the closure of Lip0(Ω)

under the W 1,p(Ω)-norm. We say f ∈ W 1,p
loc (Ω) if f ∈ W 1,p(Ω′) for every open

subset Ω′ � Ω.
It is well known that D(Ch) = W 1,2(X); see, for example, [44, Lemma 2.5].
We remark that several different notions of Sobolev spaces on metric measure

space have been established in [10, 15–17, 37]. They coincide with each other on
RCD∗(K,N) metric measure spaces (see, for example, [2]).

2.3. The weak Laplacian and a local version of the Bochner formula.
Given K ∈ R and N ∈ [1,∞), let (X, d, μ) be an RCD∗(K,N) metric measure

space. Fix any domain Ω ⊂ X. We will denote H1
0 (Ω) := W 1,2

0 (Ω), H1(Ω) :=

W 1,2(Ω), and H1
loc(Ω) := W 1,2

loc (Ω).

Definition 2.6. For each f ∈ H1
loc(Ω), L f is a functional defined on H1

0 (Ω) ∩
L∞(Ω) by

L f(φ) := −
∫
Ω

〈∇f,∇φ〉dμ ∀ φ ∈ H1
0 (Ω) ∩ L∞(Ω).

For any g ∈ H1(Ω) ∩ L∞(Ω), the distribution g · L f is defined by

(2.7) g · L f(φ) := L f(gφ) ∀ φ ∈ H1
0 (Ω) ∩ L∞(Ω).

By the linearity of inner product 〈∇f,∇g〉, this distributional Laplacian is linear.

Definition 2.8. A function f ∈ W 1,2
loc (Ω) is said to satisfy the inequality

L f � (�,=)h

in the sense of distributions if the inequality

L f(ϕ) � (�,=)

∫
Ω

hϕdμ

holds for all 0 � ϕ ∈ H1
0 (Ω)∩L∞(Ω). In this case, L f is a signed Radon measure

[18].

L satisfies the following chain rule and Leibniz rule [14]; see also [44].
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Lemma 2.9 ([44]). Given K ∈ R and N ∈ [1,∞), let Ω be an open domain of an
RCD∗(K,N) metric measure space (X, d, μ). Then, we have

(i) (Chain rule) Let f ∈ H1(Ω) ∩ L∞(Ω) and η ∈ C2(R). Then we have

(2.10) L [η(f)] = η′(f) · L f + η′′(f) · |∇f |2.
(ii) (Leibniz rule) Let f, g ∈ H1(Ω) ∩ L∞(Ω). Then we have

(2.11) L (f · g) = f · L g + g · L f + 2〈∇f,∇g〉.
Erbar–Kuwada–Sturm [12] and Ambrosio–Mondino–Savaré [4] proved that the

RCD∗(K,N) condition is equivalent to a Bakry–Emery Bochner inequality for the
heat flow on X. Hence, the RCD∗(K,N) condition implies a global version of the
Bochner formula. By using a good cut-off function in [4, 19, 31] and an argument
in [19], one can localize the global version of the Bochner formula in [4, 12] to a
local one; see, for example, §2 in [44] for details. In the following, a local Bochner
formula is given.

Theorem 2.12 ([44]). Let (X, d, μ) be an RCD∗(K,N) space for K ∈ R and
N ∈ [1,∞). Let BR be a geodesic ball with radius R centered at a fixed point x0.

Assume that f ∈ H1(BR) satisfies L f = g on BR in the sense of distributions
with g ∈ H1(BR) ∩ L∞(BR). Then we have |∇f |2 ∈ H1(BR/2) ∩ L∞(BR/2) and

that the distribution L (|∇f |2) is a signed Radon measure on BR/2. If its Radon–
Nikodym decomposition w.r.t. μ is denoted by

L (|∇f |2) = L ac(|∇f |2) · μ+ L sing(|∇f |2),
then we have L sing(|∇f |2) � 0 and, for μ-a.e. x ∈ BR/2,

1

2
L ac(|∇f |2) � g2

N
+ 〈∇f,∇g〉+K|∇f |2.

Furthermore, if N > 1, for μ-a.e. x ∈ BR/2 ∩
{
y : |∇f(y)| 
= 0

}
,

1

2
L ac(|∇f |2) � g2

N
+ 〈∇f,∇g〉+K|∇f |2 + N

N − 1
·
( 〈∇f,∇|∇f |2〉

2|∇f |2 − g

N

)2

.

2.4. The maximum principles. Given K ∈ R and N ∈ [1,∞), let (X, d, μ) be
a metric measure space satisfying RCD∗(K,N). We need the following maximum
principle.

Theorem 2.13 ([44]). Let Ω be a bounded domain and let T > 0. Let f(x, t) ∈
H1(ΩT ) ∩ L∞(ΩT ) and suppose that f achieves one of its strict maximums in
Ω × (0, T ] in the sense that: there exist a neighborhood U � Ω and an interval
(δ, T ] ⊂ (0, T ] for some δ > 0 such that

sup
U×(δ,T ]

f > sup
ΩT \(U×(δ,T ])

f.

Here supU×(δ,T ] f means ess supU×(δ,T ] f . Assume that, for almost every t ∈ (0, T ),

L f(·, t) is a signed Radon measure with L singf(·, t) � 0. Let v ∈ H1(ΩT ) ∩
L∞(ΩT ) with ∂tv(x, t) � C for some constant C > 0, for almost all (x, t) ∈ ΩT .
Then, for any ε > 0, we have

(μ× L1)
{
(x, t) : f(x, t) � sup

ΩT

f − ε

and L acf(x, t) + 〈∇f,∇v〉(x, t)− ∂

∂t
f(x, t) � ε

}
> 0,
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where L1 is the 1-dimensional Lebesgue’s measure on (δ, T ].
In particular, there exists a sequence of points {(xj , tj)}j∈N ⊂ U × (δ, T ] such

that every xj is an approximate continuity point of L acf(·, tj) and 〈∇f,∇w〉(·, tj)
and that

f(xj , tj) � sup
ΩT

f − 1/j and L acf(xj , tj) + 〈∇f,∇v〉(xj , tj)−
∂

∂t
f(xj , tj) � 1/j.

3. The local gradient estimates

Given K ∈ R and N ∈ [1,∞), let (X, d, μ) be a metric measure space satisfying
RCD∗(K,N). In this section, we will prove the local gradient estimates, Theorem
1.3.

3.1. The heat equations. Let Ω ⊂ X be a domain. Given T > 0, we denote by

ΩT := Ω× (0, T ].

Definition 3.1. A function u(x, t) ∈ H1(ΩT ) (= W 1,2(ΩT )) is called a local weak
solution of the heat equation on ΩT if for any [t1, t2] ⊂ (0, T ) and any geodesic ball
BR � Ω, we have

(3.2)

∫ t2

t1

∫
BR

(
∂tu · φ+ 〈∇u,∇φ〉

)
dμdt = 0

for all φ(x, t) ∈ Lip0(BR × (t1, t2)
)
. Here and in the sequel, we always denote

∂tu := ∂u
∂t .

It is well known that the volume doubling property and the L2-Poincaré inequal-
ity hold true in the RCD∗(K,N) metric measure spaces. The local boundedness
and the local Hölder continuity for local weak solutions of heat equations have been
established in [30, 40, 41].

An equivalent definition of the local weak solution is given in the following.

Lemma 3.3 ([44]). Let u(x, t) be a local weak solution of the heat equation on
Ω× (0, T ). Then, for a.e. t ∈ (0, T ), the function u(·, t) satisfies
(3.4) L u = ∂tu

in the sense of distributions on Ω. Conversely, if a function u(x, t) ∈ H1
(
ΩT

)
and

(3.4) holds for a.e. t ∈ [0, T ], then it was shown in [43, Lemma 6.12] that u(x, t) is
a local weak solution of the heat equation on ΩT .

For a local weak solution u of the heat equation on ΩT , we want to apply the
Bochner formula in Theorem 2.12 to (3.4). But in general, ∂tu is only in L2. We
cannot apply the Bochner formula in Theorem 2.12 to (3.4). Similar to [44], we use
the Steklov average to overcome this difficulty.

Definition 3.5. Given BR ⊂ X and u(x, t) ∈ L1(BR,T ), where BR,T := BR ×
(0, T ), the Steklov average of u is defined as follows. For every ε ∈ (0, T ) and any
h ∈ (0, ε),

(3.6) uh(x, t) :=
1

h

∫ h

0

u(x, t+ τ )dτ, t ∈ (0, T − ε].

By using the standard theory of Lp spaces, it is well known that if u ∈ Lp(BR,T ),
then the Steklov average uh → u in Lp(BR,T−ε) as h → 0, for every ε ∈ (0, T ).

We need the following lemmas.
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Lemma 3.7 ([44]). If u ∈ H1(BR,T ) ∩ L∞(BR,T ), then we have, for every ε ∈
(0, T ), that

uh ∈ H1(BR,T−ε) ∩ L∞(BR,T−ε) and ∂tuh ∈ H1(BR,T−ε) ∩ L∞(BR,T−ε)

for every h ∈ (0, ε) and that ‖uh‖H1(BR,T−ε) is bounded uniformly with respect to
h ∈ (0, ε).

For a local weak solution u, we have the following property of uh.

Lemma 3.8 ([44]). Let u ∈ H1(BR,T )∩L∞(BR,T ) be a local weak solution for the
heat equation, and fix any two constants ε, h such that ε ∈ (0, T ) and h ∈ (0, ε).
Then for almost all t ∈ (0, T − ε),

L uh = ∂tuh

on BR, in the sense of distributions.

We need the following lemma.

Lemma 3.9 ([44]). Given K ∈ R and N ∈ [1,∞), let (X, d, μ) be a metric measure
space satisfying RCD∗(K,N). Let u(x, t) ∈ H1(B2R,T )∩L∞(B2R,T ) be a local weak
solution of the heat equation on B2R,T . Assume that ∂tu ∈ H1(B2R,T )∩L∞(B2R,T ).
Then we have |∇u|2 ∈ H1(B3R/2,T ) ∩ L∞(B3R/2,T ).

3.2. Proof of Theorems 1.3 and 1.6. We firstly prove an important elliptic
inequality.

Lemma 3.10. Given K � 0 and N ∈ (1,∞), let (X, d, μ) be an RCD∗(−K,N)
space. Let u(x, t) ∈ H1(B2R,T ) ∩ L∞(B2R,T ) be the local weak solution of the
heat equation on B2R,T . Assume that M � u � δ > 0 and ∂tu ∈ H1(B2R,T ) ∩
L∞(B2R,T ). We put

w(x, t) =
|∇f |2

(1− f)2
,

where f = ln(u/M). Then, we have w ∈ H1(B3R/2,T )∩L∞(B3R/2,T ) and that, for
almost every t ∈ (0, T ), the function w(·, t) satisfies

(3.11) L acw � ∂tw +
2f

1− f
〈∇f,∇w〉+ 2

|∇f |4
(1− f)3

− 2K
|∇f |2

(1− f)2
μ-a.e.

on B3R/2, and

(3.12) L singw � 0.

Proof. Without loss of generality, we may assume M = 1. By Lemma 3.9, |∇u|2 ∈
H1(B3R/2,T ) ∩ L∞(B3R/2,T ). Note that for ∂tu ∈ H1(B2R,T ) ∩ L∞(B2R,T ) and

1 � u � δ > 0, we have |∇f |2 = |∇u|2
u2 ∈ H1(B3R/2,T ) ∩ L∞(B3R/2,T ), and hence

w =
|∇f |2

(1− f)2
∈ H1(B3R/2,T ) ∩ L∞(B3R/2,T ).

Moreover, for almost every t, we have f(·, t), ∂tf(·, t) ∈ H1(B2R) ∩ L∞(B2R) and,
by Lemma 2.9, for almost every t,
(3.13)

L f =
1

u
L u− |∇u|2

u2
=

1

u
∂tu− |∇f |2 = ∂tf − |∇f |2 (∈ H1(B2R) ∩ L∞(B2R)),
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in the sense of distributions on B2R. We denote g = ∂tf − |∇f |2. For almost every
(x, t) ∈ B3R/2,T , we have

∂tw =
(1− f)2∂t|∇f |2 + 2(1− f)(∂tf)|∇f |2

(1− f)4

=
2〈∇f,∇ft〉
(1− f)2

+
2(g + |∇f |2)|∇f |2

(1− f)3

=
2〈∇f,∇g +∇|∇f |2〉

(1− f)2
+

2(g + |∇f |2)|∇f |2
(1− f)3

.

(3.14)

By Lemma 2.9, we get

(3.15) Lw = L (|∇f |2) · 1

(1− f)2
+ |∇f |2L

(
1

(1− f)2

)
+2〈∇|∇f |2,∇ 1

(1− f)2
〉.

By the Bochner formula, Theorem 2.12, we have

(3.16) L ac(|∇f |2) � 2g2

N
+2〈∇f,∇g〉−2K|∇f |2+ 2N

N − 1

(
〈∇f,∇|∇f |2〉

2|∇f |2 − g

N

)2

μ-a.e. on B3R/2 ∩ {|∇f | 
= 0}. By Lemma 2.9,

L

(
1

(1− f)2

)
=

2

(1− f)3
L f +

6

(1− f)4
|∇f |2

=
2

(1− f)3
g +

6

(1− f)4
|∇f |2

(3.17)

and

(3.18) 2〈∇|∇f |2,∇ 1

(1− f)2
〉 = 4

(1− f)3
〈∇f,∇|∇f |2〉.

Combining (3.14)–(3.18), we have,

L acw − ∂tw =
L ac(|∇f |2)
(1− f)2

+ |∇f |2L ac

(
1

(1− f)2

)

+ 2〈∇|∇f |2,∇ 1

(1− f)2
〉 − ∂tw

� 1

(1− f)2

(
2g2

N
− 2K|∇f |2 + 2N

N − 1

(
〈∇f,∇|∇f |2〉

2|∇f |2 − g

N

)2
)

+
6

(1− f)4
|∇f |4 + 4

(1− f)3
〈∇f,∇|∇f |2〉 − 2

(1− f)2
〈∇f,∇|∇f |2〉

− 2

(1− f)3
|∇f |4

(3.19)

μ-a.e. on B3R/2 ∩ {|∇f | 
= 0}. On the other hand, for almost every t, we have

(3.20) 0 =
2

(1− f)2
〈∇f,∇|∇f |2〉 − 2〈∇f,∇w〉+ 4

(1− f)3
|∇f |4

and

(3.21) 0 =
−2

(1− f)3
〈∇f,∇|∇f |2〉+ 2

1− f
〈∇f,∇w〉 − 4

(1− f)4
|∇f |4.
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Summing up (3.19)–(3.21), for almost every t, we have

L acw − ∂tw � −2K
|∇f |2

(1− f)2
+

2|∇f |4
(1− f)3

+
2f

1− f
〈∇f,∇w〉

+
2g2

N(1− f)2
+

2N

(N − 1)(1− f)2

(
〈∇f,∇|∇f |2〉

2|∇f |2 − g

N

)2

+
2|∇f |4
(1− f)4

+
2〈∇f,∇|∇f |2〉

(1− f)3

(3.22)

μ-a.e. on B3R/2 ∩ {|∇f | 
= 0}. Note that by the Young inequality,

2g2

N(1− f)2
+

2N

(N − 1)(1− f)2

(
〈∇f,∇|∇f |2〉

2|∇f |2 − g

N

)2

+
2|∇f |4
(1− f)4

+
2〈∇f,∇|∇f |2〉

(1− f)3

=
2

(1− f)2

(
g2

N − 1
− g〈∇f,∇|∇f |2〉

(N − 1)|∇f |2 +
〈∇f,∇|∇f |2〉2
4(N − 1)|∇f |4

)

+
2

(1− f)2

(
〈∇f,∇|∇f |2〉2

4|∇f |4 +
|∇f |4

(1− f)2
+

〈∇f,∇|∇f |2〉
1− f

)
� 0.

(3.23)

Hence, by (3.22) and (3.23), we have, for almost every t,

(3.24) L acw − ∂tw � −2K
|∇f |2

(1− f)2
+

2|∇f |4
(1− f)3

+
2f

1− f
〈∇f,∇w〉

μ-a.e. on B3R/2 ∩ {|∇f | 
= 0}. On the other hand, for almost all t, we have, on
B3R/2 ∩ {|∇f | = 0},

L acw − ∂tw =
L ac(|∇f |2)
(1− f)2

+ |∇f |2L ac

(
1

(1− f)2

)

+ 2〈∇|∇f |2,∇ 1

(1− f)2
〉 − ∂tw

=
L ac(|∇f |2)
(1− f)2

� 0.

(3.25)

Hence, by (3.24) and (3.25), for almost all t, we have

L acw − ∂tw � −2K
|∇f |2

(1− f)2
+

2|∇f |4
(1− f)3

+
2f

1− f
〈∇f,∇w〉

μ-a.e. on B3R/2. The inequality (3.12) follows from (3.15), (3.17) and Theorem
2.12. Hence, we complete the proof. �

We are ready to prove Theorem 1.3 under some additional assumptions that
0 < δ � u � M and ∂tu ∈ H1(B2R,T ) ∩ L∞(B2R,T ).

Lemma 3.26. Let K � 0 and N ∈ (1,∞), and let (X, d, μ) be a metric measure
space satisfying RCD∗(−K,N). Let T ∈ (0,∞), let B2R := B2R(x0), let B2R,T =
B2R × (0, T ), and let u(x, t) ∈ W 1,2

(
B2R,T

)
be a positive local weak solution of the
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heat equation on B2R,T . Suppose also that 0 < δ � u � M and ∂tu ∈ H1(B2R,T )∩
L∞(B2R,T ). Then, we have

sup
BR×(3T/4,T )

|∇f(x, t)|
1− f(x, t)

� C ·
(√

N

R
+

1√
T

+
√
K

)
,

where f = ln(u/M). Here and in what follows, C is a universal constant (indepen-
dent of N , K and R).

Proof. Let w be as in Lemma 3.10. Then we have w ∈ H1(B3R/2,T )∩L∞(B3R/2,T ).
Without loss of generality, we assume M = 1. We follow the strategies of [38, 44].

Step 1. (Setting up the cut-off functions)
We put

M1 := sup
BR×(3T/4,T )

w and M2 := sup
B3R/2×(T/2,T )

w.

We now choose φ(x) = φ(r(x)) to be a function of the distance r to x0 with the
following properties that(

M1

2M2

)1/5

� φ � 1 on B3R/2, φ = 1 on BR, φ =

(
M1

2M2

)1/5

on B3R/2\B5R/4,

and

−C

R
φ

1
2 � φ′(r) � 0 and |φ′′(r)| � C

R2
∀ r ∈ (0, 3R/2)

for some universal constant C (independent of N , K, and R).
Similarly as above, we choose ξ(t) to be a cut-off function such that

ξ = 1 on (3T/4, T ),

(
M1

2M2

)1/5

� ξ � 1 on (T/2, T )

and

ξ =

(
M1

2M2

)1/5

on (T/2, 5T/8),

and

−C

R
ξ

1
2 � ξ′(t) � 0 ∀ t ∈ (T/2, T ).

Let ψ = φ4 · ξ. Then, it is easy to check that

ψ = 1 on BR × [3T/4, T ],(3.27)

ψ is decreasing as a radial function in the spatial variables,

|∇ψ| � C

R
ψ3/4 � C

R

√
ψ on B3R/2,(3.28)

−
√
ψ
C

T
� ∂tψ � 0 on(T/2, T ],(3.29)

|ψ′′(r)| � C

R2

√
ψ ∀ r ∈ (0, 3R/2).(3.30)

We now give an estimate for Lψ. By the Laplacian comparison theorem [14,
Corollary 5.15] for RCD∗(−K,N) with N > 1, K > 0, and (3.28) and (3.30), we
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get

Lψ = ψ′L r + ψ′′|∇r|2 � −C

R

(√
(N − 1)K coth

(
r

√
K

N − 1

))√
ψ − C

R2

√
ψ

(3.31)

on B3R/2, in the sense of distributions. Note that ψ = 0 on BR, and if r � R, we
have

coth
(
r

√
K

N − 1

)
� coth

(
R

√
K

N − 1

)
� 1 +

1

R
√
K/(N − 1)

.

Hence, we have

Lψ � −C

R

(√
(N − 1)K +

N − 1

R

)√
ψ − C

R2

√
ψ

�
(
−C

R

√
(N − 1)K − CN

R2

)√
ψ

(3.32)

on B3R/2, in the sense of distributions. In fact, the estimate (3.32) still holds for
RCD∗(−K,N) with N � 1 and K � 0. Indeed, in the case when K = 0 and
N > 1, the Laplacian comparison theorem states that L r � (N − 1)/r. Then
(3.32) still holds.

By (3.32), Lψ is a signed Radon measure. Then its absolutely continuous part

(3.33) (Lψ)ac �
(
−C

R

√
(N − 1)K − CN

R2

)√
ψ μ-a.e. x ∈ B3R/2,

and its singular part

(3.34) (Lψ)sing � 0.

Step 2. (Maximum principle arguments)

Claim. We have, for almost all t,

L ac(wψ) +
2f

f − 1
〈∇f,∇(wψ)〉 − 2

〈∇ψ,∇(wψ)〉
ψ

− ∂t(wψ)

�2ψ(1− f)w2 +
2fw

f − 1
〈∇f,∇ψ〉 − 2

w|∇ψ|2
ψ

+ wL acψ − w∂tψ − 2Kwψ

μ-a.e. on B3R/2.

Proof of Claim. By Lemmas 2.9 and 3.10,

L ac(ψw) = wL acψ + ψL acw + 2〈∇w,∇ψ〉

� wL acψ + ψ

(
∂tw − 2f

1− f
〈∇f,∇w〉+ 2(1− f)w2 − 2Kw

)
+ 2〈∇w,∇ψ〉

μ-a.e. on B3R/2. Hence, using the above inequality, we get

L ac(wψ) +
2f

f − 1
〈∇f,∇(wψ)〉 − 2

〈∇ψ,∇(wψ)〉
ψ

− ∂t(wψ)

�2ψ(1− f)w2 +
2fw

f − 1
〈∇f,∇ψ〉 − 2

w|∇ψ|2
ψ

+ wL acψ − w∂tψ − 2Kwψ

μ-a.e. on B3R/2. �
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We now return to the proof of Lemma 3.26. Let G = wψ, and let G =
supB3R/2×(T/2,T ] G. Notice that

L (wψ) +
2f

f − 1
〈∇f,∇(wψ)〉 − 2

〈∇ψ,∇(wψ)〉
ψ

− ∂t(wψ)

= L (wψ) + 〈∇G,∇(2f + 2 ln(1− f)− 2 lnψ)〉 − ∂t(wψ).

By the definition of ψ, the function G attains its maximum of B3R/2 × (T/2, T ) in
B5R/4 × (5T/8, T ) in the sense of Theorem 2.13. By (3.34) and (3.12), we have

L singG = wL singψ + ψL singw � 0

for almost every t. By Theorem 2.13 with v = 2f +2 ln(1− f)− 2 lnψ, there exists
{(xj , tj)}, such that

(3.35) G(xj , tj) � G− 1/j

and

(3.36) L acG(xj , tj) + 〈∇G,∇v〉(xj , tj)− ∂tG(xj , tj) � 1/j.

By (3.36) and the above Claim,(
2ψ(1− f)w2 +

2fw

f − 1
〈∇f,∇ψ〉 − 2

w|∇ψ|2
ψ

+ wL acψ − w∂tψ − 2Kwψ

)
(xj , tj)

� 1/j,

and, hence,

(2ψ(1− f)w2)(xj , tj)

� −
(

2fw

f − 1
〈∇f,∇ψ〉 − 2

w|∇ψ|2
ψ

+ wL acψ − w∂tψ − 2Kwψ

)
(xj , tj)

+ 1/j.

(3.37)

By Young’s inequality,

(3.38) − 2fw

f − 1
〈∇f,∇ψ〉 � 2w3/2|f | · |∇ψ| � ψ(1− f)w2 + C

f4 · |∇ψ|4
(ψ(1− f))3

.

Thus, by (3.28), we have

(3.39) − 2fw

f − 1
〈∇f,∇ψ〉 � ψ(1− f)w2 + C

f4

R4(1− f)3
.

Using the Young inequality and (3.28), we get

(3.40)
w|∇ψ|2

ψ
� ψw2

8
+ C

(
|∇ψ|2
ψ3/2

)2

� ψw2

8
+ C/R4.

By (3.33),

wL acψ �
(
−C

R

√
(N − 1)K − CN

R2

)√
ψw

� −ψw2

8
−
(
C

R

√
(N − 1)K +

CN

R2

)2

� −ψw2

8
− C

R2
(N − 1)K − CN2

R4
.

(3.41)
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By (3.29) and the Young inequality,

(3.42) |∂tψ|w � ψw2/8 + C/T 2.

By the Young inequality and the fact that 0 � ψ � 1,

(3.43) 2Kwψ � ψw2/8 + CK2.

Combining (3.37)–(3.43), we have

(2(1− f)ψw2)(xj , tj) �
(
(1− f)ψw2 +

ψw2

2
+

Cf4

R4(1− f)3

)
(xj , tj)

+
1

j
+

C

R4
+

CN2

R4
+

C

R2
(N − 1)K +

C

T 2
+ CK2,

and hence

((1− f)ψw2)(xj , tj) � ψw2

2
(xj , tj) +

1

j
+

Cf4

R4(1− f)3
(xj , tj) +

CN2

R4

+
C

R2
(N − 1)K +

C

T 2
+ CK2.

By f � 0, and hence 1− f � 1, f/(1− f) � 1, and that 0 � ψ � 1,

(ψ2w2)(xj , tj) � 2

j
+

C

R4
+

CN2

R4
+

C

R2
(N − 1)K +

C

T 2
+ CK2.

By the above inequality and (3.35), letting j → ∞,

G
2 � C

R4
+

CN2

R4
+

C

R2
(N − 1)K +

C

T 2
+ CK2 � CN2

R4
+

C

T 2
+ CK2.

Hence,

G � CN

R2
+

C

T
+ CK.

Note that ψ = 1 on BR × (3T/4, T ] by (3.27). Thus,

sup
BR×(3T/4,T ]

w � CN

R2
+

C

T
+ CK.

By definition of w, we have

sup
BR×(3T/4,T ]

|∇f |
1− f

� C
√
N

R
+

C√
T

+ C
√
K. �

We are now in position to prove Theorem 1.3.

Proof of Theorem 1.3. Given any Q � δ > 0, by [41, Theorem 2.2], u + δ ∈
L∞
loc(B2R,T ). Since the desired estimate is a local estimate, without loss of gen-

erality, we may assume that u+ δ ∈ L∞(B2R,T ).
Given anyQ � ε > 0 sufficiently small, by Lemma 3.8, for almost all t ∈ (0, T−ε),

L ((u+ δ)h) = ∂t ((u+ δ)h)

on BR, in the sense of distributions. By Lemma 3.7, we apply Lemma 3.26 to the
Steklov averages (u+ δ)h. Then, we have

sup
BR×( 3(T−ε)

4 ,T−ε]

|∇fδ,h(x, t)|
1− fδ,h(x, t)

� C ·
(√

N

R
+

1√
T − ε

+
√
K

)
,
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where fδ,h = ln( (u+δ)h
M+δ ), 0 < h < ε. By letting Q � h → 0, we get

sup
BR×(

3(T−ε)
4 ,T−ε]

|∇fδ(x, t)|
1− fδ(x, t)

� C ·
(√

N

R
+

1√
T − ε

+
√
K

)
,

where fδ = ln( u+δ
M+δ ). By letting δ → 0 and the arbitrariness of ε, we complete the

proof. �

Using Theorem 1.3, [44, Corollary 1.5] with K = 0, and the same arguments as
in the proof of [38, eq. (1.5)], we can prove Corollary 1.5.

Using Theorem 1.3, and by the same arguments as in [38, Theorem 1.2], we
conclude Theorem 1.6.
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[18] Lars Hörmander, The analysis of linear partial differential operators. I, 2nd ed., Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],
vol. 256, Springer-Verlag, Berlin, 1990. Distribution theory and Fourier analysis. MR1065993

[19] B. Hua, M. Kell, and C. Xia, Harmonic functions on metric measure spaces, (2013), available

at http://arxiv.org/abs/1308.3607.
[20] Richard S. Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom.

1 (1993), no. 1, 113–126, DOI 10.4310/CAG.1993.v1.n1.a6. MR1230276
[21] Renjin Jiang, The Li–Yau inequality and heat kernels on metric measure spaces (English,

with English and French summaries), J. Math. Pures Appl. (9) 104 (2015), no. 1, 29–57, DOI
10.1016/j.matpur.2014.12.002. MR3350719

[22] Renjin Jiang and Huichun Zhang, Hamilton’s gradient estimates and a monotonicity for-
mula for heat flows on metric measure spaces, Nonlinear Anal. 131 (2016), 32–47, DOI
10.1016/j.na.2015.08.011. MR3427968

[23] Yin Jiang and Hui-Chun Zhang, Sharp spectral gaps on metric measure spaces, Calc. Var.
Partial Differential Equations 55 (2016), no. 1, Art. 14, 14, DOI 10.1007/s00526-016-0952-4.
MR3449924

[24] Paul W. Y. Lee, Generalized Li–Yau estimates and Huisken’s monotonicity formula, ESAIM
Control Optim. Calc. Var. 23 (2017), no. 3, 827–850, DOI 10.1051/cocv/2016015. MR3660450

[25] Junfang Li and Xiangjin Xu, Differential Harnack inequalities on Riemannian man-
ifolds I: linear heat equation, Adv. Math. 226 (2011), no. 5, 4456–4491, DOI
10.1016/j.aim.2010.12.009. MR2770456

[26] Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta
Math. 156 (1986), no. 3-4, 153–201, DOI 10.1007/BF02399203. MR834612

[27] Xiang-Dong Li, Liouville theorems for symmetric diffusion operators on complete Riemann-
ian manifolds (English, with English and French summaries), J. Math. Pures Appl. (9) 84
(2005), no. 10, 1295–1361, DOI 10.1016/j.matpur.2005.04.002. MR2170766

[28] John Lott and Cédric Villani, Ricci curvature for metric-measure spaces via optimal trans-

port, Ann. of Math. (2) 169 (2009), no. 3, 903–991, DOI 10.4007/annals.2009.169.903.
MR2480619

[29] John Lott and Cédric Villani,Weak curvature conditions and functional inequalities, J. Funct.
Anal. 245 (2007), no. 1, 311–333, DOI 10.1016/j.jfa.2006.10.018. MR2311627

[30] Niko Marola and Mathias Masson, On the Harnack inequality for parabolic minimiz-
ers in metric measure spaces, Tohoku Math. J. (2) 65 (2013), no. 4, 569–589, DOI
10.2748/tmj/1386354296. MR3161434

[31] A. Mondino and A. Naber, Structure theory of metric measure spaces with lower Ricci cur-
vature bounds I, (2014), available at http://arxiv.org/abs/1405.2222.

[32] Andrea Mondino and Guofang Wei, On the universal cover and the fundamental group of
an RCD∗(K,N)-space, Journal für die reine und angewandte Mathematik (2016), DOI:
https://doi.org/10.1515/crelle-2016-0068.
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