
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 12, December 2018, Pages 5333–5347
https://doi.org/10.1090/proc/14186

Article electronically published on August 14, 2018

QUADRATURE RULES FROM FINITE ORTHOGONALITY

RELATIONS FOR BERNSTEIN-SZEGÖ POLYNOMIALS

J. F. VAN DIEJEN AND E. EMSIZ

(Communicated by Mourad Ismail)

Abstract. We glue two families of Bernstein-Szegö polynomials to construct
the eigenbasis of an associated finite-dimensional Jacobi matrix. This gives
rise to finite orthogonality relations for this composite eigenbasis of Bernstein-
Szegö polynomials. As an application, a number of Gauss-like quadrature rules
are derived for the exact integration of rational functions with prescribed poles
against the Chebyshev weight functions.

1. Introduction

From the three-term recurrence relation for the Chebyshev polynomials of the
second kind [OLBC10, Chapter 18], it is immediate that these diagonalize a semi-
infinite Jacobi matrix with zeros on the diagonal and units on the sub– and su-
perdiagonals. Upon modifying the orthogonality measure via division by a positive
polynomial of degree d, the Chebyshev basis passes over into a basis of orthonormal
Bernstein-Szegö polynomials [S75, Section 2.6]. These polynomials turn out to di-
agonalize a (d-parameter family) of semi-infinite Jacobi matrices that are perturbed
at the top left block [S75,DS06,GI17]:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0 a1

a1
. . .

. . .

. . .
. . . al
al bl 1

1 0
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where l = �d
2� (and bl ≡ 0 when d is even). In this note we glue two such families

of Bernstein-Szegö polynomials depending on d and d̃ parameters, respectively, so
as to diagonalize a corresponding (d+ d̃)-parameter family of (m+ 1)-dimensional
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Jacobi matrices of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0 a1

a1
. . .

. . .

. . .
. . . al
al bl 1

1 0
. . .

. . .
. . .

. . .

. . . 0 1
1 bm−l̃ am+1−l̃

am+1−l̃

. . .
. . .

. . .
. . . am
am bm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where l = �d
2�, l̃ = � d̃2�, and with m positive such that m+1 ≥ �d

2�+� d̃
2�. The sym-

metry of the Jacobi matrix gives rise to a finite-dimensional system of discrete or-
thogonality relations for the pertinent composite eigenbasis built of Bernstein-Szegö
polynomials. By standard arguments (cf., e.g., [S75,G81, DR84]), these orthogo-
nality relations imply in turn Gauss-like quadrature rules for the exact integration
of rational functions with prescribed poles against the Chebyshev weight function.

When d̃ = d = 2, the present construction recovers orthogonality relations that
lie at the basis of a four-parameter family of discrete Fourier transforms unify-
ing all sixteen standard types of discrete (co)sine transforms DST-k and DCT-k

(k = 1, . . . , 8) [DE18a], whereas for d̃ = 0 with d arbitrary one recuperates dis-
crete orthogonality relations for the Bernstein-Szegö polynomials stemming from
the Gauss quadrature rule [DGJ06,BCDG09,DE18b].

The presentation splits into four parts. First our main fundamental result is
stated in Section 2. Specifically—after recalling some classical facts concerning
the Bernstein-Szegö polynomials—we introduce a finite grid consisting of nodes

ξ
(m)
0 , . . . , ξ

(m)
m on the interval [0, π] whose positions are governed by an elementary

transcendental equation (cf. equations (2.5a), (2.5b)). To each node ξ
(m)

l̂
(0 ≤ l̂ ≤

m), we can associate an (m+1)-dimensional vector ψ(m)
(
ξ
(m)

l̂

)
=
[
ψ
(m)
l

(
ξ
(m)

l̂

)]
0≤l≤m

with components ψ
(m)
l

(
ξ
(m)

l̂

)
built of two families of Bernstein-Szegö polynomials

evaluated at the node (cf. equation (2.7)). Our main theorem states that the

vectors ψ(m)
(
ξ
(m)
0

)
, . . . , ψ(m)

(
ξ
(m)
m

)
thus constructed satisfy an explicit system of

orthogonality relations (cf. Theorem 1).
Section 3 is devoted to the proof of these orthogonality relations, which proceeds

in two steps. First, the orthogonality is verified by inferring that (after performing
a diagonal gauge transformation) the vectors in question provide an eigenbasis of
an (m + 1)-dimensional Jacobi matrix of the form displayed above, with entries
built from the recurrence coefficients of the two underlying families of Bernstein-
Szegö polynomials. As a byproduct, this reveals that our nodes parametrize the
eigenvalues of the Jacobi matrix in question. Next, the quadratic norms of the
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vectors are calculated by evaluating the diagonal of the corresponding Christoffel-
Darboux kernel at the nodes.

Section 4 collects some further miscellaneous results of interest. Specifically, we
compute the characteristic polynomial of our Jacobi matrix, provide estimates for

the locations of the nodes ξ
(m)
0 , . . . , ξ

(m)
m (and thus for the eigenvalues of the Jacobi

matrix), and exhibit—as a special example of our construction—finite orthogonality
relations for the Askey-Wilson polynomials at q = 0.

As a principal application, we wrap up in Section 5 with a precise description of
the quadrature rules stemming from our orthogonality relations (cf. Theorem 5).
Indeed, by “column-row duality” the orthogonality established in this note implies
discrete orthogonality relations for a finite system of Bernstein-Szegö polynomials

supported on the nodes ξ
(m)
0 , . . . , ξ

(m)
m . By comparing these discrete orthogonality

relations with the conventional continuous orthogonality relations for the Bernstein-
Szegö polynomials, the pertinent quadrature formulas are read off immediately. A
key feature of the quadrature rules under consideration is that these allow for the
exact integration of rational functions with prescribed poles (outside the integration
interval) originating from the denominator of the orthogonality measure for the
Bernstein-Szegö polynomials.

Note. In principle the Bernstein-Szegö polynomials associated with the Chebyshev
polynomials of the first–, the third–, and the fourth kind may be viewed as param-
eter degenerations of the ones above stemming from the Chebyshev polynomials of
the second kind [S75,G02]. However, to avoid limit transitions we have adopted the
standard practice of formulating the statements below uniformly for all four kinds.

2. Statement of the main result

2.1. Preliminaries on Bernstein-Szegö polynomials. The Bernstein-Szegö
polynomials constitute an orthogonal basis for the Hilbert space L2

(
(0, π), w(ξ)dξ

)
,

where the weight function is of the form

(2.1a) w(ξ) :=
1

2π|c(ξ)|2 (0 < ξ < π),

with

(2.1b) c(ξ) := (1 + ε+e
−iξ)−1(1− ε−e

−iξ)−1
∏

1≤r≤d

(1 + αre
−iξ)

(and i :=
√
−1). Here (and below) it is always assumed that

ε± ∈ {0, 1} and 0 < |αr| < 1 (r = 1, . . . , d),

with possible complex parameters αr occurring in complex conjugate pairs. More
specifically, the Bernstein-Szegö basis pl(ξ), l = 0, 1, 2, . . . enjoys a unitriangular
expansion on the Fourier-cosine monomials 1, (eiξ + e−iξ), (e2iξ + e−2iξ), . . . and is
obtained from them via Gram-Schmidt orthogonalization with respect to the weight
function w(ξ). Rather than working with a monic– or an orthonormal basis, it will
be more convenient for our purposes to employ the following normalized version of
the Bernstein-Szegö polynomials:

(2.2) pl(ξ) := Δ−1
l pl(ξ) with Δl :=

∫ π

0

p2l (ξ)w(ξ)dξ.
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A crucial observation going back to Bernstein and Szegö—cf. [S75, Section

2.6]—now states that for l ≥ dε :=
1
2 (d− ε+ − ε−) one has explicitly:

(2.3a) pl(ξ) = c(ξ)eilξ + c(−ξ)e−ilξ

and (consequently)

(2.3b) Δl =

{(
1 + (−1)ε−

∏
1≤r≤d αr

)−1
if l = dε,

1 if l > dε.

2.2. Composite Bernstein-Szegö basis. Let us fix two families of Bernstein-
Szegö polynomials pl(ξ) and p̃l(ξ) associated with the parameters ε±, αr (r =

1, . . . , d) and ε̃±, α̃r (r = 1, . . . , d̃), respectively (subject to the domain restrictions
specified above). For positive m such that

(2.4) m > �dε�+ �d̃ε̃�

and l̂ ∈ {0, . . . ,m}, let ξ(m)

l̂
be defined as the unique real solution of the transcen-

dental equation

(2.5a) 2
(
m−dε−d̃ε̃

)
ξ+

∑
1≤r≤d

∫ ξ

0

uαr
(x)dx+

∑
1≤r≤d̃

∫ ξ

0

uα̃r
(x)dx = π(2l̂+ε−+ε̃−),

where for x ∈ R:

uα(x) :=
1− α2

1 + 2α cos(x) + α2
(|α| < 1)(2.5b)

=1 + 2
∑
l>0

(−α)l cos(lx).

Indeed—since
∫ π

0
uα(x)dx=π and the LHS of equation (2.5a) constitutes a (smooth)

strictly increasing function of ξ—it is clear from this transcendental equation (via
the mean value theorem) that

(2.6) 0 ≤ ξ
(m)
0 < ξ

(m)
1 < · · · < ξ(m)

m ≤ π.

Notice that the equality ξ
(m)
0 = 0 is reached iff ε− = ε̃− = 0, and that the equality

ξ
(m)
m = π is reached iff ε+ = ε̃+ = 0. The nodes therefore never hit a pole of c(±ξ)

or c̃(±ξ), even in the situations that the extremal values ξ
(m)
0 = 0 or ξ

(m)
m = π are

reached.
We are now in the position to introduce the following composite Bernstein-Szegö

basis ψ
(m)
0 , . . . , ψ

(m)
m on the nodes (2.6):

(2.7) ψ
(m)
l (ξ) :=

⎧⎪⎪⎨
⎪⎪⎩
e

i
2mξ pl(ξ)

c(−ξ) if 0 ≤ l < dε,

e
i
2mξ pl(ξ)

c(−ξ) = e−
i
2mξ p̃m−l(ξ)

c̃(ξ) if dε ≤ l ≤ m− d̃ε̃,

e−
i
2mξ p̃m−l(ξ)

c̃(ξ) if m− d̃ε̃ < l ≤ m,

where ξ ∈ {ξ(m)
0 , . . . , ξ

(m)
m } and l ∈ {0, . . . ,m}. To avoid possible confusion with

customary notation for the higher order derivatives of functions, let us emphasize
at this point that throughout the presentation the superscript (m) merely reflects
the dependence of our construction on the number of nodes.
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2.3. Finite orthogonality relations. For l, l̂ ∈ {0, . . . ,m}, we define the (posi-
tive) weights

(2.8a) Δ
(m)
l :=

⎧⎪⎨
⎪⎩
Δl if 0 ≤ l ≤ dε,

1 if dε < l < m− d̃ε̃,

Δ̃m−l if m− d̃ε̃ ≤ l ≤ m,

and the dual (positive) weights

(2.8b) Δ̂
(m)

l̂
:= γ

(m)

l̂

(
2
(
m− dε − d̃ε̃

)
+
∑

1≤r≤d

uαr

(
ξ
(m)

l̂

)
+
∑

1≤r≤d̃

uα̃r

(
ξ
(m)

l̂

))−1

.

Here γ
(m)

l̂
:=
(
1
2

)(1−ε−)(1−ε̃−)δl̂+(1−ε+)(1−ε̃+)δm−l̂ with δx := 1 if x = 0 and δx := 0

otherwise.
The following two (equivalent) orthogonality relations satisfied by the composite

Bernstein-Szegö basis constitute our principal result.

Theorem 1 (Orthogonality relations). For positive m > �dε�+�d̃ε̃�, the composite
Bernstein-Szegö basis (2.7) satisfies the orthogonality relations

(2.9a)
∑

0≤l̂≤m

ψ
(m)
l

(
ξ
(m)

l̂

)
ψ
(m)
k

(
ξ
(m)

l̂

)
Δ̂

(m)

l̂
=

{
1/Δ

(m)
l if k = l,

0 if k �= l,

(0 ≤ l, k ≤ m), or equivalently (by column-row duality)

(2.9b)
∑

0≤l≤m

ψ
(m)
l

(
ξ
(m)

l̂

)
ψ
(m)
l

(
ξ
(m)

k̂

)
Δ

(m)
l =

{
1/Δ̂

(m)

l̂
if k̂ = l̂,

0 if k̂ �= l̂,

(0 ≤ l̂, k̂ ≤ m).

For d = d̃ = 2 and ε± = ε̃± = 1, this orthogonality can be found in [DE18a,

Section 2.3], while the degenerate case d̃ = 0 and ε̃± = 1 is immediate from the
Gauss quadrature rule associated with the Bernstein-Szegö polynomials [DE18b,
Section 8].

3. Proof of Theorem 1

3.1. Preparatives. Before proving the main theorem, let us first corroborate that

(the gluing in) the definition of ψ
(m)
l (ξ) (2.7) is legitimate, i.e., that at ξ = ξ

(m)

l̂
,

l̂ ∈ {0, . . . ,m}:

(3.1a) e
1
2 imξ pl(ξ)

c(−ξ)
= e−

1
2 imξ p̃m−l(ξ)

c̃(ξ)
for dε ≤ l ≤ m− d̃ε̃.

Recalling equation (2.3a), one readily infers that equation (3.1a) is satisfied when

(3.1b) e2imξ =
c(−ξ)c̃(−ξ)

c(ξ)c̃(ξ)
,

or more explicitly (by equation (2.1b)):

(3.1c) e2imξ = (−1)ε−+ε̃−e2i(dε+d̃ε̃)ξ
∏

1≤r≤d

1 + αre
iξ

eiξ + αr

∏
1≤r≤d̃

1 + α̃re
iξ

eiξ + α̃r
.
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That equation (3.1c) holds at ξ = ξ
(m)

l̂
is immediate from equations (2.5a), (2.5b),

upon multiplying this defining transcendental equation for ξ
(m)

l̂
by the imaginary

unit and exponentiating both sides with the aid of the identity

(3.2) exp

(
−i

∫ ξ

0

uα(x)dx

)
=

1 + αeiξ

eiξ + α
(|α| < 1).

Now turning to the proof of the theorem, we observe that both types of orthog-
onality relations formulated in Theorem 1 amount to the claim that the (m + 1)-
dimensional matrix [√

Δ
(m)
l Δ̂

(m)

l̂
ψ
(m)
l

(
ξ
(m)

l̂

)]
0≤l,l̂≤m

is unitary. It is therefore sufficient to verify either one of them, and here we choose to
infer equation (2.9b). Rewritten explicitly in terms of Bernstein-Szegö polynomials,

this orthogonality relation states that for any 	 ∈ {0, . . . ,m} such that �d̃ε̃� < 	 ≤
m− �dε� (which exists because m > �dε�+ �d̃ε̃�):

1

c
(
−ξ

(m)

l̂

)
c
(
ξ
(m)

k̂

) m−�∑
l=0

pl
(
ξ
(m)

l̂

)
pl
(
ξ
(m)

k̂

)
Δl(3.3)

+
1

c̃
(
ξ
(m)

l̂

)
c̃
(
−ξ

(m)

k̂

) �−1∑
l=0

p̃l
(
ξ
(m)

l̂

)
p̃l
(
ξ
(m)

k̂

)
Δ̃l =

{
1/Δ̂

(m)

l̂
if k̂ = l̂,

0 if k̂ �= l̂,

(0 ≤ l̂, k̂ ≤ m).

3.2. Orthogonality. In the normalization (2.2), the three-term recurrence relation
for the Bernstein-Szegö polynomials takes the form

(3.4a) 2 cos(ξ)pl(ξ) = pl−1(ξ) + blpl(ξ) + a2l+1pl+1(ξ) with al+1 :=

(
Δl+1

Δl

)1/2

for certain (real) coefficients bl, l = 0, 1, 2, . . . (and p−1(ξ) := 0). From the explicit
formulas (2.3a), (2.3b) it is moreover seen that

(3.4b) al+1 = 1 for l > dε and bl = 0 for l > �dε�.

With the aid of the corresponding three-term recurrences for pl(ξ) and p̃l(ξ), we now
construct a real tridiagonal matrix that is diagonalized by the composite Bernstein-
Szegö basis (2.7):

(3.5a) L(m) :=
[
L
(m)
l,k

]
0≤l,k≤m

with

L
(m)
l,k :=

⎧⎪⎨
⎪⎩
δl−k−1 + blδl−k + a2l+1δl−k+1 if 0 ≤ l ≤ �dε�,
δl−k−1 + δl−k+1 if �dε� < l < m− �d̃ε̃�,
ã2m−l+1δl−k−1 + b̃m−lδl−k + δl−k+1 if m− �d̃ε̃� ≤ l ≤ m.

(3.5b)
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Upon interpreting functions f : {0, . . . ,m} → C as column vectors [fl]0≤l≤m, the

action of L(m) (3.5a), (3.5b) on f becomes:

(3.6) (L(m)f)l :=

⎧⎪⎨
⎪⎩
fl−1 + blfl + a2l+1fl+1 if 0 ≤ l ≤ �dε�,
fl−1 + fl+1 if �dε� < l < m− �d̃ε̃�,
ã2m−l+1fl−1 + b̃m−lfl + fl+1 if m− �d̃ε̃� ≤ l ≤ m,

(where f−1 = fm+1 := 0).

Proposition 2 (Diagonalization of L(m)). Viewed as a function of l ∈ {0, . . . ,m},
the composite Bernstein-Szegö vector ψ

(m)
l (ξ) (2.7) solves the eigenvalue equation

(3.7) L(m)ψ(m)(ξ) = 2 cos(ξ)ψ(m)(ξ)

for any ξ ∈ {ξ(m)
0 , . . . , ξ

(m)
m }.

Proof. If 0 ≤ l < m− �d̃ε̃�, then(
L(m)ψ(m)(ξ)

)
l

i)
= ψ

(m)
l−1 (ξ) + blψ

(m)
l (ξ) + a2l+1ψ

(m)
l−1 (ξ)

ii)
= 2 cos(ξ)ψ

(m)
l (ξ),

and if �dε� < l ≤ m, then(
L(m)ψ(m)(ξ)

)
l

i)
= ã2m−l+1ψ

(m)
l−1 (ξ) + b̃m−lψ

(m)
l (ξ) + ψ

(m)
l+1 (ξ)

ii)
= 2 cos(ξ)ψ

(m)
l (ξ).

Here we used i) equations (3.6), (3.4b) and ii) equations (2.7), (3.4a). �

Since the (eigen)vectors ψ(m)
(
ξ
(m)
0

)
, . . . , ψ(m)

(
ξ
(m)
m

)
are nonzero (because for

any 0 ≤ l̂ ≤ m: ψ
(m)
0

(
ξ
(m)

l̂

)
�= 0, as p0(ξ) = Δ−1

0 �= 0), and the eigenvalues

2 cos
(
ξ
(m)
0

)
, . . . , 2 cos

(
ξ
(m)
m

)
are simple in view of equation (2.6), it is evident that

Proposition 2 indeed provides an eigenbasis for L(m) (3.5a), (3.5b).
Let Δ(m) denote the positive (m+ 1)-dimensional diagonal matrix

(3.8) Δ(m) := diag
(
Δ

(m)
0 ,Δ

(m)
1 , . . . ,Δ(m)

m

)
.

The orthogonality in equation (2.9b) asserts that the vectors(
Δ(m)

)1/2
ψ(m)

(
ξ
(m)
0

)
, . . . ,

(
Δ(m)

)1/2
ψ(m)

(
ξ(m)
m

)
are orthogonal. In view of the diagonalization stemming from Proposition 2, this
orthogonality is clear after corroborating that the similarity transformation

(3.9) J (m) :=
(
Δ(m)

)1/2
L(m)

(
Δ(m)

)−1/2

yields a Jacobi matrix.

Proposition 3 (Jacobi matrix J (m)). The (real) tridiagonal matrix J (m) (3.9) is

symmetric, with elements a
(m)
1 , . . . , a

(m)
m on the sub- and superdiagonals given by

(3.10a) a
(m)
l+1 :=

⎧⎪⎨
⎪⎩
al+1 if 0 ≤ l < �dε�,(
ΔlΔ̃m−l−1

)−1/2
if �dε� ≤ l < m− �d̃ε̃�,

ãm−l if m− �d̃ε̃� ≤ l < m,

and elements b
(m)
0 , . . . , b

(m)
m on the principal diagonal of the form

(3.10b) b
(m)
l :=

⎧⎪⎨
⎪⎩
bl if 0 ≤ l ≤ �dε�,
0 if �dε� < l < m− �d̃ε̃�,
b̃m−l if m− �d̃ε̃� ≤ l ≤ m.
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Proof. Starting from the formulas for L(m) and Δ(m) in equations (3.5a), (3.5b)
and equation (3.8), respectively, one readily verifies (upon recalling the definitions

in equations (2.8a) and (3.4a)) that J
(m)
l,l+1 =

(
Δ

(m)
l

)1/2
L
(m)
l,l+1

(
Δ

(m)
l+1

)−1/2
= a

(m)
l+1

and that J
(m)
l+1,l =

(
Δ

(m)
l+1

)1/2
L
(m)
l+1,l

(
Δ

(m)
l

)−1/2
= a

(m)
l+1 (l = 0, . . . ,m − 1), whereas

on the diagonal it is obvious that J
(m)
l,l = L

(m)
l,l = b

(m)
l (l = 0, . . . ,m). �

This completes the proof of equation (2.9b) when k̂ �= l̂.

3.3. Quadratic norms. It remains to infer the quadratic norm formula in equation

(2.9b) when k̂ = l̂. This amounts to the following summation formula.

Proposition 4 (Summation formula). For any ξ ∈ {ξ(m)
0 , . . . , ξ

(m)
m }, one has that

∑
0≤l≤m

|ψ(m)
l (ξ)|2Δ(m)

l =2δξ+δπ−ξ

⎛
⎝2
(
m− dε − d̃ε̃

)
+
∑

1≤r≤d

uαr
(ξ)+

∑
1≤r≤d̃

uα̃r
(ξ)

⎞
⎠ .

Proof. For ξ ∈ (0, π) the proof hinges on the Christoffel-Darboux kernel for the
Bernstein-Szegö polynomials [S75,G07] evaluated on the diagonal:

∑
0≤l≤N

p2l (ξ)Δl =
ΔN+1

2 sin(ξ)

(
pN+1(ξ)p

′
N (ξ)− p′N+1(ξ)pN (ξ)

)
.

For N ≥ dε, the RHS can be computed explicitly by means of equations (2.3a),
(2.3b):

∑
0≤l≤N

p2l (ξ)Δl =c(ξ)c(−ξ)

[
1

i

(
c′(ξ)

c(ξ)
+

c′(−ξ)

c(−ξ)

)
+ 2N + 1

]

+ (2i sin ξ)−1
(
ei(2N+1)ξc2(ξ)− e−i(2N+1)ξc2(−ξ)

)
.

By using the definition of the composite Bernstein-Szegö basis in equation (2.7)

and splitting the sum as in equation (3.3), we get (assuming ξ ∈ {ξ(m)
0 , . . . , ξ

(m)
m }):

∑
0≤l≤m

|ψ(m)
l (ξ)|2Δ(m)

l =
1

c(ξ)c(−ξ)

m−�∑
l=0

p2l (ξ)Δl +
1

c̃(ξ)c̃(−ξ)

�−1∑
l=0

p̃2l (ξ)Δ̃l

for 	 ∈ {0, . . . ,m} such that �d̃ε̃� < 	 ≤ m − �dε�. Summation of both parts with
the aid of the explicit formula for the diagonal of the Christoffel-Darboux kernel
yields:

1

c̃(ξ)c̃(−ξ)

�−1∑
l=0

p̃2l (ξ)Δ̃l =

[
1

i

(
c̃′(ξ)

c̃(ξ)
+

c̃′(−ξ)

c̃(−ξ)

)
+ 2	− 1

]

+ (2i sin ξ)−1

(
(ei(2�−1)ξ c̃(ξ)

c̃(−ξ)
− e−i(2�−1)ξ c̃(−ξ)

c̃(ξ)

)
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and

1

c(ξ)c(−ξ)

m−�∑
l=0

p2l (ξ)Δl

=

[
1

i

(
c′(ξ)

c(ξ)
+

c′(−ξ)

c(−ξ)

)
+ 2(m− 	) + 1

]

+ (2i sin ξ)−1

(
ei(2(m−�)+1)ξ c(ξ)

c(−ξ)
− e−i(2(m−�)+1)ξ c(−ξ)

c(ξ)

)

=

[
1

i

(
c′(ξ)

c(ξ)
+

c′(−ξ)

c(−ξ)

)
+ 2(m− 	) + 1

]

+ (2i sin ξ)−1

(
e−i(2�−1)ξ c̃(−ξ)

c̃(ξ)
− ei(2�−1)ξ c̃(ξ)

c̃(−ξ)

)
,

where in the last step equation (3.1b) was used. Pasting everything together finally
entails the desired result:∑

0≤l≤m

|ψ(m)
l (ξ)|2Δ(m)

l = 2m+
1

i

(
c′(ξ)

c(ξ)
+

c′(−ξ)

c(−ξ)
+

c̃′(ξ)

c̃(ξ)
+

c̃′(−ξ)

c̃(−ξ)

)

(which simplifies to the stated norm formula upon inserting the explicit expressions
for c(ξ) and c̃(ξ) stemming from equation (2.1b) into the logarithmic derivatives).
When ξ = 0 or ξ = π, the summation formula follows similarly upon applying
L’Hôpital’s rule to the expression for the diagonal of the Christoffel-Darboux kernel
at the start (which entails an extra factor 2). �

This completes the proof of equation (2.9b) when k̂ = l̂.

4. Miscellanea

4.1. Characteristic polynomial. It is instructive to observe that the spectral

values providing our nodes 0 ≤ ξ
(m)
0 < · · · < ξ

(m)
m ≤ π can be retrieved as the roots

of the following polynomial of degree m+ 1 in cos(ξ):

(4.1a) Qm+1(ξ) :=
∑

0≤k≤2(d̃ε̃+1)

ek(α̃; 1− ε̃+; 1− ε̃−) qm+1−k(ξ),

where ql(ξ) := c(ξ)eilξ + c(−ξ)e−ilξ for l ∈ Z (so ql(ξ) = pl(ξ) if l ≥ dε) and

ek(α̃; ε̃+; ε̃−) := ek(α̃) + (ε̃+ − ε̃−)ek−1(α̃)− ε̃+ε̃−ek−2(α̃),

with

ek(α̃) :=
∑

1≤r1<···<rk≤d̃

α̃r1 · · · α̃rk

subject to the conventions that e0(α̃) := 1 and ek(α̃) := 0 if k �∈ {0, 1, . . . , d̃}.
More precisely, one has that

(4.1b) Qm+1(ξ) = 2m+1
(
cos(ξ)− cos

(
ξ
(m)
0

))
· · ·
(
cos(ξ)− cos

(
ξ(m)
m

))
.

Indeed, by means of the explicit formula for ql(ξ) it is readily seen that the equation
Qm+1(ξ) = 0 boils down to equations (3.1b) and (3.1c). To this end Qm+1(ξ) (4.1a)
is first split in two parts, with common factors c(ξ)ei(m+1)ξ and c(−ξ)e−i(m+1)ξ,
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respectively, and then the terms of each factor are collected with the aid of the
generating function

(1 + ε̃+z)(1− ε̃−z)
∏

1≤r≤d̃

(1 + α̃rz) =

d̃+ε̃++ε̃−∑
l=0

ek(α̃; ε̃+; ε̃−)z
k

(at z = e∓iξ). To confirm that the degree of Qm+1(ξ) in cos(ξ) is m+ 1, one uses
that

deg(ql) =

{
l if l ≥ dε,

2dε − l if l < dε,

in combination with our condition on m in equation (2.4), whereas to compute the
coefficient of the corresponding leading term (stemming from qm+1(ξ) = pm+1(ξ))
one employs equations (2.2) and (2.3a), (2.3b) (thus verifying the factorization of
Qm+1(ξ) in equation (4.1b)).

If we compare equation (4.1b) with equation (3.7), then it is clear that Qm+1(ξ)
(4.1a) coincides with the characteristic polynomials of the (m + 1)-dimensional
tridiagonal matrices L(m) and J (m) from Propositions 2 and 3, respectively:

(4.2) det
(
2 cos(ξ)I(m) − L(m)

)
= det

(
2 cos(ξ)I(m) − J (m)

)
= Qm+1(ξ)

(where I(m) refers to the (m+ 1)-dimensional identity matrix).

4.2. Estimates for the locations of the nodes. With the aid of the mean value
theorem it is immediate from the transcendental equation for ξ

(m)

l̂
in equations

(2.5a), (2.5b), that the nodes/spectral values ξ
(m)
0 , . . . , ξ

(m)
m (2.6) satisfy the follow-

ing inequalities:

(4.3a)
π
(
l̂ + ε−+ε̃−

2

)
m− dε − d̃ε̃ + κ−

≤ ξ
(m)

l̂
≤

π
(
l̂ + ε−+ε̃−

2

)
m− dε − d̃ε̃ + κ+

(for 0 ≤ l̂ ≤ m), and

(4.3b)
π(k̂ − l̂)

m− dε − d̃ε̃ + κ−
≤ ξ

(m)

k̂
− ξ

(m)

l̂
≤ π(k̂ − l̂)

m− dε − d̃ε̃ + κ+

(for 0 ≤ l̂ < k̂ ≤ m), where

(4.3c) κ± :=
1

2

∑
1≤r≤d

(
1− |αr|
1 + |αr|

)±1

+
1

2

∑
1≤r≤d̃

(
1− |α̃r|
1 + |α̃r|

)±1

.

Here one uses that for ξ real

Re
(
uα(ξ)

)
=

1

2

(
u|α|
(
ξ +Arg(α)

)
+ u|α|

(
ξ −Arg(α)

))
,

and thus
1− |α|
1 + |α| ≤ Re

(
uα(ξ)

)
≤ 1 + |α|

1− |α| (|α| < 1).

(To recover the second estimate, for the distances between the nodes, one first

subtracts the l̂th equation in equation (2.5a) from the k̂th equation before invoking
the mean value theorem.)
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Note. When all Bernstein-Szegö parameters αr and α̃r tend to 0, the above esti-
mates become exact and we reduce to the elementary situation corresponding to
d = d̃ = 0:

(4.4) ξ
(m)

l̂
=

π(2l̂ + ε− + ε̃−)

2m+ ε+ + ε− + ε̃+ + ε̃−
(for d, d̃ = 0).

More generally the positions of the nodes ξ
(m)

l̂
can be effectively retrieved numeri-

cally from equations (2.5a), (2.5b), e.g., by means of a standard fixed-point iteration
scheme like Newton’s method. Notice in this connection that the numerical inte-
gration of uα(x) in equation (2.5a) can be avoided at this point, since (cf. equation
(3.2)) ∫ ξ

0

uα(x)dx = iLog

(
1 + αeiξ

eiξ + α

)
= 2Arctan

(
1− α

1 + α
tan

(
ξ

2

))

(for |α| < 1 and −π < ξ < π). Convenient initial values for starting up such
numerical calculations are provided by the locations of the elementary nodes at
vanishing parameter values from equation (4.4). Indeed, this initial configuration
automatically complies with all inequalities in equations (4.3a)–(4.3c).

4.3. Finite orthogonality for Askey-Wilson polynomials at q = 0. If d =
d̃ = 4 and ε± = ε̃± = 1 (so dε = d̃ε̃ = 1), then the Bernstein-Szegö weight function
coincides with that of the Askey-Wilson polynomials [AW85,KLS10] at q = 0:

(4.5) w(ξ) =
1

2π|c(ξ)|2 , c(ξ) =

∏4
r=1(1 + αre

−iξ)

1− e−2iξ
(0 < ξ < π).

We then have explicitly

(4.6a) pl(ξ) =

{
Δ−1

0 if l = 0,

c(ξ)eilξ + c(−ξ)e−ilξ if l > 0,

and

(4.6b) Δl =

⎧⎪⎨
⎪⎩

1−α1α2α3α4∏
1≤r<s≤4(1−αrαs)

if l = 0,

1
1−α1α2α3α4

if l = 1,

1 if l > 1.

For any m > 2, the associated composite q = 0 Askey-Wilson vectors

ψ
(m)
l (ξ)=

⎧⎪⎪⎨
⎪⎪⎩
e

i
2mξ Δ−1

0

c(−ξ) if l=0,

e
i
2mξ
( c(ξ)
c(−ξ)e

ilξ+e−ilξ
)
=e−

i
2mξ
(
ei(m−l)ξ+ c̃(−ξ)

c̃(ξ) e−i(m−l)ξ
)

if 0<l<m,

e−
i
2mξ Δ̃−1

0

c̃(ξ) if l=m,

(4.7a)

at ξ = ξ
(m)

l̂
solving

(4.7b) 2(m− 2)ξ +
∑

1≤r≤4

∫ ξ

0

(
uαr

(x) + uα̃r
(x)
)
dx = 2π(l̂ + 1)
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(0 ≤ l̂ ≤ m), diagonalize the (m+ 1)-dimensional tridiagonal matrix

(4.8) L(m) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0 a21
1 b1 a22

1 0 1
. . .

. . .
. . .

1 0 1

ã22 b̃1 1

ã21 b̃0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

a1 =
(
Δ1/Δ0

)1/2
, a2 = Δ

−1/2
1 ,

b0 = (Δ1 − 1)
∑

1≤r≤4

α−1
r −Δ1

∑
1≤r≤4

αr,

b1 = (Δ1 − 1)
∑

1≤r≤4

(αr − α−1
r )

(and with analog formulas for ãl+1, b̃l and Δ̃l, l = 0, 1).
Given (any) 1 < 	 ≤ m− 1, the q = 0 Askey-Wilson basis satisfies the composite

finite orthogonality relations (cf. equation (3.3)):

1

c
(
−ξ

(m)

l̂

)
c
(
ξ
(m)

k̂

) m−�∑
l=0

pl
(
ξ
(m)

l̂

)
pl
(
ξ
(m)

k̂

)
Δl(4.9)

+
1

c̃
(
ξ
(m)

l̂

)
c̃
(
−ξ

(m)

k̂

) �−1∑
l=0

p̃l
(
ξ
(m)

l̂

)
p̃l
(
ξ
(m)

k̂

)
Δ̃l

=

{
2(m− 2) +

∑
1≤r≤4

(
uαr

(
ξ
(m)

l̂

)
+ uα̃r

(
ξ
(m)

l̂

))
if k̂ = l̂,

0 if k̂ �= l̂,

(0 ≤ l̂, k̂ ≤ m).

5. Exact quadratures for rational functions with prescribed poles

From the orthogonality in equation (2.9a), the following quadrature formulae
for the exact integration of rational functions with prescribed poles against the
Chebyshev weight functions are immediate via standard arguments (cf., e.g., [S75,
G81,DR84]).

Theorem 5 (Exact quadrature rules for rational functions). Let m be positive such

that m > �dε�+ �d̃ε̃� (and let us assume that the parameters meet the restrictions
in Section 2). Then the following (positive) quadrature rule holds true:

(5.1a)
1

2π

∫ π

0

R(ξ)ρ(ξ)dξ =
∑

0≤l̂≤m

R
(
ξ
(m)

l̂

)
ρ
(
ξ
(m)

l̂

)
Δ̂

(m)

l̂
,

where the nodes 0 ≤ ξ
(m)
0 < ξ

(m)
2 < · · · < ξ

(m)
m ≤ π are determined by equations

(2.5a), (2.5b) and the Christoffel weights Δ̂0, . . . , Δ̂m are given by equation (2.8b).
In this identity ρ(·) refers to the Chebyshev weight function

(5.1b) ρ(ξ) := 2ε++ε−(1 + ε+ cos(ξ))(1− ε− cos(ξ)),
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and R(·) denotes a rational function of the form

(5.1c) R(ξ) =
f
(
cos(ξ)

)
∏

1≤r≤d

(
1 + 2αr cos(ξ) + α2

r

) ,
where f

(
cos(ξ)

)
represents an arbitrary polynomial in cos(ξ) of degree at most

(5.1d) D := 2
(
m− d̃ε̃

)
− 1.

Proof. In the normalization from equation (2.2), the orthogonality relations for the
Bernstein-Szegö polynomials read:

(5.2a)

∫ π

0

pl(ξ)pk(ξ)w(ξ)dx =

{
Δ−1

l if k = l,

0 if k �= l,

for l, k = 0, 1, 2, . . ., where

(5.2b) w(ξ) =
1

2π|c(ξ)|2 =
2ε++ε−(1 + ε+ cos(ξ))(1− ε− cos(ξ))

2π
∏

1≤r≤d

(
1 + 2αr cos(ξ) + α2

r

) .

On the other hand, the discrete orthogonality in equation (2.9a) guarantees that

(5.3a)
∑

0≤l̂≤m

pl
(
ξ
(m)

l̂

)
pk
(
ξ
(m)

l̂

) ∣∣∣c(ξ(m)

l̂

)∣∣∣−2

Δ̂
(m)

l̂
=

{
Δ−1

l if k = l,

0 if k �= l,

for 0 ≤ l, k ≤ m such that

(5.3b)

{
0 ≤ l, k ≤ m− �d̃ε̃� if d̃ε̃ �∈ Z,

0 ≤ l ≤ m− �d̃ε̃� and 0 ≤ k < m− �d̃ε̃� if d̃ε̃ ∈ Z.

Upon comparing the orthogonality relations in equations (5.2a), (5.2b) and equa-
tions (5.3a), (5.3b), it is clear that the exact quadrature rule in equations (5.1a)–
(5.1c) is valid if we pick f

(
cos(ξ)

)
= pl(ξ)pk(ξ) with 0 ≤ l, k ≤ m as in equation

(5.3b). Since the products in question span the space of polynomials in cos(ξ) of

degree at most D (5.1d) (unless d̃ε̃ = −1), the asserted quadrature formula follows

in this situation by linearity. If d̃ε̃ = −1, then the present arguments only recover
the stated quadrature rule for polynomials f

(
cos(ξ)

)
up to degree 2m. However,

this case corresponds to that of the classical Gauss quadrature and is thus known
to extend up to degree D = 2m+ 1 (cf. the note below). �

Note. i). If d̃ = 0 and ε̃± = 1 (so d̃ε = −1 and D = 2m + 1), then Theo-
rem 5 amounts to the conventional Gauss quadrature formula associated with the
Bernstein-Szegö polynomials supported on the roots of pm+1(ξ) [DGJ06,BCDG09,

DE18b]. The case d̃ = 1 and ε̃± = 1 (so d̃ε = − 1
2 and D = 2m) provides, on the

other hand, a corresponding Gauss-type quadrature supported on the roots of the
quasi-orthogonal polynomial pm+1(ξ) + α̃1pm(ξ); cf. [MR73,G81,A86].

ii). If ε− = ε̃− = 0 and ε+ + ε̃+ �= 0 (so d̃ε̃ =
d̃−ε̃+

2 and D = 2m + ε̃+ − d̃ − 1)

or if ε− + ε̃− �= 0 and ε+ = ε̃+ = 0 (so d̃ε̃ = d̃−ε̃−
2 and D = 2m + ε̃− − d̃ − 1),

then we arrive at Radau-type quadrature rules with a left-boundary node x
(m)
0 = 0

or a right-boundary node x
(m)
m = π, respectively; cf. [G81,DR84,G04, JB09,P17].

If ε± = ε̃± = 0 (so d̃ε̃ = d̃
2 and D = 2m − d̃ − 1), then both boundary nodes

x
(m)
0 = 0 and x

(m)
m = π are present, whence our quadrature is of Lobatto-type
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in this situation; cf. [G81, DR84, G04, JB09, P17]. It is important to emphasize
at this point that the particular kinds of generalized Radau– and Lobatto-type
quadratures appearing here do not involve function evaluations of the derivatives
at the end-nodes (in contrast to those studied in [G04,JB09,P17]).

iii). Clearly the degree of exactness D (5.1d) becomes unacceptably low if d̃ is
too large. By requiring our quadrature to be interpolatory, i.e., D ≥ m (thus giving
rise to the exact integration of interpolation functions R(ξ) (5.1c) with deg(f) ≤ m

and (arbitrarily) prescribed values on the nodes), one has to pick 2d̃ε̃ ≤ m − 1.
In this situation, the expansion of the characteristic polynomial Qm+1(ξ) (4.1a),
(4.1b) in the orthogonal Bernstein-Szegö basis is of the form [MR73,G81,A86,P90,
X94,EG99]

(5.4a) Qm+1(ξ) = pm+1(ξ) +
∑

1≤k≤2(d̃ε̃+1)

c2m+1−k pm+1−k(ξ)

for certain coefficients c2m+1−k ∈ R (k = 1, 2, . . . , 2(d̃ε̃ + 1)). In other words,

Qm+1(ξ) is orthogonal to pm+1−k(ξ) if 2(d̃ε̃+1) < k ≤ m+1, which is readily seen

upon integrating the product f
(
cos(ξ)) = Qm+1(ξ)pm+1−k(ξ) against the weight

function w(ξ) (2.1a), (2.1b) by means of the quadrature rule of Theorem 5. If in

addition 2d̃ε̃ ≤ m − 1 − dε (so m + 1 − k ≥ dε for 1 ≤ k ≤ 2(d̃ε̃ + 1)), then a
comparison with equation (4.1a) reveals that in this case one has explicitly:

(5.4b) c2m+1−k = ek(α̃; 1− ε̃+; 1− ε̃−).
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[G81] Walter Gautschi, A survey of Gauss-Christoffel quadrature formulae, E. B. Christof-
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